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Kinetics of receptor-mediated endocytosis of
elastic nanoparticles†

Xin Yi and Huajian Gao*

It is now widely recognized that mechanical properties play critical roles in the cell uptake of nano-

materials. Here we conduct a theoretical study on the kinetics of receptor-mediated endocytosis of

elastic nanoparticles that is limited by receptor diffusion, specifically focusing on how the uptake rate

depends on the nanoparticle stiffness and size, membrane tension and binding strength between

membrane receptors and ligands grafted on the nanoparticle surface. It is shown that, while soft nano-

particles are energetically less prone to full wrapping than stiff ones, the wrapping of the former is kineti-

cally faster than that of the latter. Spherical and cylindrical elastic nanoparticles show dramatic differences

in the effect of stiffness on the uptake rate. Additional theoretical analysis is performed to investigate the

role of the stochastic receptor–ligand binding in the endocytosis of elastic nanoparticles. The relation

between the uptake efficiency and uptake proneness is discussed. This study provides new insight into

the elasticity effects on cell uptake and may serve as a design guideline for the controlled endocytosis

and diagnostics delivery.

1 Introduction

Cell uptake of nanoparticles is of fundamental importance not
only to the understanding of biological functions such as
nutrient uptake but also to a broad range of applications
including drug delivery, biomedical imaging, virology and
nanoparticle hazard prevention.1 Over the past decade, it has
become well established through both theoretical and experi-
mental investigations that endocytosis of nanoparticles
strongly depends on particle size,2–7 shape6–16 and surface
physiochemical properties.16–20 A number of recent studies
have also been performed to explore the effects of the stiffness
of nanomaterials on the proneness,15,21–25 kinetic rate24,26–31

and pathways25,26 of particle internalization.
For cell uptake of elastic nanoparticles via receptor-

mediated membrane wrapping, theoretical analysis, molecular
dynamics simulations and experimental studies showed that
stiff nanoscale vesicles or capsules, require less adhesion
energy than soft ones to complete the wrapping process,15,21–23

indicating a stiffness effect on the energetic proneness of cell
uptake of nanoparticles. For example, stiffness-enhanced

uptake has been observed in the interaction between lipid-
covered polymeric nanoparticles of radius 40 nm and HeLa as
well as endothelial cells.23 There have also been studies on the
stiffness effect on the cell uptake rate of nanoparticles with
different sizes and material compositions.24,26–32 However,
there exist apparent inconsistencies and even contradictions
in the literature. For example, phagocytosis of stiff micro-
particles by bone-marrow-derived macrophages exhibits higher
efficiency than soft ones.24 Hydrogel nanoparticles with radius
around 80 nm show strong stiffness-dependent uptake by
murine RAW 264.7 macrophages.26 Nanoparticles of an inter-
mediate Young’s modulus EY (35 kPa to 135 kPa) are interna-
lized at higher rates of uptake than softer (EY of 18 kPa) and
stiffer (EY of 210 kPa) particles.26 Stiffness effects have also
been identified in uptake by HepG2 cells of hydrogel nano-
particles with a radius of 400 nm and a compression modulus
from 15 kPa to 150 kPa, but in these cases softer nanoparticles
exhibit higher uptake rates than stiffer ones.27 As the particle
stiffness is reduced, microsized polymer capsules have been
observed to undergo a faster entry into HeLa cells.28,29 In con-
trast, stiffer hydrogel nanoparticles of radius 100 nm exhibit
an enhanced integrated rate of membrane binding and uptake
in their interaction with macrophages, epithelial and endo-
thelial cells.30 Moreover, the effects of nanoparticle stiffness
on their intracellular accumulation rate and distribution have
been investigated.26–29 A recent study based on molecular
dynamics simulations demonstrates that soft vesicular nano-
particles undergo a faster membrane wrapping process than
stiff ones.31 Thus, although it is clear that the stiffness of
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nanoparticles has pronounced influences on their interaction
with cells, the results from different experiments and simu-
lation studies are not all consistent and the underlying mecha-
nisms are still not fully clear. This calls for further investi-
gations at a fundamental level.

Receptor-mediated endocytosis is one of the most impor-
tant and best characterized cellular uptake pathways. Here we
present the first theoretical model on the kinetics of receptor-
mediated endocytosis of elastic nanoparticles, focusing on
how the rate of uptake depends on the nanoparticle stiffness
and size, membrane tension and binding strength between
membrane receptors and ligands grafted on the nanoparticle
surface. In this study, we assume that the receptors diffusing
along the cell membrane bind instantly to the ligand-coated
nanoparticle upon contact. It will be shown that, while soft
nanoparticles are energetically less prone to full wrapping
than stiff ones, the wrapping of the former is kinetically faster
than that of the latter in the diffusion-limited case considered
here. Spherical and cylindrical elastic nanoparticles show dra-
matically different behaviors with respect to the kinetic effects
of stiffness. We have also performed case studies to demon-
strate the effects of stochastic receptor–ligand binding on
endocytosis. The interplay between energetic proneness and
the kinetic rate of wrapping may rationalize the apparent
controversies in the literature.

2 Model and methods
2.1 Process of receptor-mediated endocytosis

Consider an initially flat cell membrane of a finite size con-
taining mobile receptors wrapping around an elastic spherical
nanoparticle coated with compatible ligands (Fig. 1). We
assume that the ligands on the nanoparticle surface are
immobile and uniformly distributed at a density of ξL, whereas
the receptors on the cell membrane are mobile, and can
diffuse in the plane of the membrane until they bind specifi-
cally with the ligands on the nanoparticle. Before the nano-
particle comes in contact with the cell membrane, the recep-
tors are assumed to be uniformly distributed at density ξ0,
which is usually much smaller than ξL. Once the contact
starts, each ligand within the contact region is assumed to
bind with a receptor. Therefore, the receptor density within
the contact region is raised from ξ0 to ξL, i.e., the same density
as that of ligands on the nanoparticle. The receptor–ligand
binding lowers the free energy of interaction, and causes the
membrane to wrap around the nanoparticle at the cost of
reduced configurational entropy due to receptor immobiliz-
ation and increased elastic deformation energy in both the
nanoparticle and membrane. Driven by the free energy
reduction induced by receptor–ligand binding, the contact
region expands as neighboring receptors are drawn to the
contact edge by diffusion, which results in a local depletion of
receptors in the vicinity of the contact region. The resulting
gradient of receptor density in turn induces global receptor
diffusion toward the binding site. As long as the free energy

reduction associated with receptor–ligand binding can com-
pensate for the energy cost mentioned above, the wrapping
process continues until the nanoparticle is fully wrapped
(Fig. 1). The wrapping time t is counted from the moment of
contact (t = 0) until the state of full wrapping (t = tw), with tw
defined as the total wrapping time.

To model the wrapping process, we propose a model that
accounts for both the kinetics of receptor diffusion and defor-
mation of the wrapped nanoparticle and cell membrane. The
kinetic part is based on a mathematical model initially deve-
loped for cell spreading33 but later generalized for the receptor-
mediated endocytosis of rigid spherical and cylindrical nano-
particles with simplified receptor diffusion equations and
membrane deformation configurations.2,3 The elastic nano-
particle is modeled as a deformable vesicle. Experimental
studies indicate that the time scale of membrane equilibrium
is less than one second,34 while cell uptake of nanomaterials
is usually limited by receptor diffusion with a time scale in the
range of tens of seconds to tens of minutes.6 This dramatic
difference in the time scale suggests that the vesicular nano-
particle and cell membrane are essentially in a static equili-
brium state on the time scale of receptor diffusion. In other
words, the configurations of the vesicle and membrane can be
determined by minimizing the free energy of the system at

Fig. 1 Schematic of receptor-mediated endocytosis of a spherical
elastic nanoparticle of an initial radius R. (a) Three characteristic wrap-
ping states. An initially free elastic nanoparticle coated with ligands is
wrapped around by an initially flat cell membrane containing diffusive
receptors. Under energetically favorable conditions, the nanoparticle
eventually achieves full wrapping and pinches off from the cell mem-
brane. The shape of the membrane under axisymmetric deformation
can be depicted in terms of the arc length s and tangent angle ψ.
(b) During the wrapping process, the receptor density distribution in the
membrane is non-uniform, with receptor density ξ depleted to ξ+ in the
vicinity of the binding region, which in turn induces global receptor
diffusion toward the contact edge.
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each time step of the wrapping process.21 Axisymmetric con-
figurations will be assumed throughout the analysis.

2.2 Deformation of the particle–membrane system

We first describe the continuum modeling on the axisymmetric
deformation of the elastic nanoparticle and cell membrane.
During the wrapping process, the elastic deformation energy
of the nanoparticle and cell membrane is expressed in terms
of the Canham–Helfrich functional as21,47,50

Eel ¼
X
i¼p;m

ð
2κiHi

2dAi þ ΓiAi

� �
þ σΔAm; ð1Þ

where Hi (i = p,m) is the mean curvature, κi is the bending
stiffness, σ is the cell membrane tension, ΔAm is the excess
area induced by wrapping, and Γi is the Lagrangian multiplier
under the constraint that the surface areas Ai of the nano-
particle and cell membrane are both fixed due to the high in-
plane stretching modulus of a lipid bilayer. Throughout this
article, subscripts ‘p’ and ‘m’ are used to identify quantities
associated with the nanoparticle and cell membrane, respect-
ively. All length scales will be scaled by the effective radius of
the nanoparticle R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ap=ð4πÞ
p

. It turns out to be useful to
introduce the following normalized membrane tension,

σ̄ ¼ 2σR 2=κm;

as a dimensionless system parameter.
Variation of the energy functional in eqn (1) gives rise to a

set of equations that govern the equilibrium configurations of
the nanoparticle and cell membrane once the contact area is
known at each time step associated with receptor diffusion.21

We adopt a shooting method to numerically determine the axi-
symmetric shapes of the nanoparticle and membrane corres-
ponding to the lowest energy.21 The shapes shown in Fig. 1a
are determined from the tangent angle ψ(s,t ) with geometric
relations ∂r/∂s = cos ψ and ∂z/∂s = sin ψ, where ψ = ψ(s,t ) is the
tangent angle with the arc length s defined along the cell
membrane and measured from the bottom pole (s = 0) and the
wrapping time t counted from the moment of contact (t = 0);
r = r(s,t ) and z = z(s,t ) are the r- and z-coordinates of the
adopted coordinate system in Fig. 1a, respectively.

2.3 Kinetics of receptor diffusion

Next we focus on the kinetics of receptor diffusion occurring
in the cell membrane, which is characterized by the evolution
of receptor density ξ(s,t ) and could be determined by solving a
deterministic moving boundary problem. The arc length of the
contact region is denoted by a(t ). At t = 0, a(0) = 0 and ξ(s,0) = ξ0.
Conservation of the total number of receptors requires

@

@t

ð
ξLdAc þ

ð
ξðs; tÞdAouter

� �
¼ 0; ð2Þ

where Ac is the contact area and Aouter is the area of the outer
free cell membrane. Substituting the continuity equation35

@ξ

@t
¼ � 1

r
@ðrjÞ
@s

; ð3Þ

j being the diffusive flux of receptors, into eqn (2) while
using the Leibniz rule for differentiation of a definite integral
yields

2R2

rþ
ðξL � ξþÞ

df
dt

þ jþ ¼ 0; ð4Þ

where f ≡ Ac/(4πR2) ∈ [0,1] is the wrapping degree, r+(t ) ≡
r(a+,t ), j+(t ) ≡ j (a+,t ), ξ+(t ) ≡ ξ(a+,t ) denote values directly in
front of the contact edge. Here we have used the conditions
that the total area of the cell membrane is fixed and j = 0
at the remote boundary. For rigid spherical nanoparticles,
df/da = r+/(2R

2) and eqn (4) reduces to (ξL − ξ+)da/dt + j+ = 0,
which has the same form as eqn (3) in ref. 2.

The diffusive flux of receptors, j = j (s,t ), is assumed to be
prescribed according to Fick’s first law as35

j ¼ �D
@ξ

@s
; ð5Þ

where D is the diffusivity of receptors in the cell membrane.
Substituting eqn (5) into the continuity eqn (3) yields the
following governing equation for receptor diffusion along the
deformed outer free membrane

@ξðs; tÞ
@t

¼ D
@2ξ

@s2
þ cosψ

r
@ξ

@s

� �
; s > aðtÞ; ð6Þ

which describes the evolution of receptor density distribution
over time. The profiles of r(s,t ) and ψ(s,t ) are determined from
the equilibrium solutions (solved by the shooting method) as
discussed above.

To obtain the total wrapping time tw from the moment of
initial contact until the state of full wrapping with the wrap-
ping degree f = 1, we evaluate the wrapping rate df/dt as a func-
tion of r+, ξ+ and j+ based on eqn (4), where r+ is determined as
a function of f by the shooting method. As j+ = −D(∂ξ/∂s)|s = a+,
the key step in obtaining tw lies with finding ξ+ and ξ(s,t ) at a
given f, following a power balance between elastic deformation
and receptor diffusion as follows.

The total free energy of the system F(t ), consisting of the
energy of receptor–ligand binding, configurational entropy
of receptors, and elastic deformation energy of the cell
membrane and nanoparticle, is written as

FðtÞ ¼
ð
ξLkBT �eRL þ ln

ξL
ξ0

� �
dAc

þ
ð
ξkBT ln

ξ

ξ0
dAouter þ Eel;

ð7Þ

where Eel is the elastic deformation energy from eqn (1),
kBT (= 4.1 × 10−21 J) is the thermal energy, and kBTeRL is the
binding energy per receptor–ligand bond of 10 kBT to 25 kBT,

36

which is estimated to be around 15 kBT at a temperature of
300 K based on the analysis of antibody–antigen interaction;37

kBT ln(ξL/ξ0) and kBT ln(ξ/ξ0) are the free energy per receptor
associated with the loss of configurational entropy of the
bound and free receptors, respectively.
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Differentiation of F(t ) in eqn (7) with respect to time t
results in

dFðtÞ
dt

¼ �
ð
DkBTξ

@ln ξ

@s

� �2

dAouter

� 4πR2 kBTξLCγ � 1
4πR2

dEel

df

� �
df ðtÞ
dt

;

ð8Þ

where

Cγ ¼ eRL þ ln
ξþ
ξL

þ 1� ξþ
ξL

:

The integral term in eqn (8) represents the rate of energy
dissipation associated with receptor transport along the cell
membrane.2,33 By balancing the rate of free energy reduction
in the wrapping process with the rate of energy dissipation
during receptor transport, the second term in eqn (8) must
vanish so that

kBTξLCγ � 1
4πR2

dEel
df

¼ 0: ð9Þ

This equation allows ξ+(t ) to be determined at a given f.
Once the receptor density profile at a point of time (t = t0)

during the initial stage of contact is known, we can determine
ξ(s,t ) at any following time t > t0 by solving the diffusion eqn (6)
via the finite difference method, using ξ+(t ) to determine j+(t )
in eqn (5), and then obtaining the wrapping rate df/dt from
ξ+(t ), j+(t ) and r+(t ) through eqn (4). This is a typical procedure
in solving a deterministic moving boundary problem.

The receptor density ξ(s,t0) at the initial stage of contact can
be determined approximately as follows. At this stage, the
contact size is much smaller than the membrane size and the
outer free membrane is almost flat. Therefore, the membrane
at that moment can be approximately regarded as a flat mem-
brane of an infinite size and the diffusion eqn (6) can be
reduced to ∂ξ/∂t = D∂2ξ/∂s2 over a(t0) < s < ∞, which can be
solved analytically as (ref. 2)

ξðs; t0Þ ¼ ξ0 þ A3DE1
s2

4Dt0

� �
; ð10Þ

where E1ðxÞ ¼
Ð1
1 u�1e�uxdu is the exponential integral and A3D is

a constant of integration. This solution satisfies the axisymmetric
diffusion equation and the boundary condition ξ(s,0) = ξ0 and
ξ(s,t0) → ξ0, j (s,t0) → 0 as s → ∞. As nanoparticles of different
stiffnesses display almost the same configuration at the initial
stage of contact, the corresponding conservation condition
eqn (4) can be approximated by (ξL − ξ+)da/dt + j+ = 0, the
same form as that in the case of a rigid nanoparticle.
Substituting the solution in eqn (10) into the above conserva-
tion equation results in

A3D ¼ �α2eα
2ð1� ξ̄Þ

1� g3D
ξL; ð11Þ

where ξ̄ = ξ0/ξL and g3D = α2eα
2
E1(α

2), α being a constant to be
determined. It follows that ξ+ = (ξ̄ − g3D)(1 − g3D)

−1ξL.

Substituting eqn (10) and (11) and ξ+ into eqn (9), the constant
α can be determined from

kBTξL eRL þ ln
ξ̄� g3D
1� g3D

þ 1� ξ̄

1� g3D

� �
� 1
4πR2

dEel
df

¼ 0: ð12Þ

Once α is known, ξ(s,t0) at the initial stage of contact is fully
defined by eqn (10). With the knowledge of ξ(s,t0), ξ+(t ), the
configurations of the nanoparticle and cell membrane, and
the diffusion eqn (6), we can proceed to determine the wrap-
ping rate df/dt through eqn (4). Following the above procedure
of solving the deterministic moving boundary problem, the
total wrapping time is then obtained as tw ¼ Ð 1

0 ðdf =dtÞ�1df .

2.4 Particle wrapping induced by stochastic receptor–ligand
binding

In the present study, we focus on the receptor-mediated endo-
cytosis in which the rate of the particle wrapping is kinetically
limited by the diffusional aggregation of receptors in the mem-
brane to the cell–particle binding site, and the wrapping
process is modeled as a deterministic moving boundary
problem. An implicit assumption is that if the association rate
of receptor–ligand bonds is high enough, the bond formation
between a ligand and its complementary receptor would
enable particle wrapping by the deformed cell membrane. To
demonstrate the validity of this implicit assumption, we
performed additional studies on the wrapping of a two-
dimensional particle via stochastic receptor–ligand binding in
the Cartesian coordinate system (x,y). A brief description of
the modeling is provided here, and corresponding numerical
results are presented in the Results section.

The two-dimensional vesicular particle of circumference
2πR is discretized into Np elements of equal length (Fig. 2).
The bending energy of the particle and cell membrane could

be expressed as Eel ¼ κp
2

ð
cp2dsp þ κm

2

ð
cm2dsm þ σΔsm, where

Fig. 2 Schematic showing the initial configuration of a discretized
circular vesicle attaching onto a discretized flat membrane through
receptor–ligand binding. Ligands (blue dots) on the particle and
receptors (red dots) on the membrane are assumed to be immobile. The
i-th ligand located at the bottom pole of the particle is assumed to bind
its complementary (i-th) receptor at the initial particle attachment.
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ci (i = p, m) is the curvature, si is the arc length and Δsm is the
difference between the total length of the membrane and its
projection on the horizontal axis. The curvature c is calculated
from c2 = y2,xx/(1 + y2,xx)

3 with y,xx ≡ d2y/dx2. The constraint of
a fixed particle circumference is enforced by a harmonic

energy penalty term Elength ¼ k
PNp

n¼1
ð1� ln=l0Þ2, where k is the

penalty coefficient (taken as 103 in our simulations), ln is the
length of the n-th element and l0 is the initial element length
of a free circular vesicular particle. In a similar manner, the
cell membrane is discretized into Nm elements of a reference
length l0.

In this stochastic modeling, the ligands and receptors are
immobile and uniformly distributed along the particle surface
and cell membrane at the nodes of elements (blue and red dots
in Fig. 2). The receptor–ligand bonds are modeled as linear
springs of stiffness kRL and rest length lb. A bond is formed as
the distance between the ligand and its complementary receptor
is within a binding radius lbind. The elastic energy stored in a
closed bond of length change Δlb is Eb = kRL(Δlb)2/(2kBT ) with
Δlb > 0 for a stretched closed bond. According to Kramer’s
theory,37,38 the dissociation rate koff of a closed bond is

koff ¼ k0off exp½kRLΔlbxb=ðkBTÞ�;

where xb is the distance between the point of minimum
binding potential and that of the energy barrier peak, with a
typical value of xb = 1 nm, and k0off is the spontaneous dis-
sociation rate at Δlb = 0. The bond association rate kon of the
i-th open bond is39,40

kon ¼ k0on
lbind
Z

exp � kRLðΔlbÞ2
2kBT

� �
;

where k0on is the reference association rate and the parti-
tion function Z is Z ¼ ffiffiffi

π
p

erfðΔlbαÞ þ erfðlbαÞ½ �=ð2αÞ with
α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kRL=ð2kBTÞ
p

and erf being the error function.
Here we employ Monte Carlo simulations based on the

Metropolis algorithm to capture the deformation of the
particle–membrane system and the Gillespie algorithm for the
stochastic bonding and breaking of receptor–ligand bonds,

respectively. The total deformation energy of the system
includes the bending energy of the particle and cell mem-
brane, the elastic energy stored in the closed receptor–ligand
bonds, and energy penalty terms enforcing the length con-
straints of the particle and membrane. In the initial configur-
ation, a flat cell membrane is located at y = −lb and a circular
vesicular particle is centered at x = 0 and y = R as illustrated in
Fig. 2. We are interested in particle wrapping after the initial
attachment and nucleation of receptor–ligand domains.41 The
ligand located at the bottom pole of the particle is assumed to
bind its complementary receptor. The nodes of the discretized
particle surface undergo random displacements to mimic ther-
mally excited shape fluctuations. A new particle configuration
is accepted or rejected according to the Metropolis algorithm.
A similar scheme is employed in determining the cell mem-
brane configuration, which is subjected to a periodic boundary
condition in the x-direction. A single Monte Carlo sweep
for the particle and cell membrane configurations consists of
Np + Nm attempted random node displacements, in which self-
contact and penetration between the particle surface and cell
membrane is avoided. The first-reaction method of the Gillespie
algorithm is then employed to determine when and where bond
association/dissociation would occur in the new system con-
figuration determined by the previous Monte Carlo sweep.39,40

Bond kinetics is monitored by updates of the bond binding
state and elastic energy stored in closed bonds. The system con-
figuration and stochastic binding events are recorded from the
initial state as indicated in Fig. 2 until a dynamic equilibrium
state of partial- or full-wrapping is achieved. The number of
closed bonds as a function of elapsed wrapping time is provided
in the Results section, and the following values have been
adopted: R = 64 nm, Np = 80, Nm = 120, kRL = 0.25 pN nm−1,
lbind = 1 nm, lb = 11 nm, k0on/k

0
off = 500, and σ̄ = 0.5.

3 Results

The derivative of elastic energy dEel/df in eqn (9) and (12) and
the r-coordinate of the contact edge rc in eqn (4) are plotted as
functions of the wrapping degree f in Fig. 3a and b, respectively.

Fig. 3 Variation of elastic energy and contact radius during receptor-mediated endocytosis of an elastic spherical nanoparticle. (a) Variation
of elastic energy change ΔEel and its derivative dEel/df (inset) with respect to the wrapping degree f for different particle–membrane stiffness ratios
κp/κm at σ̄ = 0.5; and (b) similar variation of the radius (r-coordinate) of the contact edge rc. Here, ΔEel = Eel − E0

el, where E0el = 8πκp is the reference
elastic energy of the nanoparticle before it contacts the membrane.
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With the knowledge of these variables and following the
numerical scheme for obtaining df (t )/dt discussed in the pre-
ceding section, we can then obtain f (t ) and the total wrapping
time tw.

In general, a smaller particle–membrane stiffness ratio
κp/κm gives rise to a more flattened nanoparticle with a larger
rc and consequently a longer contact circumference in the
early- and mid-stages of wrapping, as shown in Fig. 3b. Also,
during the late stage of wrapping, the contact edge becomes
rather insensitive to particle stiffness (Fig. 3b). Since the rate
of receptor diffusion is proportional to the length of the
contact edge, the wrapping of a softer nanoparticle can thus
be expected to be kinetically faster than that of a stiffer one.
This is confirmed through numerical analysis in the following.

Depending on the types of cells, the receptor diffusivity D
typically ranges from 0.01 μm2 s−1 to 1 μm2 s−1.42–45 The recep-
tor density ξ0 can vary considerably from hundreds to thou-
sands of receptors per square μm. For example, it was reported
that ξ0 ≈ 1300 μm−2 for human leukemia CCRF-CEM cells and
ξ0 ≈ 550 μm−2 for HeLa cervical cancer cells.46 The ligand
density ξL also varies in a wide range depending on the nano-
particle type. For instance, while ξL ≈ 7 × 103 μm−2 for Semliki
Forest virus (of radius 30 nm and 80 spikes on the surface)47

and HIV-1 (of radius 50 nm and 219 gp120 proteins on the
surface),48 ξL can vary from 3 × 103 μm−2 to 2 × 104 μm−2 for
engineered nanoparticles.49 Therefore, the ratio ξ̄ = ξ0/ξL could
fall in the range of 0.025 to 0.5. The radius of the initial flat
circular membrane is assumed to be L = 10 μm. A typical set of
parameter values used in our calculations is summarized in
Table 1.

Taking these typical parameter values, the wrapping degree
f is determined and shown in Fig. 4 as a function of the nor-
malized time tξLD for different κp/κm at σ̄ = 0.5, ξ̄ = 0.025 and
R = 200 nm. If the process of membrane wrapping is modeled
as an expansion of an effective contact area of receptor–ligand
adhesion on a flat membrane, the receptor diffusion equation
reduces to the classical two-dimensional (2D) isotropic plane
diffusion and rcðf Þ ¼ 2R

ffiffiffi
f

p
. In that case, the wrapping rate

df/dt is a linear function of t as shown in ref. 2. In the current
case where the slope of rc( f ) in Fig. 3b is smaller than that of
the classical 2D plane diffusion case, the wrapping rate df/dt
decreases as wrapping proceeds. At a given f, df/dt should be
proportional to rc. Since rc is insensitive to κp/κm at f < 0.15
(Fig. 3b), so is df/dt in this range (Fig. 4). As f becomes larger,
a soft nanoparticle exhibits a larger rc in the mid-stage of wrap-
ping and a slightly smaller rc in the late stage of wrapping,
compared to a stiff nanoparticle of the same size (Fig. 3b).
Therefore, compared to the reference case of a stiff particle,
the wrapping of a soft nanoparticle becomes kinetically faster
during the mid-stage of wrapping and slightly slower in the

late-stage of wrapping, leading to a smaller total wrapping
time as indicated in Fig. 4.

Due to the limited number of ligands and the finite
strength of ligand–receptor binding energy, there exists a
minimum radius of the nanoparticle R3D

min below which the
bending energy of the cell membrane as well as the defor-
mation energy of the nanoparticle prohibits the wrapping
process and reduces the wrapping speed to zero (α → 0). By
assuming that eqn (10)–(12) are valid at R = R3D

min and letting
α → 0, the minimum wrapping radius R3D

min can be obtained
from eqn (12) as

R3D
minðξ̄Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfdEel=df g

4πkBTξLð1þ eRL þ ln ξ̄� ξ̄Þ

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfdEel=df g

4πγ

s
;

ð13Þ

where γ ≡ eRLkBTξL is the effective adhesion energy due to the
specific receptor–ligand binding and max {dEel/df} represents
the maximum value of dEel/df. A larger R3D

min is required at a
weaker binding strength eRLkBT and a smaller ligand density
ξL. The equality in eqn (13) only holds at ξ̄ = 1, which is physio-
logically irrelevant in the current study. As the last term in the
above equation can be regarded as the minimum nanoparticle
radius obtained from the free energy minimization of the total
elastic deformation energy and adhesion energy,21,47,50 eqn (13)
indicates that R3D

min obtained based on the kinetic model of
receptor diffusion is slightly larger than that derived from a
free energy analysis in which the densities of ligands and
mobile receptors are assumed to be equal and no receptor
diffusion is considered. Since max{dEel/df} increases as κp
decreases (Fig. 3a), eqn (13) also indicates that R3D

min increases
as κp decreases, as shown in Fig. 5. In other words, larger sizes
are required for cell uptake of softer particles. This is consist-
ent with our previous studies on the phase diagrams of cell
uptake of elastic nanoparticles,15,21,22 where it was shown that
cell uptake of softer nanoparticles requires larger normalized

Table 1 Physical constants adopted in our calculations

κm (kBT ) D (μm2 s−1) eRL ξL ( μm−2) ξ̄ = ξ0/ξL

20 0.1 15 5 × 103 0.025

Fig. 4 Wrapping degree f as a function of the normalized time tξLD for
different values of the nanoparticle–membrane stiffness ratio κp/κm at
σ̄ = 0.5, ξ̄ = 0.025 and R = 200 nm.
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adhesion energy γ̄ ≡ 2γR2/κm ∼ R at a given normalized mem-
brane tension σ̄ ≡ 2σR2/κm.

Limited by the number of receptors (πL2ξ0) available to
bind ligands (4πR2ξL) on the nanoparticle, the maximum wrap-
ping radius R3D

max is

R3D
max ðξ̄Þ ¼

ffiffiffī
ξ

q
L=2: ð14Þ

As indicated in eqn (13) and (14), the size range of wrapping
particles (R3D

min, R
3D
max) becomes broader as ξ̄ increases. By com-

paring eqn (13) and (14), one can immediately see that full
wrapping cannot take place unless the receptor density ratio
ξ̄ exceeds a critical value ξ̄c which can be determined from
R3D
min(ξ̄c) = R3D

max(ξ̄c).
Fig. 5 shows the normalized total wrapping time twξLD as a

function of the nanoparticle radius R for different values of
the particle–membrane stiffness ratio κp/κm at σ̄ = 0.5 and ξ̄ =
0.025. As κp/κm decreases, so does tw for R > R3D

opt. The ratio of
tw between a soft particle with κp/κm = 0.1 and a rigid one is
about 0.9. Further numerical analysis indicates that the time
ratio decreases as ξ̄ increases. This stiffness-dependent kinetic
effect on wrapping is due to the deformation of elastic nano-
particles and could be understood as follows. In general,
the rate of wrapping mediated by receptor diffusion is
proportional to the length of the contact edge. Since a softer
nanoparticle is deformed into a more flattened configuration
with a larger rc (Fig. 3b) as well as a longer contact circumfer-
ence in a wide range of f, there is little surprise that it also
undergoes a faster wrapping process compared to a stiffer
particle. A stiffer particle has smaller R3D

min and R3D
opt. As shown

in Fig. 5 and S1 in the ESI,† the difference between R3D
min and

R3D
opt is around 1 nm to 3 nm. Moreover, for a nanoparticle of

given stiffness, there is a range from R3D
min to R < R3D

opt in which
the wrapping time tw of that particle is larger than tw of a
softer nanoparticle.

As predicted by eqn (13) and (14), the wrapping process
cannot be completed for nanoparticles with radius R < R3D

min or
R > R3D

max. There is an optimal particle radius R3D
opt, which is

slightly larger than R3D
min, at which the total wrapping time tw is

the smallest. The optimal nanoparticle size stems from the
competition between thermodynamic driving force and recep-
tor diffusion kinetics. For nanoparticles of radius smaller than
R3D
opt, the elastic deformation energy of the system plays a domi-

nant role in reducing the driving force for wrapping and leads
to an increased wrapping time. For nanoparticles of radius
larger than R3D

opt, the thermodynamic driving force for wrap-
ping is only weakly related to the elastic energy of the system.
In this situation, wrapping a larger nanoparticle requires more
receptors to diffuse to a larger binding region, hence a longer
wrapping time is induced (Fig. 5). These observations are all
qualitatively consistent with the previous kinetic wrapping
model for a rigid nanoparticle.2 To explore the effects of
binding energy on tw, numerical calculations at eRL = 10 and
25 are carried out and presented in Fig. S1.† A comparison
between Fig. 5 and S1 in the ESI† shows that a larger binding
energy leads to smaller R3D

min, R
3D
opt and smaller optimal total

wrapping time. Further numerical analysis indicates that both
the optimal nanoparticle radius and optimal total wrapping
time decrease as ξ̄ increases, since larger ξ̄ means relatively
stronger effective adhesion energy and less receptors are
required to diffuse toward the wrapped nanoparticle.2

Note that our calculations on the total wrapping time tw for
different values of the particle–membrane stiffness ratio κp/κm
and particle radius R are performed at the same normalized
membrane tension σ̄(≡2σR2/κm) instead of a varying membrane
tension σ. To explore the possible effects of membrane tension
on tw, numerical calculations at σ̄ are carried out (see Fig. S2†).
A comparison between Fig. 5 and S2† shows that a larger
membrane tension leads to a larger R3D

min. This is consistent
with eqn (13), since max{dEel/df} increases as the membrane
tension increases.21 It is also demonstrated that the membrane
tension plays a negligible role in the control of cell uptake
rate for R > R3D

opt, with indistinguishable influence on R3D
max, as

suggested in eqn (14).
To demonstrate that high-affinity receptor–ligand binding

facilitates particle wrapping by the deformed cell membrane,
we performed case studies on the wrapping of two-dimen-
sional particles through stochastic receptor–ligand binding at
different particle–membrane stiffness ratios κp/κm at σ̄ = 0.5. In
each study, a particle with radius R = 64 nm is uniformly
coated with 80 ligands, the ratio between the reference associ-
ation rate and spontaneous dissociation rate is k0on/k

0
off = 500,

and the bending stiffness of the membrane is considered to be
κm = 20 kBT. Fig. 6 shows the trajectories of closed bonds
during particle wrapping. The results indicate that particles of
different rigidities could be fully wrapped through binding
reactions between ligands and receptors. Moreover, a stiffer

Fig. 5 The normalized total wrapping time twξLD as a function of the
nanoparticle radius R for different values of the particle–membrane
stiffness ratio κp/κm at σ̄ = 0.5 and ξ̄ = 0.025. R3D

min and R3D
max (inset)

represent the minimum and maximum radii of a particle that can be
wrapped according to eqn (13) and (14), respectively. R3D

opt, marked by
solid circles, denotes the optimal wrapping radius at minimum wrapping
time.
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particle achieves full internalization slightly faster than a
softer particle in the wrapping process regulated by stochastic
binding between immobile receptors and ligands. The under-
lying reason can be understood as follows. During the wrap-
ping process, the distance near the contact edge between the
surface of a softer particle and cell membrane is larger than
that in the case of a stiffer particle. Therefore, the (re)binding
rate is lower and dissociation rate is higher in the uptake of a
softer particle, which in turn results in slower full internali-
zation for the softer particle. In the diffusion-limited uptake
under consideration, the uptake rate is dominated by receptor
diffusion and the softer particle undergoes faster entry, as
indicated in Fig. 5. Details of the stochastic modeling can be
found in subsection 2.4.

4 Discussion

Our theoretical analysis indicates that the rate of receptor-
mediated endocytosis depends on the nanoparticle stiffness,
in particular, while soft nanoparticles are energetically less
prone to wrapping than stiff ones,15,21,22 they exhibit higher
uptake rates once the wrapping becomes energetically favor-
able. Since similar deformation configurations and elastic
energy profiles are observed in the wrapping of solid nano-
capsules,22 the same conclusions are expected to be also appli-
cable for soft solid nanocapsules. These results can help
understand some of the confusing and seemingly conflicting
experimental observations in the literature. In particular, the
stiffness-dependent rate of cell uptake is consistent with
recent experimental observations27–29 and molecular dynamics
simulations,31 in which it is reported that hydrogel nano-
particles,27 polymer microcapsules28,29 and vesicular nano-
particles31 undergo faster cell entry with decreasing particle
stiffness. As the adhesive receptor–ligand interaction used in
molecular dynamics simulations is typically based on instant

reaction potentials such as the Lennard-Jones potential
without the kinetic effect of receptor–ligand binding,10,11,31 it
can be expected that our theoretical analysis on the uptake of
elastic particle is consistent with molecular dynamics simu-
lations.31 Since a softer particle can be more easily deformed
into a flattened configuration in the early- and mid-stage of
wrapping by the cell membrane,21,22 the enhanced cell–
particle interaction causes the percentage of cells bound with
softer particles to be higher than that with stiffer ones during
the early incubation period.29

In our previous21 and present theoretical analysis, the inter-
nalized elastic nanoparticle is modeled as an elastic vesicular
nanoparticle (e.g., liposome) to facilitate the simplest possible
description of particle deformation in the wrapping process,
and the mobility of ligands embedded in the vesicular
membrane is not taken into account. This approximation is
not unreasonable in the case of high ligand surface density
and low fluidity of liposomal membranes. In the case of rela-
tively low ligand concentration and high membrane fluidity,
the mobility of ligands plays an important role and could even
dominate the wrapping process.31,51,52 Recent molecular
dynamics simulations demonstrate that at a low surface
density the ligand molecules would diffuse and finally aggre-
gate into a single binding domain full of receptor–ligand
bonds. Consequently, the formation of a ligand-free domain
leads to an incomplete cell uptake.31,52 In comparison with
liposomes, polymersomes are a class of artificial polymer vesi-
cles that exhibit similar bending properties to lipid vesicles
but are of orders of magnitude higher membrane lysis tension
and larger membrane viscosity.53 Therefore, the ligands on the
polymersomes could be regarded as immobile during the uptake
and polymersomes (coated with immobilized ligands) can serve
as an ideal example of soft particles considered in our model.

As indicated in our theoretical analysis, the stiffness effect
on the cell uptake rate of spherical nanoparticles is mainly
due to the different contact circumferences for different par-
ticle stiffness. A long contact circumference enhances receptor
diffusion and promotes efficient full internalization. In a two-
dimensional case where an elastic cylindrical nanoparticle is
wrapped by the cell membrane, the length of contact edge is
independent of the particle stiffness, suggesting that the
uptake rate of two-dimensional particles should be stiffness-
insensitive if the state of full wrapping is defined as f = 1. This
is indeed confirmed in Fig. S3a.† If the full wrapping is
defined as a state where the left and right sides of the cell
membrane touch each other above the nanoparticle, the wrap-
ping of a stiff nanoparticle would be faster than a soft one due
to a shorter wrapping length required for the full wrapping
(Fig. S4b†).

Besides the stiffness effect on the rate of cell uptake, our
previous studies based on the free energy show that softer
nanoparticles require stronger adhesion energy to achieve suc-
cessful internalization,15,21,22 which means that soft nano-
particles are energetically less prone to full wrapping than stiff
ones. Here the uptake proneness is used to characterize the
tendency of an elastic nanoparticle to be fully internalized.15,21,22

Fig. 6 Number of closed bonds as a function of the normalized wrap-
ping time k0offt for different values of the nanoparticle–membrane
stiffness ratio κp/κm at σ̄ = 0.5.
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Other properties remaining the same, soft particles are less
likely to enter a cell than stiff ones. In this sense, uptake
proneness is a concept associated with free energy and cannot
be employed to describe time related quantities such as the
wrapping time. In Fig. 5, S2 and S4,† the minimum wrapping
radius falls into the category of uptake proneness; while the
wrapping time is associated with the uptake rate.

5 Conclusions

A theoretical model of receptor-mediated endocytosis limited
by receptor diffusion has been developed to describe the
kinetic process of a cell membrane wrapping around an elastic
nanoparticle via diffusional aggregation of receptors in the
membrane to the cell–particle binding site. A key assumption
in the model is that the membrane–nanoparticle system is
able to instantaneously reach its equilibrium (i.e. minimum
energy) configuration at the time scale of receptor diffusion
during the wrapping process. The most important result is
that, while soft nanoparticles are energetically less prone to
wrapping than stiff ones, they exhibit higher uptake rates once
the wrapping becomes energetically favorable.

It was shown that the higher uptake rate of a softer nano-
particle results from enhanced receptor diffusion as a result of
larger contact area between the membrane and particle at the
early- and mid-stages of the wrapping process. There is an
optimal particle size corresponding to the shortest wrapping
time. Both the optimal particle radius and the wrapping time
decrease as the receptor-to-ligand density ratio ξ̄ increases.
The minimum particle radius required for full internalization
increases as the particle stiffness decreases; while the
maximum particle radius that still allows full wrapping is
insensitive to particle stiffness. Further calculations indicated
that membrane tension plays an important role in the control
of minimum particle radius but has a negligible effect on the
wrapping rate. Unlike the uptake of spherical nanoparticles
where softer particles lead to a faster internalization rate,
cylindrical soft nanoparticles exhibit either the same or lower
uptake rates compared with stiff ones, depending on the defi-
nition of full wrapping. Two-dimensional case studies on par-
ticle wrapping induced by stochastic receptor–ligand associ-
ation/dissociation confirm that receptor–ligand bond for-
mation could enable the wrapping of an elastic particle by a
deformed membrane. These results indicate that tailoring
particle elasticity can be an appealing way to control cell uptake.

In the present study, we have focused our attention on the
kinetic process of a cell membrane wrapping around an elastic
particle that is limited by the diffusion of receptors in the
membrane. In a general case of cell uptake, receptor diffusion
and receptor–ligand binding could play equally important
roles in the uptake kinetics. Future work will be aimed at
developing a more sophisticated theoretical modeling
approach considering the coupling of receptor diffusion,
system deformation, thermal fluctuation of the cell membrane
and stochastic binding. Our current analysis can also serve as

a foundation for future studies taking into account non-
specific interactions between the cell membrane and nano-
particles,18 cell membrane roughness induced by thermal
fluctuation,54 shape effects of nanoparticles,6,8,9,13 motility of
ligands in vesicular nanoparticles,31,51 and other endocytic
pathways24,26,55 such as phagocytosis in which actin re-
configuration plays an important role during the uptake.
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Numerical results in the case of spherical elastic nanoparticles
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Figure S1: The normalized total wrapping time twξLD as a function of the nanoparticle radius R for
different values of the particle-membrane stiffness ratio κp/κm at the binding energy per receptor-
ligand bond of (a) 10 kBT (eRL = 10) and (b) 25 kBT (eRL = 25). Other system parameters are
ξ̄ = 0.025, ξL = 5× 103/µm2, σ̄ = 0.5 and L = 10 µm, which are the same as those used in
Fig. 5 in the main text. R3D

min and R3D
opt (marked by solid circles) represent the minimum and optimal

wrapping radii of a particle.

Comparing Fig. S1 at the binding energy per receptor-ligand bond of 10 kBT (eRL = 10) and
25 kBT (eRL = 25) with the results in Fig. 5 at eRL = 15, one could see that a larger binding energy
leads to a smaller optimal wrapping radius R3D

opt and smaller optimal total wrapping time, since less
receptors are required to diffuse toward the wrapped nanoparticle. Moreover, a larger binding energy
leads to a smaller R3D

min, which is consistent with eqn (13).
Fig. S2 shows how the normalized total wrapping time twξLD depends on the size and stiffness

of a nanoparticle at the normalized membrane tension σ̄ = 0 and 2. Comparison with the corre-
sponding results in Fig. 5 for σ̄ = 0.5 indicates that a larger membrane tension leads to a larger
R3D

min. This is consistent with eqn (13), since max{dEel/d f} increases as the membrane tension
increases.3 It can also be seen that the membrane tension plays a negligible role in the cell uptake
rate for at R > R3D

opt.
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Figure S2: The normalized total wrapping time twξLD as a function of the nanoparticle radius R for
different values of the particle-membrane stiffness ratio κp/κm at (a) zero membrane tension (σ̄ = 0)
and (b) σ̄ = 2. Other system parameters are ξ̄ = 0.025, ξL = 5×103/µm2 and L = 10 µm. R3D

max
(inset) represents the maximum allowable radius for wrapping, which is about 790 nm here.

Kinetics of receptor-mediated endocytosis of cylindrical elastic nanoparticles

In the main text, we have analyzed the kinetics of receptor-mediated endocytosis of spherical
elastic nanoparticles. Here we consider an infinitely long cylindrical elastic nanoparticle of radius R
wrapped around by an initially flat cell membrane with in-plane length of 2L(≫ R). The cylindrical
nanoparticle is uniformly coated with immobile ligands at a density of ξL and the receptors in the cell
membrane initially obey a uniform distribution at a density of ξ0(≪ ξL). A symmetric configuration
is assumed in this two-dimensional (2D) analysis. To model the receptor-mediated endocytosis of
such a cylindrical elastic nanoparticle, the same theoretical framework adopted in the main text for
the case of an elastic spherical nanoparticle is employed here. The receptor conservation condition
requires

∂
∂ t

[∫ a(t)

0
ξLds+

∫ L

a(t)
ξ (s, t)ds

]
= 0, (S1)

where a(t) is the half-width of the contact region and s is the arclength of the cell membrane.
Substituting the continuity equation

∂ξ
∂ t

=−∂ j
∂ s

(S2)

into eqn (S1) while noting that the total arclength of the cell membrane is fixed and j = 0 at the
remote boundary yields

πR(ξL −ξ+)
d f
dt

+ j+ = 0, (S3)

where f ≡ a/(πR) ∈ [0,1] is the wrapping degree.
Substitution of the kinetic relation j =−D∂ξ/∂ s into the continuity eqn (S2) yields the governing

equation for the diffusion of receptors on the outer free membrane,

∂ξ (s, t)
∂ t

= D
∂ 2ξ (s, t)

∂ s2 , a(t)< s ≤ L. (S4)

2



Different from the case of spherical nanoparticles in which the diffusion equation (eqn 6) as well
as boundary condition (eqn 4) depends on the r-coordinate of the cell membrane, the diffusion
eqn (S4) in the 2D case is independent of r-coordinate and only depends on the arclength s along
the membrane.

The total free energy F(t) of the system is given as

F(t) = 2×
[∫ a(t)

0
ξLkBT

(
−eRL + ln

ξL

ξ0

)
ds+

∫ L

a(t)
ξ kBT ln

ξ
ξ0

ds
]
+Eel, (S5)

where Eel is the elastic deformation of the cell membrane and the deformed nanoparticle3,4 and its
prefactor 2 of the square bracket in eqn (S5) stems from equal energy contributions from the right-
and left-hand sides of the system.

Differentiation of F(t) in eqn (S5) with respect to t and consideration of power balance lead to

kBT ξL

(
eRL + ln

ξ+
ξL

+1− ξ+
ξL

)
− 1

2πR
dEel

d f
= 0. (S6)

At the initial contact state (t = t0), the membrane can be regarded approximately as a flat membrane
of an infinite size and the receptor density is given as1,2

ξ (s, t0) = ξ0 +A2DErfc

(
s

2
√

Dt0

)
, (S7)

where Erfc(x) is the complementary error function of x, and A2D is a constant of integration. This
solution satisfies the diffusion equation and the boundary condition ξ (s,0) = ξ0 and ξ (s, t0)→ ξ0,
j(s, t0)→ 0 as s → ∞. Substituting the solution in eqn (S7) into eqn (S3) results in

A2D =−
√

παeα2
(1− ξ̄ )

1−g2D
ξL, (S8)

where ξ̄ = ξ0/ξL and g2D =
√

παeα2
Erfc(α). It follows that ξ+ = (ξ̄ −g2D)(1−g2D)

−1ξL. Substi-
tuting eqn (S7) and (S8) and ξ+ into eqn (S6), α introduced in eqn (S8) can be determined from

kBT ξL

(
eRL + ln

ξ̄ −g2D

1−g2D
+

1− ξ̄
1−g2D

)
− 1

2πR
dEel

d f
= 0. (S9)

Once α is known, ξ (s, t0) at the initial stage of contact is given in eqn (S7). Following a procedure
similar to that in the case of a spherical elastic nanoparticle, we can determine the wrapping rate
d f/dt and the total wrapping time is then obtained as tw =

∫ 1
0 (d f/dt)−1d f .

Fig. S3 shows the elastic energy derivative dEel/d f as a function of the wrapping degree f for
different values of the particle-membrane stiffness ratio κp/κm at σ̄ = 0.5. With the knowledge of
the profile of dEel/d f and following the numerical scheme for obtaining d f (t)/dt discussed above,
we can obtain f (t) and the total wrapping time tw.

Following the similar corresponding procedure in the main text, the minimum wrapping radius

3
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Figure S3: Elastic energy change ∆Eel and derivative of the elastic energy dEel/d f (inset) as func-
tions of the wrapping degree f for different values of the particle-membrane stiffness ratio κp/κm at
σ̄ = 0.5. Here ∆Eel = Eel−E0

el, where E0
el = πκp/R is the reference energy of the elastic cylindrical

nanoparticle before it contacts the membrane. The wrapping degree is defined as f ≡ a/(πR) and
the normalized membrane tension is σ̄ ≡ 2σR2/κm

R2D
min in the 2D case can be obtained as

R2D
min(ξ̄ ) =

√
max{dĒel/d f}

2πkBT ξL(1+ eRL + ln ξ̄ − ξ̄ )
≥

√
max{dĒel/d f}

2πγ
, (S10)

where Ēel = EelR and γ ≡ eRLkBT ξL is the effective adhesion energy due to the specific ligand-
receptor binding and max{dĒel/d f} represents the maximum value of dĒel/d f . The equality in
eqn (S10) only holds at ξ̄ = 1. The last term in eqn (S10) can be regarded as the minimum nanopar-
ticle radius obtained from the free energy minimization of the total elastic deformation energy and
adhesion energy.3 Therefore, eqn (S10) indicates that R2D

min obtained based on the kinetic model of
receptor diffusion is slightly larger than that derived from the static energy analysis in which equal
density of ligands and mobile receptors and no occurrence of receptor diffusion are explicitly as-
sumed. Since max{dĒel/d f} increases as κp decreases (Fig. S3), eqn (S10) also indicates that
R2D

min increases as κp decreases, as demonstrated in Fig. S4a. As we analyze in the main text, this
is consistent with our previous studies on the effects of particle elasticity on the cell uptake.3,4

Limited by the number of receptors (2Lξ0) available to bind ligands (2πRξL) on the cylindrical
nanoparticle, the maximum wrapping radius R2D

max is approximated as

R2D
max(ξ̄ ) = ξ̄ L/π. (S11)

Nanoparticles of radius R ∈ (R2D
min,R

2D
max) are capable of entering the cell via receptor-mediated

endocytosis. As indicated in eqn (S10) and (S11), the wrapping radius range (R2D
min,R

2D
max) becomes

broader as ξ̄ increases. Compared to eqn (13) and (14) in the case of spherical nanoparticles, the
wrapping radius range in the 2D case is much narrower at the same value of ξ̄ . Based on these two
observations, we choose ξ̄ = 0.1 instead of ξ̄ = 0.025 in our numerical analysis for the 2D case to
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exemplify the profile of tw as a function of R in a broad range (Fig. S4). The critical receptor density
ratio ξ̄c, over which full wrapping is possible, can be determined from the relationship R2D

min(ξ̄c) =

R2D
max(ξ̄c).
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Figure S4: The normalized total wrapping time twξLD as a function of the nanoparticle radius R
for different κp/κm at σ̄ = 0.5 and ξ̄ = 0.1. R2D

max represents the maximum wrapping radius in
eqn (S11). (a) The full wrapping state is defined at f = 1. (b) The full wrapping state is defined as
the state in which the left and right sides of the cell membrane touch each other on the top of the
nanoparticle. Based on the definition (b), softer nanoparticles achieve the full wrapping at a larger
f than stiffer ones, as demonstrated by the inset in (b).

In the case of spherical nanoparticles, the full wrapping state is defined at f = 1. In contrast,
for cylindrical nanoparticles, the wrapping state at f = 1 is unphysical because in that case two
opposing parts of the cell membrane will have crossed each other above the nanoparticle. Here we
consider two cases with the full wrapping state defined at f = 1 and as the left and right sides of the
cell membrane touch each other above the nanoparticle, respectively. Fig. S4 shows the normalized
total wrapping time twξLD as a function of the nanoparticle radius R for different κp/κm at σ̄ = 0.5,
ξ̄ = 0.1 and L = 10 µm. The values of other parameters can be found in Table 1 in the main text.
For this case with full wrapping defined at f = 1, the total wrapping time tw for different κp/κm
is indistinguishable (Fig. S4a). This is reasonable since the rate of receptor diffusion is generally
proportional to the length of the contact edge which is independent of κp/κm in this 2D case. In the
latter case where a stiffer nanoparticle achieves the full wrapping state at a smaller wrapping degree
f , the stiffer nanoparticle undergoes a faster wrapping process than a softer one due to a shorter
wrapping length required for a full wrapping state (Fig. S4b).
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