Fundamentals of Control Theory

Professor Xun Huang

Lecture 0. Introduction of control theory

Why study control

Q: How to design a stable flight?

Figure: Q: History of control?

Origins and history

- Parts of control theory can be traced to 19th century.
- Builds on classical circuits \& systems at Bell labs (1920s on) (transfer functions ...) but with more emphasis on linear algebra;
- Classical control (1900-1960s); modern control (1960-1970s); vast control methods since 1980s.
- First engineering application using classical control: aerospace (?), 1903.
- First engineering application using modern control: aerospace (definitely), 1960s.
- Transitioned from specialized topic to ubiquitous in 1980s (just like digital signal processing, information theory, etc.).

Origins and history

- Parts of control theory can be traced to 19th century.
- Builds on classical circuits \& systems at Bell labs (1920s on) (transfer functions ...) but with more emphasis on linear algebra;
- Classical control (1900-1960s); modern control (1960-1970s); vast control methods since 1980s.
- First engineering application using classical control: aerospace (?), 1903.
- First engineering application using modern control: aerospace (definitely), 1960s.
- Transitioned from specialized topic to ubiquitous in 1980s (just like digital signal processing, information theory, etc.).

Have no idea and start feeling boring?

Control is in the nature as well

Q: Who is more maneuverable, bee or bird?

Figure: Q: What is the difference for a bee flight?

Control is in the nature as well

Figure: Q: What is the difference for a dragonfly flight?

Control is in the nature as well

Figure: Q: What is the difference for a dragonfly flight?

Well, interesting, but do NOT know answers, and how to find/develop answers.
Let's study the fundamentals.

Linear dynamical system

Continuous-time linear dynamical system (LDS) has the form

$$
\begin{gathered}
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{A}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{B}(\mathrm{t}) \mathrm{u}(\mathrm{t}), \quad \mathrm{y}(\mathrm{t})=\mathrm{C}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{D}(\mathrm{t}) \mathrm{u}(\mathrm{t}) \\
\mathrm{Y}(\mathrm{~S})=\mathrm{G}(\mathrm{~S}) \mathrm{U}(\mathrm{~S})
\end{gathered}
$$

Introduction

System dynamics

- Control systems are dynamic \longrightarrow transient + steady state.
- Transient motion is important. In the case of a flight, slow transient motion makes passenger impatient, rapid motion is uncomfortable. If the aircraft oscillates this is disconcerting.
- Steady state is also important, it can have an error, i.e. the step up or down on the exit form a lift.

Introduction

Figure: Open loop system diagram.
e.g. heaters, fan, etc.

Q: What is the diagram for a fan in a classroom?

Transfer function

- A mathematical representation of the relation between the input and output of a linear time-invariant system (will be defined later).
- Q: If above system is linear, what is its transfer function?

Figure: Closed loop system diagram.

- Q: What is the diagram when we adjust room temperature using a fan? Human-in-the-loop.
- Q: What is its transfer function?
- Q: What is the performance difference between an open- and closed-loop system?

Introduction

Design process

(1) Transform requirements to mathematical words;
(2) Develop the mathematical model of the plant;
(3) Create a schematic of the system;
(1) Analyze and design.

Dynamics

We must have a dynamic system:
Total $=$ Natural + Forced
\downarrow
describes how the system dissipates energy
This means that the equivalent differential equation equals a homogeneous solution plus a particular solution.

Demo 1

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad \mathrm{y}=\mathrm{Cx}, \quad \mathrm{x}(0)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\prime}
$$

where $\mathrm{A}=\left[01 ;-\mathrm{a}^{2}-\omega^{2}-2 \mathrm{a}\right] ; \mathrm{B}=\left[\begin{array}{lll}1 & 0 ; & 1\end{array}\right]$; and $\mathrm{C}=\left[\begin{array}{lll}1 & 0 ; & 1\end{array}\right]$.

- Q: What is the block diagram of the above equation?
- Q: Is the above equation linear?

Demo 2

Q: Given desired outputs $y_{\text {des }}=[0.36 ;-0.65]$, how to design a u ? A simple approach: consider static conditions ($\mathrm{u}, \mathrm{x}, \mathrm{y}$ constant):

$$
\dot{\mathrm{x}}=0=\mathrm{Ax}+\mathrm{Bu}_{\text {static }}, \quad \mathrm{y}=\mathrm{y}_{\mathrm{des}}=\mathrm{Cx}
$$

solve for u to get:

$$
\mathrm{u}_{\text {static }}=\left(-\mathrm{CA}^{-1} \mathrm{~B}\right)^{-1} \mathrm{y}_{\mathrm{des}}=\left[\begin{array}{c}
0.36 \\
-0.65
\end{array}\right] .
$$

Demo 2

Q: Given desired outputs $y_{\text {des }}=[0.36 ;-0.65]$, how to design a u ? A simple approach: consider static conditions ($\mathrm{u}, \mathrm{x}, \mathrm{y}$ constant):

$$
\dot{\mathrm{x}}=0=\mathrm{Ax}+\mathrm{Bu}_{\text {static }}, \quad \mathrm{y}=\mathrm{y}_{\mathrm{des}}=\mathrm{Cx}
$$

solve for u to get:

$$
\mathrm{u}_{\text {static }}=\left(-\mathrm{CA}^{-1} \mathrm{~B}\right)^{-1} \mathrm{y}_{\mathrm{des}}=\left[\begin{array}{c}
0.36 \\
-0.65
\end{array}\right]
$$

Super cool! It seems we do NOT need to learn this course!

Demo 2

Figure: Forced responses.
Q: Is it acceptable?

Input design

In this course we'll study

- how to synthesize or design such inputs;
- and the tradeoff between size of u and convergence time.

Linear dynamics system

Let us look at the previous demo again,

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad \mathrm{y}=\mathrm{Cx}, \quad \mathrm{x}(0)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\prime}
$$

where $\mathrm{A}=\left[01 ;-\mathrm{a}^{2}-\omega^{2}-2 \mathrm{a}\right] ; \mathrm{B}=\left[\begin{array}{lll}1 & 0 ; & 1\end{array}\right]$; and $\mathrm{C}=\left[\begin{array}{lll}1 & 0 ; & 1\end{array}\right]$.

Linear dynamics system

Let us look at the previous demo again,

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad \mathrm{y}=\mathrm{Cx}, \quad \mathrm{x}(0)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{\prime}
$$

where $\mathrm{A}=\left[01 ;-\mathrm{a}^{2}-\omega^{2}-2 \mathrm{a}\right] ; \mathrm{B}=\left[\begin{array}{lll}1 & 0 ; & 1\end{array}\right]$; and $\mathrm{C}=\left[\begin{array}{lll}1 & 0 ; & 1\end{array}\right]$.

- Q: Is the above equation linear?
- Q: What is a linear dynamical system?

Linear functions

a function $\mathrm{f}: \mathfrak{R}^{\mathrm{n}} \rightarrow \mathfrak{R}^{\mathrm{m}}$ is linear if

- $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}), \forall \mathrm{x}, \mathrm{y} \in \mathfrak{R}^{\mathrm{n}}$
- $\mathrm{f}(\alpha \mathrm{x})=\alpha \mathrm{f}(\mathrm{x}), \forall \mathrm{x} \in \mathfrak{R}^{\mathrm{n}}, \forall \alpha \in \mathfrak{R}$
i.e., superposition holds.

Linear equations

Consider system of linear equations

$$
\begin{aligned}
\mathrm{y}_{1} & =\mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\cdots+\mathrm{a}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}} \\
\mathrm{y}_{2} & =\mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\cdots+\mathrm{a}_{2 n} \mathrm{x}_{\mathrm{n}} \\
& \vdots \\
\mathrm{y}_{\mathrm{m}} & =\mathrm{a}_{\mathrm{m} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{m} 2} \mathrm{x}_{2}+\cdots+\mathrm{a}_{\mathrm{mn}} \mathrm{x}_{\mathrm{n}}
\end{aligned}
$$

can be written in matrix form as $\mathrm{y}=\mathrm{Ax}$, where

$$
\mathrm{y}=\left[\begin{array}{c}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\vdots \\
\mathrm{y}_{\mathrm{m}}
\end{array}\right] \quad \mathrm{A}=\left[\begin{array}{cccc}
\mathrm{a}_{11} & \mathrm{a}_{12} & \cdots & \mathrm{a}_{1 \mathrm{n}} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \cdots & \mathrm{a}_{2 \mathrm{n}} \\
\vdots & & \ddots & \vdots \\
\mathrm{a}_{\mathrm{m} 1} & \mathrm{a}_{\mathrm{m} 2} & \cdots & \mathrm{a}_{\mathrm{mn}}
\end{array}\right] \quad \mathrm{x}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right]
$$

Matrix multiplication function

- Consider function $f: \mathfrak{R}^{\mathrm{n}} \rightarrow \mathfrak{R}^{\mathrm{m}}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{Ax}$, where $\mathrm{A} \in \mathfrak{R}^{\mathrm{m} \times \mathrm{n}}$;
- matrix multiplication function f is linear;
- converse is true: any linear function $f: \mathfrak{R}^{\mathrm{n}} \rightarrow \mathfrak{R}^{\mathrm{m}}$ can be written as $\mathrm{f}(\mathrm{x})=\mathrm{Ax}$ for some $\mathrm{A} \in \mathfrak{R}^{\mathrm{m} \times \mathrm{n}}$;
- representation via matrix multiplication is unique: for any linear function f there is only one matrix A for which $f(x)=A x$ for all x;
- $y=A x$ is a concrete representation of a generic linear function.

Interpretations of $\mathrm{y}=\mathrm{Ax}$

- y is measurement or observation; x is unknown to be determined;
- x is 'input' or 'action'; y is 'output' or 'result';
- $\mathrm{y}=\mathrm{Ax}$ defines a function or transformation that maps $\mathrm{x} \in \mathfrak{R}^{\mathrm{n}}$ into $\mathrm{y} \in \mathfrak{R}^{\mathrm{m}}$.

Interpretations of a_{ij}

$$
\mathrm{y}_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}
$$

a_{ij} is gain factor from jth input $\left(\mathrm{x}_{\mathrm{j}}\right)$ to ith output $\left(\mathrm{y}_{\mathrm{i}}\right)$, thus, e.g.,

- ith row of A concerns ith output;
- jth column of A concerns jth input;
- $\mathrm{a}_{27}=0$ means 2nd output (y_{2}) doesn't depend on 7th input $\left(\mathrm{x}_{7}\right)$;
- $\left|\mathrm{a}_{31}\right| \gg\left|\mathrm{a}_{3 \mathrm{j}}\right|$ for $\mathrm{j} \neq 1$ means y_{3} depends mainly on x_{1}.

Interpretations of a_{ij}

- $\left|\mathrm{a}_{52}\right| \gg\left|\mathrm{a}_{\mathrm{i} 2}\right|$ for $\mathrm{i} \neq 5$ means x_{2} affects mainly y_{5};
- A is lower triangular, i.e., $\mathrm{a}_{\mathrm{ij}}=0$ for $\mathrm{i}<\mathrm{j}$, means y_{i} only depends on $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}}$;
- A is diagonal, i.e., $\mathrm{a}_{\mathrm{ij}}=0$ for $\mathrm{i} \neq \mathrm{j}$, means ith output depends only on ith input.

More generally, sparsity pattern of A, i.e., list of zero / nonzero entries of A, shows which x_{j} affect which y_{i} Consider its meaning in aircraft control...

Linear \neq simple

Figure: Q: Is this a linear or nonlinear system?

Linear \neq simple

Figure: Linear modes.

Nonlinear dynamical systems

Many dynamical systems are nonlinear (a fascinating topic) so why study linear systems?

- Most techniques for nonlinear systems are based on linear methods.
- Methods for linear systems often work unreasonably well, in practice, for nonlinear systems.
- If you don't understand linear dynamical systems you certainly can't understand nonlinear dynamical systems.

Linearization of nonlinear dynamic systems

- If $\mathrm{f}: \mathfrak{R}^{\mathrm{n}} \rightarrow \mathfrak{R}^{\mathrm{m}}$ is differentiable at $\mathrm{x}_{0} \in \mathfrak{R}^{\mathrm{n}}$, then

$$
x \text { near } x_{0} \Longrightarrow f(x) \text { very near } f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right) \text {, }
$$

where

$$
\operatorname{Df}\left(\mathrm{x}_{0}\right)_{\mathrm{ij}}=\left.\frac{\partial \mathrm{f}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{j}}}\right|_{\mathrm{x}_{0}},
$$

is derivative (Jacobian) matrix,

- with $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{y}_{0}=\mathrm{f}\left(\mathrm{x}_{0}\right)$, define input deviation $\delta \mathrm{x}:=\mathrm{x}-\mathrm{x}_{0}$, output deviation $\delta \mathrm{y}:=\mathrm{y}-\mathrm{y}_{0}$
- then we have $\delta \mathrm{y} \approx \operatorname{Df}\left(\mathrm{x}_{0}\right) \delta \mathrm{x}$,
- when deviations are small, they are (approximately) related by a linear function.

Why study linear systems?

Applications arise in many areas, e.g.

- automatic control systems;
- signal processing;
- communications;
- economics, finance;
- circuit analysis, simulation, design;
- mechanical and civil engineering;
- aeronautics;
- navigation, guidance.

Linear dynamical system

continuous-time linear dynamical system (LDS) has the form

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{A}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{B}(\mathrm{t}) \mathrm{u}(\mathrm{t}), \quad \mathrm{y}(\mathrm{t})=\mathrm{C}(\mathrm{t}) \mathrm{x}(\mathrm{t})+\mathrm{D}(\mathrm{t}) \mathrm{u}(\mathrm{t})
$$

where:

- $\mathrm{t} \in \mathfrak{R}$ denotes time
- $\mathrm{x}(\mathrm{t}) \in \mathfrak{R}^{\mathrm{n}}$ is the state (vector)
- $u(t) \in \mathfrak{R}^{\mathrm{m}}$ is the input or control
- $\mathrm{y}(\mathrm{t}) \in \mathfrak{R}^{\mathrm{p}}$ is the output

Please note the above system is time variant!

Linear dynamical system

- $\mathrm{A}(\mathrm{t}) \in \mathfrak{R}^{\mathrm{n} \times \mathrm{n}}$ is the dynamics matrix
- $\mathrm{B}(\mathrm{t}) \in \mathfrak{R}^{\mathrm{n} \times \mathrm{m}}$ is the input matrix
- $\mathrm{C}(\mathrm{t}) \in \mathfrak{R}^{\mathrm{p} \times \mathrm{n}}$ is the output or sensor matrix
- $\mathrm{D}(\mathrm{t}) \in \mathfrak{R}^{\mathrm{p} \times \mathrm{m}}$ is the feedthrough matrix

For lighter (simpler) appearance, equations are often written

$$
\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}, \quad \mathrm{y}=\mathrm{Cx}+\mathrm{Du}
$$

- LDS is a first order vector differential equation,
- also called state equations, or 'm-input, n-state, p-output' LDS.

Q: Draw the block diagram of the above system.

Block diagram

- A_{ij} is gain factor from state x_{j} into integrator i ;
- $B_{i j}$ is gain factor from input u_{j} into integrator i;
- C_{ij} is gain factor from state x_{j} into output y_{i};
- $D_{i j}$ is gain factor from input u_{j} into output y_{i}.

Block diagram

Q: Draw block diagram for
$\frac{\mathrm{d}}{\mathrm{dt}}\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2}\end{array}\right]=\left[\begin{array}{cc}\mathrm{A}_{11} & \mathrm{~A}_{12} \\ 0 & \mathrm{~A}_{22}\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2}\end{array}\right]+\left[\begin{array}{c}\mathrm{B}_{1} \\ 0\end{array}\right] \mathrm{u}, \quad \mathrm{y}=\left[\begin{array}{ll}\mathrm{C}_{1} & \mathrm{C}_{2}\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2}\end{array}\right]$.

- x_{2} is not affected by input u , i.e., x_{2} propagates autonomously;
- x_{2} affects y directly and through x_{1}.

Some LDS terminology

- Most linear systems encountered are time-invariant: A, B, C, D are constant, i.e., don't depend on t.
- When there is no input u (hence, no B or D) system is called autonomous.
- Very often there is no feedthrough, i.e., $\mathrm{D}=0$.
- When $u(t)$ and $y(t)$ are scalar, system is called single-input, single-output (SISO); when input \& output signal dimensions are more than one, MIMO.

Summary

- Linear vs Nonlinear.

- Continuous vs Discrete.
- SISO vs MIMO.
- Time domain vs Frequency domain.

Summary

- Linear vs Nonlinear.

- Continuous vs Discrete.
- SISO vs MIMO.
- Time domain vs Frequency domain. We will go through linear, continuous, SISO and MIMO, and both time domain and frequency domain systems.

