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Review

Laplace and its inverse transforms.
Transfer function vs State space model.
Given ẋ = Ax, we will have x(t) = eAtx(0). Since A = TΛT−1, then

eAt = TeΛtT−1.

Why?
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Review

eAt = TeΛtT−1 = [v1 · · · vn]
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The following derivation is given on the blackboard...
The eigenvalues determine the performance and stability of the
system! (See note)
The corresponding concept in transfer function are pole...
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Poles, Zeros and System Response

Solutions of a problem can be time consuming and laborious, so
often a short cut is taken to find the qualitative behaviour. The
use of poles and zeros is one such method.
Poles are where the Laplace Transform becomes infinite. For
example,

1
(s+ 2)

at s = −2 has a value of ∞. This means s = −2 is a pole.

Zeros are where the Laplace Transform is zero! s+ 4 −→ s = −4 is
a zero.

R(s) −→ (s+ 2)
(s+ 5)

−→ C(s)

Figure: Simple Input / Output Control System.
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Poles, Zeros and System Response

Take for example a system, described by the Laplace variable s, with
the following expression.

C(s) = (s+ 2)

s(s+ 5)
=

2
5

s +
3
5

(s+ 5)
.
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Figure: Poles and zero positions.

(Prof. Huang) Control 2015 Autumn 5 / 24



First Order Systems

We can model the effects of a simple system, often refereed to as a first
order system by displacement and velocity by the following diagram.

R(s)
G(s)

C(s)
- a

(s+ a) -

Figure: First order system.
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First Order Systems

If we assume a unit input, then R(s) = 1
s ,

∴ C(s) = a
s(s+ a) ,

∴ C(s) = 1

s − 1

(s+ a) ,

which means that in the time domain that the solution is:

c(t) = cf(t) + cn(t),

∴ c(t) = 1− e−at.
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Second Order Systems

Demo: trim_linearize_xun
Obtain:

G(s) = w(s)
δelevator

=
−0.09s− 7

s2 + 1.3s+ 4.5
. (1)

Then, we consider a more general second order system defined as

G(s) = ω2
n

(s2 + 2ζωns+ ω2
n)
.

We define the damping ratio ζ, the natural frequency ωn, and the
damped frequency,

ωd = ωn
√

1− ζ2.

Q: What are ζ and ωn for Eq. (1).
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Second Order Systems

The we can characterize the systems as
1 ζ = 0 is the no damping case. Poles at s = ±iωn.
2 0 < ζ < 1 then the system is under-damped. Poles at

s = −ζωn ± iωd.
3 ζ = 1 the system is critically damped. Poles at s = −ζωn (twice).
4 ζ > 1 the system is over-damped. Poles at s = −ζωn ± ωn

√
ζ2 − 1.
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Second Order Systems

Why?
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Second Order Systems
In the case of under damped response we further define the following
properties;

1 Rise time Tr is the time between the output reaching 10% and 90%
of the final value.

2 Time to the first peak, TP in the response is overshoot peak.

Tp =
π

ωn
√

ζ2 − 1
.

3 The percentage overshoot of the response at the first peak is given
by,

OS% = e
− ζπ√

1−ζ2 .

4 The settling time is the time to the third crossing of the 90% of
final value.

Ts =
4

ζωn
.
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Second Order Systems

Show pzmap of the demo: trim_linearize_xun. What to do?
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Closed-Loop Control
Closed-loop system transfer function:

R(s) C(s)
- - G(s)

E(s)
-

?�

6

m+

_

Figure: Closed loop system.

T(s) = C(s)
R(s) ,

∴ T(s) = G(s)
1 +G(s) .
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Closed-Loop Systems Design

G(s) = 25

s(s+ 5)
,∴ T(s) = 25

s2 + 5s+ 25
.

This means that the natural frequency is

ωn =
√
25 = 5,

and the damping coefficient can be found from:

2ζωn = 5,∴ ζ = 0.5.

The time to first peak Tp is;

Tp =
π

ωn
√

1− ζ2
= 0.726,∴ Ts =

4

ζωn
= 1.6.

∴ %OS = e
− ζπ√

1−ζ2 = 16.303%.

Q: How to ≤ 10%.
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Closed-Loop System Design

The above method tells the stability of a system, e.g. G(s). But the
close loop gain k can be varied. How to analyze the whole closed-loop
along with the gain?

R(s) C(s)
- - KG(s)

E(s)
-

?�

6

m+

_

Figure: Closed loop system.

Q: What is the transfer function of the closed-loop?
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Closed-Loop Systems Design

G(s) = K
s(s+ 5)

,∴ T(s) = K
s2 + 5s+K

.

This means that the natural frequency is;

ωn =
√
K

The damping coefficient is therefore found:

2ζωn = 5, orζ =
5

2
√
K
.

Thus is we have a system requirement that the first overshoot is to be a
maximum of 10% then we can see that

%OS = e
− ζπ√

1−ζ2 = 10%,∴ ζ = 0.591,

∴ K = 17.982.
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Root Locus Method

Given G(s), root locus method is a graphical method for examining
how the roots of a system change with variation of the gain of a
feedback system.
The root locus method is one method for solving this difficult
problem. To find the effects of the gain, K, we need to plot the
locus of the poles as the gain varies from zero to ∞.
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Root Locus Method

Preliminary knowledge

Given F(s) =

M∏
i=1

(s+ zi)

N∏
j=1

(s+ pj)

,

which can be written to a magnitude and argand form;

F(s) = Meiθ, then

M =

∏
zero lengths∏
pole lengths

, θ =

M∑
i=1

∠(s+ zi)−
N∑

j=1

∠(s+ pj).
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Root Locus Method

Starting points

Here F(s) = 1 +KG(s), where G(s) = NG(s)
DG(s)

.
That is DG(s) +KNG(s) = 0, as K → 0, ∴ DG(s) = 0. Hence, the root
locus starts at the poles of G(s), i.e. the poles of open loop system.

Ending points
DG(s) +KNG(s) ≈ KNG(s), as K → ∞, the ending points are at
NG(s) = 0, i.e. the zeros of open loop system.

Homework: Read the root locus part and learn how to do portrait by
hand.
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Closed-Loop System Transfer Function

R(s) C(s)
- - KG(s)

E(s)
-

?�H(s)
F(s)
�
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Figure: Closed loop system.

C(s) = E(s)KG(s),E(s) = R(s)− F(s) = R(s)− C(s)H(s),
C(s) = R(s)KG(s)− C(s)H(s)KG(s),

∴ C(s)[1 +KH(s)G(s)] = KR(s)G(s),Q : T(s) =?
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Root Locus Method

G(s) = K(s+ 3)

s(s+ 1)(s+ 2)(s+ 4)
,H(s) = 1

The MATLAB code can help us to do root locus,
>> numg=[1 3];
>> deng=[1 7 14 8 0];
>> sysS=tf(numg,deng);
>> rlocus(sysS);
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Figure: The root locus plot.
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Recall: Second Order Systems

Show pzmap of the demo: trim_linearize_xun.
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Root Locus Method

First, examine ”rlocus(tf1)”.
Then, examine ”tfs=tf([1],[1 0]); rlocus(tf1(1)*tfs)”.
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Key Points

2nd-order system;
Closed-loop system;
Root locus method.
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