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Topological insulating states in 2D transition metal
dichalcogenides induced by defects and strain†

Xiaoyin Li,a,b,c Shunhong Zhanga and Qian Wang*a,b,c

First-principles calculations and extensive analyses reveal that the H phase of two-dimensional (2D) transi-

tion metal dichalcogenides (TMDs) can be tuned to topological insulators by introducing square–

octagon (4–8) defects and by applying equi-biaxial tensile strain simultaneously. The 2D structure com-

posed of hexagonal rings with 4–8 defects, named sho-TMD, is dynamically and thermally stable. The

critical equi-biaxial tensile strain for the topological phase transition is 4%, 6%, and 4% for sho-MoS2, sho-

MoSe2 and sho-WS2, respectively, and the corresponding nontrivial band gap induced by the spin–orbit

coupling is 2, 8, and 22 meV, implying the possibility of observing the helical conducting edge states that

are free of backscattering in experiment. It is equally interesting that the size of the energy band gap of

the H-phase can be flexibly tuned by changing the concentration of 4–8 defects while the feature of the

quasi-direct band gap semiconductor remains. These findings add additional traits to the TMD family, and

provide a new strategy for engineering the electronic structure and the band topology of 2D TMDs for

applications in nanoelectronics and spintronics.

Two-dimensional (2D) topological insulators (TIs), also called
quantum spin Hall insulators, characterized by their insulat-
ing bulk and gapless edge states,1 have attracted considerable
attention in recent years because of their fundamental scienti-
fic importance and potential applications in electronics and
spintronics.2,3 The edge states of TIs are topologically pro-
tected from backscattering of nonmagnetic defects or impuri-
ties due to time reversal symmetry, indicating their potential
applications in novel quantum devices with low energy
dissipation.4–6 The concept of the quantum spin Hall effect
was first proposed in graphene in 2005,7 since then TI has
been a hotly pursued subject of research in condensed matter
physics. However, the nontrivial gap in graphene introduced
by the rather weak second-order effective spin–orbit coupling
(SOC) is small (∼10−3 meV),8 which makes the quantum spin
Hall state only appear at an unrealistically low temperature.
Although the quantum spin Hall effect was experimentally
observed in a HgTe quantum well, the operating temperature
is still quite low (1.8 K).6 Therefore, searching for new 2D TIs

and tuning the existing 2D semiconducting materials to TIs
are of great interest.9–13

Atomically thin 2D materials have been extensively investi-
gated since the successful fabrication of graphene in 2004.14

Among them, the molybdenum disulfide (MoS2) monolayer,
one of transition metal dichalcogenides (TMDs), is of parti-
cular interest due to its extraordinary semiconducting charac-
teristics and potential applications in catalysis,15 lithium ion
batteries (LIBs),16 electronic devices,17,18 optoelectronics19,20

and valleytronics.21 Theoretical studies demonstrated that the
MoS2 monolayer in the 1T′ phase (1T′-MoS2),

22 the H′ phase
(H′-MoS2)

23 and the T″ phase (T″-MoS2)
24 exhibits intrinsic

topological states with electric field/strain tunable nontrivial
band gaps, enriching their potential applications in spintro-
nics. However, the structural distortion in these phases makes
them energetically high-lying, thus increasing the difficulty of
fabricating these materials. The monolayer MoS2 with the
hexagonal lattice, labeled as H-MoS2, is the ground state phase
in the 2D MoS2 family with a band gap of 2.13 eV.25 It is highly
desirable to explore the possibility of converting the H-MoS2
phase from a semiconductor into a TI by modulating its elec-
tronic structure. Although a semiconductor-to-TI transition
induced by applying an external electric field in phosphorene
was theoretically predicted recently,26 it might be more chal-
lenging to tune H-MoS2 to a TI with an electric field because
H-MoS2 has a larger band gap (2.13 eV)25 compared to phos-
phorene (1.5 eV).26 Moreover, it was reported that it is unlikely
to achieve the topological phase transition in H-MoS2 by apply-
ing external strain either.27 Herein, we propose a new approach
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to realize the semiconductor-to-TI transition in H-MoS2 by
tuning the electronic structure of H-MoS2 using a synergistic
effect of defects and strain.

Defects in TMDs, such as point defects,28,29 dislocations
and grain boundaries,30–32 have been widely studied due to
their significant influence on the chemical, mechanical, elec-
tronic and optical properties of materials. Our idea is based on
the experimental observation and theoretical calculation that
4–8 defects can significantly affect the optical and transport
properties of H-MoS2,

33,34 and the theoretical predications that
a 2D MoS2 composed of square–octagon rings (so-MoS2)

35

possesses intrinsic topological states with a nontrivial band
gap of 13.38 meV.36,37 We propose a new allotrope of monolayer
MoS2 that is constructed by introducing the 4–8 membered
rings as defects into the H-MoS2 phase, and name it sho-MoS2.
Using state-of-the-art theoretical calculations, we show that
sho-MoS2 is not only dynamically and thermally stable, but
also a topological phase transition can be induced by applying
equi-biaxial tensile strain. In addition, we explored the topo-
logical phase transition of other 2D TMDs including MoSe2,
MoTe2, WS2, WSe2 and WTe2 by introducing such defects and
strain in their H phases, respectively. Furthermore, we extend
this study to the new TMD phases constructed by altering the
proportion of 4–8 rings in the sho-structures, and investigate
the effect of defects concentration on the electronic properties.
Our study suggests that applying equi-biaxial tensile strain
plays an important role in engineering the electronic structure
and tuning the transport properties of defective TMDs.

First principles calculations and ab initio molecular
dynamics (AIMD) simulations based on density functional
theory (DFT) are carried out using the Vienna ab initio
simulation package (VASP).38 A vacuum space of 20 Å in the
direction perpendicular to the monolayer sheet of MX2, where
M = (Mo, W) and X = (S, Se, and Te), is used to separate it from
its periodic images. Wave functions are expanded using the
projector augmented wave (PAW) method39 with a kinetic
energy cutoff of 400 eV. The exchange–correlation potential is
incorporated by using the generalized gradient approximation
(GGA). In most of our calculations the Perdew–Burke–
Ernzerhof (PBE)40 functional is used whereas for high accuracy
electronic structure calculations the hybrid Heyd–Scuseria–
Ernzerhof (HSE06)41,42 functional is adopted. The first
Brillouin zone is represented by K points in the reciprocal
space sampled using the Monkhorst–Pack scheme43 with a
grid density of 2π × 0.02 Å−1. The structures are relaxed
without any symmetry constraints. The criteria of convergence
for energy and atomic force are set to be 10−5 eV and 1 meV
Å−1, respectively. Tests are also performed using a higher
energy convergence criterion of 10−8 eV and a denser k-grid
density of 2π × 0.01 Å−1 to confirm the accuracy of the SOC
electronic band structure calculation. The temperature control
for NVT-AIMD simulation and NpT-AIMD simulation is
achieved by using the Nosé thermostat44 and Langevin thermo-
stat45,46 respectively, and the convergence criterion of total
energy is set as 1 meV. Phonon calculations are performed by
using the finite displacement method implemented in the

Phonopy package.47 The maximally localized Wannier
functions (MLWFs) are calculated by using the Wannier90
package48 interfaced with the Quantum ESPRESSO code.49

Fig. 1a shows the optimized atomic structure of sho-MoS2.
Each unit cell contains six Mo and twelve S atoms. The calcu-
lated lattice parameters are listed in Table 1. Similar to the
other phases of 2D MoS2,

21–24,28–30 the sho-MoS2 sheet is com-
posed of three atomic layers with Mo atoms in-between the
two layers of S atoms. The Mo–S bond lengths are in the range
of 2.40–2.45 Å, close to that in H-MoS2 (2.42 Å). Analogous to
the T′- and so-MoS2 structures, there exist Mo–Mo bonds in
sho-MoS2, which is absent in the H-MoS2 structure. The
Mo–Mo bond length is 2.67 Å, slightly shorter than that in
T′-MoS2 (2.77 Å). The sho-MoS2 sheet possesses a rectangular
Bravais lattice with D2h symmetry (layer group no. 41, Pmma)
featured by the coexistence of the four-, six- and eight-
membered rings in its geometrical structure. The inversion
symmetry exists in this configuration and the reciprocal
space has P2mm symmetry, with four time-reversal-invariant
momenta (TRIM) in the irreducible Brillouin zone, namely
Γ, M, X, and Y (see Fig. 1b). To study the thermodynamic
stability of sho-MoS2, total energy calculations are performed.
The results are given in Table 1, which shows that sho-MoS2 is
energetically metastable compared to H-MoS2, but it is more
stable than some previously reported 2D MoS2 allotropes such
as so-MoS2, 1T-MoS2 and H′-MoS2. The optimized structures of
H′-, so-, 1T-, 1T′-, T″- and H-MoS2 are plotted in Fig. S1 (ESI†).
Our calculated results are in excellent agreement with those of
previous studies.22–25,35–37

To explore the lattice dynamics of sho-MoS2, the phonon
dispersion is calculated, and the results are plotted in Fig. 1c.

Fig. 1 (a) Optimized structure of sho-MoS2 from the top and side
views. Cyan and yellow spheres represent Mo and S atoms, respectively.
(b) First Brillouin zone and high symmetry points (TRIM). (c) Phonon
band structure of sho-MoS2. (d) Evolution of the total potential energy
of sho-MoS2 during the MD simulation. The inset is a snapshot of the
structure at the end of the simulation at 300 K.
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The absence of imaginary modes in the entire Brillouin zone
confirms that sho-MoS2 is dynamically stable. To examine the
thermal stability of sho-MoS2 at room temperature, NVT-AIMD
simulation at 300 K is carried out for 10 ps with a time step of
1 fs. To reduce the constraint of periodic boundary conditions,
a large supercell of 2 × 4 containing 144 atoms is used for the
MD simulation. The results are presented in Fig. 1d, which
show that the average value of the total potential energy
remains nearly constant, and the 2D sheet maintains its inte-
grated structure without obvious structural distortions during
the MD simulation, indicating that sho-MoS2 is thermally
stable at room temperature. Since the initial structure used in
the NVT-AIMD simulation is the equilibrium structure at 0 K,
considering the influence of temperature on the lattice para-
meters of the structure, we perform the NpT-AIMD simulation
at 300 K as well to obtain more accurate lattice constants. The
calculated results (see the ESI, Fig. S2†) show that the average
value of lattice parameters of the 2D sheet during the 300 K
NpT-AIMD simulation is nearly the same as that of the equili-
brium structure at 0 K, which confirms our results of
NVT-AIMD simulation.

In order to study the electron delocalization behavior of
sho-MoS2, we calculate its electron localization function (ELF),
which is based on the jellium electron gas model and its value
is renormalized between 0.0 and 1.0. The values of 0.5 and
1.0 represent fully delocalized (homogeneous electron gas)
and fully localized electrons, respectively, while the value of
0.0 refers to a very low charge density. From the ELF slices
shown in Fig. 2a and b, we note that the electrons are more
localized around the S atoms in the S layer, while in the
Mo layer the delocalized electrons are distributed in the space
between the Mo atoms. However, the Mo sites have low elec-
tron density, and no fully localized electrons are observed
neither in the Mo nor in the S layer.

We then calculate the electronic band structure and the pro-
jected density of states (PDOS) of sho-MoS2 to study its elec-
tronic properties. The results are plotted in Fig. 2c, which
show that sho-MoS2 is a direct band gap semiconductor with a
band gap of 0.35 eV at the PBE level. Considering the well-
known underestimation of PBE functional in predicting the
electronic band gap, we use the hybrid HSE06 functional to
reach a more accurate result, which yields the band gap of
0.61 eV (Fig. 2c). Comparing with the band gap of 2.13 eV for
H-MoS2,

25 there is an obvious reduction in sho-MoS2, indicat-
ing that the electronic band structure of H-MoS2 can be effec-
tively tuned by altering the atomic configuration. A detailed
analysis of the orbital-projected DOS (Fig. 2c) reveals that the
electronic states near the Fermi level primarily originate from
the Mo-4d and S-3p orbitals, which is confirmed by calculating
its MLWFs (see the ESI, Fig. S3†).

Having obtained the band structure and identified the
orbital composition of the frontier bands, we explore the possi-
bility of engineering the electronic band structure and band
topology of sho-MoS2 by applying equi-biaxial tensile strain,
which has been demonstrated to be an effective way to tune
the electronic structure of low dimensional materials.50,51 The
band structure (along the X–Γ–Y path) evolution with different
magnitudes of equi-biaxial tensile strain is given in Fig. S4

Table 1 Optimized lattice parameters (in Å), relative energy (E, in eV
f.u.−1) with respect to H-MoS2, and the energy band gap (Eg, in eV) cal-
culated using the HSE06 functional without SOC for sho-MoS2 and
some other 2D MoS2 allotropes

a b E Eg

sho-MoS2 9.98 5.70 0.60 0.61
H-MoS2 3.19 3.19 0 2.13 (ref. 25)
so-MoS2 6.38 6.38 0.86 0.00 (ref. 36)
1T-MoS2 3.19 3.19 0.84 0.00 (ref. 25)
1T′-MoS2 5.72 3.17 0.55 0.00 (ref. 22)
H′-MoS2 8.80 8.80 0.90 0.00 (ref. 23)
T″-MoS2 11.23 3.16 0.48 0.42 (ref. 24)
sh2o-MoS2 16.40 5.60 0.37 0.45
sh3o-MoS2 22.80 5.56 0.27 0.69
sh4o-MoS2 29.18 5.55 0.21 0.89

Fig. 2 Slice form of electron localization function crossing (a) the S layer, (b) the Mo layer, and (c) electronic band structure and orbital projected
DOS of sho-MoS2. Blue dashed lines and red solid lines in the band structure correspond to the PBE and HSE06 results, respectively.
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(ESI†), and the band gap as a function of the strain is plotted
in Fig. 3a, which shows that the band gap decreases with
increasing tensile strain, and is finally closed when the
applied tensile strain reaches 4%, showing a strain induced
semiconductor-to-metal transition.

To study the transition mechanism, we calculate the orbital-
decomposed band structure of sho-MoS2 under different equi-
biaxial tensile strain. The results are plotted in Fig. S5 (ESI†).
For simplicity, we term the highest occupied band and the
lowest unoccupied band as the highest valence band (HVB)
and the lowest conduction band (LCB) respectively. We find
that the HVB is mainly from the Mo-dxy and Mo-dx2−y2 orbitals,
the second highest occupied band (HVB-1) is mainly contribu-
ted by the S-pz and Mo-dz2 orbitals, while the LCB dominantly
comes from the Mo-dz2 orbital. On increasing the strain, the
energy of the HVB-1 exceeds that of the HVB at the Γ point
forming a new HVB, and finally the new HVB touches the LCB
under the strain of 4%, achieving the semiconductor-to-metal
transition. We note that such a trend of the band gap decreas-
ing with the increase of tensile strain was also observed in
other semiconductors.52 Generally, when equi-biaxial tensile
strain is applied to a structure, the atoms in the crystal are
pulled apart and the interatomic interaction decreases, thus
the resulting bonding and antibonding energy states become
closer in energy, which leads to a decrease of the band gap.
Finally the semiconductor-to-metal transition is achieved when
the strain is further increased to close the band gap.

The electronic band structure of sho-MoS2 with 4% equi-
biaxial tensile strain is shown in Fig. 3b. One can see that the
valence band maximum (VBM) and the conduction band
minimum (CBM) inverse at the Γ point. The highest valence
band (HVB) and the lowest conduction band (LCB) cross at the
point located at the Γ–Y path, forming a Dirac cone (inset of
Fig. 3b). Furthermore, the Dirac point locates exactly on the
Fermi energy. After turning on the SOC, we observe that a small
band gap of 2 meV is opened (inset of Fig. 3b), which is assumed
to be topologically nontrivial. To further confirm the topological

nontrivial nature, we calculate the Z2 topological invariant (ν) of
sho-MoS2 under different equi-biaxial tensile strain. Due to the
inversion symmetry in the sho-MoS2 structure, the topological
invariant ν can be directly computed based on the parity of the
wave function of occupied states at the four time-reversal-
invariant momenta.53,54 We obtain ν by using the equation

δðKiÞ ¼
YN

m¼1

ξi2m; ð�1Þν ¼
Y4

i¼1

δðKiÞ ¼ δðΓÞδðXÞδðYÞδðMÞ:

here δ (Ki) represents the product of the parity eigenvalue at
different time-reversal-invariant momenta, ξ2m = ±1 is the parity
eigenvalue of the wave function of the 2m-th occupied energy
band at time-reversal-invariant momenta Ki, and N is the total
number of degenerate occupied bands. According to the Z2
classification, ν = 1 characterizes the topologically nontrivial
phase, whereas ν = 0 indicates trivial band topology. The calcu-
lated Z2 number of the sho-MoS2 structure with 3% and 4% equi-
biaxial tensile strain is 0 and 1, respectively, suggesting a
quantum phase transition from a normal semiconductor to a 2D
TI. We then carefully investigate the orbital contributions to the
bands near the Fermi level under 0% and 5% tensile strain by
comparing their orbital-decomposed band structures. The results
are presented in Fig. 3c. As stated above the band order of the
HVB and HVB-1 interchanges when the magnitude of the strain
exceeds 2%. Further elevating the strain leads to the inversion of
the new VBM and the CBM in the vicinity of the Γ point. This
inversion of band edges under strain implies a topological phase
transition which is analogous to the strain induced topological
phase transition in T″-MoS2.

24 In addition, band structure calcu-
lations are also performed using the HSE06 hybrid functional to
confirm our finding of quantum phase transition induced by
equi-biaxial tensile strain. They reproduce the band gap decrease
trend obtained at the PBE level. However, the critical strain for
the semiconductor-to-metal transition predicted by the PBE func-
tional is smaller than that of the HSE06 functional, similar to the
case with the arsenene sheet.51 Based on the HSE06 functional,

Fig. 3 (a) Band gap of sho-MoS2 as a function of equi-biaxial tensile strain calculated at the PBE level. (b) Electronic band structure of sho-MoS2
along the high symmetry path in the first Brillouin zone with 4% equi-biaxial tensile strain. The insets are the zoomed in band structure near the
Γ point with and without SOC interaction. (c) Orbital-decomposed band structure without SOC for sho-MoS2 with an equilibrium lattice and under
5% strain, respectively.
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the critical strain to induce a quantum phase transition in sho-
MoS2 is 6%, which is confirmed by calculating the Z2 number.
Therefore, the strain induced quantum phase transition is an
intrinsic property of sho-MoS2 independent of the choice of the
exchange–correlation functional.

Since the SOC is stronger in heavy atoms (approximately
proportional to Z4, here Z represents the atomic number), we
expect that the nontrivial band gap can be larger in the sho-
MoSe2, MoTe2, WS2, WSe2 and WTe2 monolayers with similar
geometrical structures to that of sho-MoS2. Hence we calculate
their electronic band structures. From the results shown in
Fig. S6 (ESI†), one can see that sho-MoTe2, sho-WSe2 and sho-
WTe2 are normal metals while sho-MoSe2 and sho-WS2 are
semiconductors with a direct band gap of 0.10 and 0.20 eV,
respectively. The electronic band structures of sho-MoSe2 and
sho-WS2 are analogous to that of sho-MoS2. Therefore, it is
interesting to study whether there exists a strain induced topo-
logical phase transition in these compounds. The optimized
structures of these two nanosheets are presented in Fig. 4a
and c. We first calculate their phonon dispersion to examine
their structural stability. The results are presented in Fig. 4b
and d. There are no imaginary modes in the entire Brillouin
zone for both sho-MoSe2 and sho-WS2, confirming that both
of them are dynamically stable. Then we investigate the evol-
ution of their electronic band structure under different equi-
biaxial tensile strains. The band gap as a function of the
applied tensile strain for the two structures is plotted in
Fig. S6f (ESI†), which shows that there exists a semiconductor-
to-metal transition for both of them. The electronic band
structure of sho-MoSe2 (sho-WS2) under different magnitudes
of tensile strain is plotted in Fig. S7 (ESI†). In the case of

sho-MoSe2, the band gap closes as the strain increases to 6%,
while for sho-WS2 the critical strain for band gap closure is
4%. The electronic band structures with and without the SOC
for the 6% (4%) strained sho-MoSe2 (sho-WS2) sheet are given
in Fig. 4e (4f ). The inclusion of the SOC opens a band gap of 8
(22) meV for the strained sho-MoSe2 (WS2). To explore their
topological nature, we calculate the topological invariant Z2
number ν of the two structures under different equi-biaxial
tensile strains. The results are listed in Fig. 4g and h, which
confirm that the topological phase transition occurs when the
tensile strain reaches 6% (4%) for sho-MoSe2 (sho-WS2). A
larger tensile strain (6%) required for the phase transition in
sho-MoSe2 (while that for sho-MoS2 and sho-WS2 is 4%) may
result from a larger tensile strain required for the inversion of
HVB-1 and HVB in sho-MoSe2 (∼4% for sho-MoSe2, ∼1% for
sho-MoS2 and ∼2% for sho-WS2, see the ESI, Fig. S4 and S7†).

The sho-MoS2 sheet has a direct band gap of 0.61 eV, ana-
logous to that of the recently reported silicon allotrope, h-Si6,

55

showing its potential applications in photovoltaic and nano-
electronic devices. Wave function analysis of the VBM and
CBM at the Γ point confirms that the interband dipole tran-
sition between them is symmetrically allowed. In the sho-MoS2
structure, the point group at the Γ point is D2h, which has
eight one-dimensional irreducible representations. It is found
that the VBM belongs to B1g representation while the CBM
belongs to B3u representation. The dipole moment operator for
the dipole transition in the D2h group can be represented as
(B1u⊕B2u⊕B3u). The direct product for the three represen-
tations, written as B1g⊗(B1u⊕B2u⊕B3u)⊗B3u, can be reduced to
B3g⊕Ag⊕B1g, which contains the full symmetry representation
Ag, demonstrating that the diploe transition through the direct

Fig. 4 Optimized structures of (a) sho-MoSe2 and (c) sho-WS2 from the top and side views. Phonon dispersion along the high symmetry path in the
first Brillouin zone of (b) sho-MoSe2 and (d) sho-WS2. The electronic band structure of (e) sho-MoSe2 with 6% tensile strain, and (f) sho-WS2 with
4% tensile strain. (g) and (h) are δ at time-reversal-invariant momenta for sho-MoSe2 and sho-WS2 with different magnitudes of equi-biaxial tensile
strain and the corresponding Z2 invariant, ν, respectively.
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band gap at the Γ point is symmetrically allowed. The result
shows that photon excitation at the Γ point is free of phonon
mediation thus easy to be achieved.

The carrier effective mass m* for photovoltaic materials is a
key factor to determine their performance. Thus, we calculate
the effective mass of the band edge electrons and holes of
sho-MoS2 at the Γ point along the x (y) direction. The band
edge electron (hole) effective mass can be calculated by a quad-
ratic fitting of the conduction (valence) band along a certain
direction in the momentum space

1
m*

¼ 1
ℏ2

@2E
@k2

:

The results are listed in Table 2 and the calculated carrier
effective masses of H-MoS2 are consistent with previous

studies.56,57 We note that the carrier effective masses of sho-
MoS2 are different along the x and y directions, namely
m*

eðxÞ ¼ 1:62m*
eðyÞ; andm*

hðxÞ ¼ 2:80m*
hðyÞ, which shows an

anisotropic character. Compared with H-MoS2, sho-MoS2 has a
larger carrier effective mass along the x direction whereas the
carrier effective mass along the y direction is smaller,
suggesting that carriers prefer to transport along the y direc-
tion in sho-MoS2. We then explore the influence of strain on
the carrier effective mass of sho-MoS2. The results listed in
Table 2 show that the effective masses of electrons and holes
at the Γ point can be effectively tuned by applying equi-biaxial
tensile strain. As the strain increases, the effective masses of
carriers decrease significantly, except in the case of holes
along the y direction. The effective mass of holes along the
y direction firstly decreases as the strain increases, however a
sharp increase occurs as the strain reaches 2%. After this, the
effective mass of holes decreases again. The reason for the
sharp increase of the hole effective mass is that the energy of
HVB-1 exceeds that of HVB at the Γ point when strain reaches
up to 2%, as shown in Fig. S4 (ESI†), and the band curvatures
of HVB and HVB-1 are different.

Finally, we study the modulation of the electronic structures
of the H-phase of TMD with different concentrations of the
square–octagonal defects. We take H-MoS2 as an example.
When lowering the concentration of the square–octagonal line
defects in H-MoS2, the structure becomes hexagon-rich. The
hexagon-rich MoS2 structure is termed shno-MoS2, where
n refers to the number of hexagons between the two neighbor-
ing squares along the crystal axis a, as illustrated in Fig. 5a.

Table 2 Electron and hole effective masses (m*) at the Γ point along
the Γ–X (Γ–Y) direction of sho-MoS2 in the equilibrium state and under
equi-biaxial tensile strain. Electron and hole effective masses at the K
point (1/3, 1/3) along the K–Γ (K–M) direction of H-MoS2, where the
fractional reciprocal coordinates for the Γ and M are (0, 0) and (1/2, 0),
respectively. The unit is the electron rest mass (m0)

m*/m0

H-MoS2 sho-MoS2

0% 0% 1% 2% 3%

m*
e K(Γ) 0.456 Γ(X) 0.548 0.538 0.492 0.361

K(M) 0.467 Γ(Y) 0.338 0.310 0.288 0.273
m*

h K(Γ) 0.565 Γ(X) 0.866 0.873 0.722 0.432
K(M) 0.590 Γ(Y) 0.309 0.293 1.885 1.480

Fig. 5 (a) Schematic illustration of the geometric structure of shno-MoS2. The square and octagonal rings in the line defects are filled in purple and
magenta. (b) The electronic band structure for sh6o-MoS2. The purple lines represent defect states induced by square–octagonal rings. (c) and (d)
are the band-decomposed charge density isosurfaces (isovalue: 0.01 e Å−3) for the two lowest unoccupied bands of sh6o-MoS2. The unit cells are
marked by red dashed-line rectangles.
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The larger the number of n, the smaller the concentration of
the defects in H-MoS2. The optimized structures of shno-MoS2
(n = 2–6) are presented in Fig. S8 (ESI†). The calculated lattice
parameters and relative energies are listed in Table S2 (ESI†).
When n increases to 2, the energy of shno-MoS2 becomes lower
than all the other known phases of 2D MoS2 except for the H
phase. The calculated band structures of shno-MoS2 (n > 1) are
plotted in Fig. S9 (ESI†), where one can see a significant
change compared to the sho-structure: the lowest and second
lowest unoccupied energy bands become less dispersed as
n increases, indicating that the states are highly localized (as
evidenced by the total DOS in the ESI,† Fig. S10). The HSE06
band gap results for the shno-MoS2 structures with n = 1–4 are
listed in Table 1 and the PBE band gap results for structures
with n = 1–6 are listed in Table S2 (ESI†). The square–octagonal
rings can be viewed as an artificial line defect in H-MoS2 and
its electronic structure can be modulated via controlling the
defect concentration, that is the value of n. From the electronic
band structure of sh6o-MoS2 in Fig. 5b, we can see that the two
lowest unoccupied bands are nearly flat. Calculations of the
band-decomposed charge density show that the two bands
originate from the square–octagonal rings, as shown in Fig. 5c
and d, which accounts for their dispersionless feature.
Because the square–octagonal rings can be viewed as parallelly
aligned artificial line defects, the two lowest unoccupied
bands can be classified as the defect states. The defect states
are located at the mid-position between the valence and con-
duction bands of pristine H-MoS2. These mid-gap states
induced by incorporating the square–octagonal defects into
the H-MoS2 phase, which is typical in semiconductors,33 could
act as sinks for carriers, thus significantly affecting the optical
and transport properties of the materials. When the n value is
large enough, the square–octagonal line defects can be viewed
as grain boundaries just like the case of 4–8 grain boundaries
in the previous study.34 As n decreases, the defect concen-
tration increases and the interaction between the neighboring
line defects becomes stronger, consequently the defect states
become more and more delocalized (see the ESI, Fig. S11†),
thus effectively tuning the electronic structure of shno-MoS2.

In summary, using density functional theory based first
principles calculations, we studied the defects and strain
induced topological phase transition in H-phase TMDs. We
proposed a family of monolayer TMD structures by introducing
the experimentally observed 4–8 defects into the H phase of
2D TMDs, named sho-TMDs. Compared to the ground state
H-MoS2 phase, sho-MoS2 is energetically metastable, but it is
thermodynamically more stable than the previously reported
H′-phase, so-phase and 1T-phase, and is thermally stable at
room temperature. The predicted sho-MoS2 structure has a
direct band gap of 0.61 eV at the Γ point, which decreases
monotonously when an equi-biaxial tensile strain is applied to
the structure. We identified a topological phase transition
when the strain reaches 4%. Calculations of the topological
invariant Z2 number suggest that the strained sho-MoS2
becomes a topological insulator, and the SOC induced non-
trivial band gap is 2 meV. Such quantum phase transition is

also predicted in the structurally analogous sho-MoSe2 and
sho-WS2 sheets, which display larger nontrivial band gaps of
8 and 22 meV, respectively. The larger nontrivial band gap in
sho-WS2 is more probable for experimental observations. The
band edge carrier effective mass of sho-MoS2 exhibits signi-
ficant anisotropy. Compared with that of H-MoS2, the carrier
effective mass of sho-MoS2 is lighter along the y direction, and
can be tailored via external strain. We found that incorporating
less 4–8 motifs into the H-TMD structure enhances the
thermodynamic stability and significantly changes the band
structure, which provides a new degree of freedom to engineer
the electronic structures of 2D TMDs. When the n value in
shno-MoS2 reaches 2, the structure is energetically more stable
than all the other known phases of 2D MoS2 except for the
H phase. Further increase of n value makes the mid-gap states
induced by 4–8 defects become more localized. These states
could act as traps for carriers, and would significantly affect
the optical and transport properties of the materials. In fact,
defects widely exist in materials, studying the effect of defects
on properties is of significance in practice. We believe that our
theoretical study would stimulate more experimental efforts
on the exploration of defect-induced quantum spin Hall insu-
lating states in 2D TMD materials.
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