Two-stage heat release in nitromethane/air flame and its impact on laminar flame speed measurement

Mahdi Faghih, Zheng Chen

SKITCS, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China

ARTICLE INFO

Article history:
Received 23 February 2017
Revised 9 May 2017
Accepted 11 May 2017

Keywords:
Nitromethane/air
Two-stage heat release
Laminar flame speed
Propagating spherical flame

ABSTRACT

In premixed flames of most hydrocarbon fuels, there is only one stage heat release. However, two-stage heat release occurs in premixed nitromethane/air flames under certain conditions. In this study, numerical simulations were conducted for one-dimensional planar and spherical nitromethane/air flames at different initial temperatures (423–800 K), pressures (0.5–10 atm) and equivalence ratios (0.5–1.3). Using the planar flame, we investigated the characteristics of the two-stage heat release and identified elementary reactions involved in these two stages. It was found that the occurrence of two-stage heat release strongly depends on the equivalence ratio and that single-stage heat release occurs for very fuel-lean mixture. To demonstrate the key reactions involved in the second stage heat release, we modified the original chemical mechanism and compared the results predicted by different mechanisms. The second stage heat release was found to be mainly caused by the reaction NO+H→N+OH. Using the propagating spherical flame, we assessed the impact of two-stage heat release on the determination of laminar flame speed. The positive burned gas speed induced by the second stage heat release was shown to affect the accuracy of laminar flame speed determined by traditional method neglecting burned gas speed and using the density ratio at equilibrium condition. Alternative methods were proposed and used to correct the experimental data reported in the literature.

© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Nitromethane (CH₃NO₂) can be used as a fuel additive in internal combustion engines (ICEs) and as a monopropellant in rocket engines. Blending nitromethane into gasoline helps to increase the octane number and to prevent knocking in direct-injected boosted gasoline engines [1]. Recent experiments showed that nitromethane addition to gasoline reduces soot formation but increases the emission of HCN and NOₓ [2]. Besides, since nitromethane is the simplest nitro paraffin fuel, it is popularly used to study the combustion properties of liquid propellants [3].

Unlike the combustion of traditional fuels, nitromethane combustion proceeds via two or three steps. Hall and Wolfhard [4] first observed two luminous reaction zones in a low-pressure nitromethane/oxygen flame. Boyer and Kuo [3] simulated one-dimensional (1D) nitromethane combustion with surface vaporization. They identified three distinct reaction regions based upon the appearance and consumption of certain species. Nauclér et al. [5] found that fuel-rich nitromethane/air flames have two separate reaction zones according to their numerical simulation considering detailed chemistry. In shock tube experiments and modeling of homogenous ignition process, two-stage heat release was also observed by Mathieu et al. [6] and Nauclér et al. [7]. Besides, a double cellular structure was observed in the detonation experiments for gaseous nitromethane/oxygen mixtures [8]. Sturtzer et al. [9] calculated the 1D 2ND detonation structure using a detailed mechanism for nitromethane. They found that heat is released in two main successive reaction steps characterized by their own induction length, which justifies the existence of a two-level detonation cellular structure [9].

Though the two or three step heat release in nitromethane combustion was identified in previous studies listed above, the chemical reactions responsible for the multi-stage heat release in nitromethane/air flames are still not well known. This motivates the present work, whose first objective is to investigate the two-stage heat release and the corresponding reactions in premixed, planar nitromethane/air flames. The influence of equivalence ratio, initial pressure and initial temperature on the two-stage heat release in nitromethane/air flames is also investigated.

Laminar flame speed is popularly used to validate and develop the chemical mechanism of different fuels [10,11]. Due to its simple configuration and well-defined stretch rate, the propagating spherical flame method is popularly used to measure the...
laminar flame speed, especially at high pressures [12–14]. For nitromethane/air mixture, Brequigny et al. [15] measured laminar flame speed from propagating spherical flames at different initial pressures and equivalence ratios. However, Nauclér et al. [5] pointed out that it is difficult to accurately measure the laminar flame speed from propagating spherical nitromethane/air flames due to the two-stage heat release and large flame thickness. Currently, it is not clear how and why the two-stage heat release affects the laminar flame speed measurement of nitromethane/air from propagating spherical flames. Therefore, the second objective of the present study is to answer this question by studying propagating spherical flames in nitromethane/air mixtures.

Both 1D planar and 1D spherical premixed nitromethane/air flames are considered in this study. Using the planar flame, we shall investigate the characteristics of the two-stage heat release and the chemical reactions involved in these two stages. Using the spherical flame, we shall explain how the two-stage heat release affects the laminar flame speed determination. For both planar and spherical flames, the effects of equivalence ratio, initial pressure and initial temperature are examined.

2. Numerical methods

As mentioned before, two 1D premixed flame configurations are considered in this study: one is the unstretched freely-propagating planar flame and the other is the positively-stretched propagating spherical flame. The PREMIX code [16] was used to simulate the planar flame and to get the flame structure and unstretched laminar flame speed. Thermal diffusion and multicomponent molecular transport model were included in all simulations. The number of grid points was always kept to be above 1000 so that the flame structure was well resolved and the results were grid independent. Since nitromethane/air flame with two-stage heat release has very large flame thickness, a large domain size of 50 cm was used in simulation.

The propagating spherical flame was simulated using the in-house code A-SURF [17–19]. A-SURF solves the conservation equations for compressible, multicomponent, reactive flow in a spherical coordinate by the finite volume method. The CHEMKIN package [20] was incorporated into A-SURF to calculate the thermodynamic properties, transport properties and reaction rates. A-SURF was successfully used in previous studies on flame and detonation propagation [13,21–28]. The readers are referred to Refs. [17–19] for details on numerical schemes and code validation of A-SURF. Dynamic adaptive mesh was used to accurately resolve the propagating spherical flame front, which were always fully covered by the finest mesh with the size of 8 μm. To avoid confinement effect [17,29], a large chamber radius of 50 cm was used in all simulations. As summarized in Ref. [13], there are different factors affecting the accurate measurement of laminar flame speed from propagating spherical flames. In the present study, we focused on the influence of two-stage heat release and thereby other factors such as radiation, flame instability and nonlinear stretch behavior were not considered.

In the literature, there are several chemical mechanisms for CH₃NO₂ [6,15,30–32] and NO₂ [40] and references therein. Since the mechanism of Brequigny et al. [15] containing 88 species and 701 reactions was validated against the laminar flame speed data of CH₃NO₂ at Tₑ = 423 K, P = 0.5–3.0 bar and φ = 0.5–1.3 and it yields reasonably well prediction, it was used in all simulations in this study.

Two global reactions for nitromethane/air combustion were proposed in the literature [31,33]:

\[
\text{CH}_3\text{NO}_2 + 0.75(\text{O}_2 + 3.78\text{N}_2) = \text{CO}_2 + 1.5\text{H}_2\text{O} + 3.32\text{N}_2 \quad (1)
\]

\[
\text{CH}_3\text{NO}_2 + 1.25(\text{O}_2 + 3.78\text{N}_2) = \text{CO}_2 + 1.5\text{H}_2\text{O} + \text{NO} + 4.7\text{N}_2 \quad (2)
\]

Both global reactions have been used recently [5,6,15]. In Eq. (1), N₂ is the only product containing nitrogen atom [15], while Eq. (2) indicates that NO is a stable product [5]. According to the results to be presented in this study, neither Eq. (1) nor Eq. (2) is unambiguously accurate: in fuel lean nitromethane/air flames, NO is a stable product; while for rich flames NO is converted into N₂. Nevertheless, the equivalence ratios according to Eqs. (1) and (2) have a linear relationship of φₑ(1) = 0.6φₑ(2) and thereby they can be directly converted into each other. Since the only experimental study on propagating spherical flames in nitromethane/air was conducted by Brequigny et al. [15] in which Eq. (1) was used, we also used Eq. (1) in this study. Note that similar to Brequigny et al. [15], we considered the synthetic air with 79.1% N₂ and 20.9% O₂ and thereby the molar ratio of N₂ to O₂ is 3.78 in Eqs. (1) and (2).

3. Two-stage heat release in premixed planar nitromethane/air flame

We first investigated the two-stage heat release in premixed planar nitromethane/air flames.

Figure 1 shows the flame structure of premixed nitromethane/air with φ = 0.9, Tₑ = 423 K and P = 1 atm. The temperature profile indicates that there are two-stage heat release: the first stage...
corresponding to the sharp temperature increase around \(x = 0 \) cm; and the second stage corresponding to the gradually temperature increase within \(0 < x < 3 \) cm. Figure 1(b) shows that the main temperature increase (from \(T_n = 423 \) K to \(T \approx 2200 \) K) is caused by the first stage heat release, during which \(\text{CH}_3\text{NO}_2 \) is consumed, \(\text{NO}_2 \) and \(\text{CH}_3 \) are intermediate species, and \(\text{NO} \) is produced. Therefore, the global reaction for the first stage heat release can be described by Eq. (2). It is noted that the decrease of \(\text{N}_2 \) molar fraction shown in Fig. 1(b) is not due to the consumption of \(\text{N}_2 \). It is due to the global reaction in Eq. (2) results in an increase in the total number of moles. Figure 1(a) shows that the second stage heat release induces relative small temperature increase (from \(T \approx 2200 \) K to \(T \approx 2600 \) K). During the second stage heat release, \(\text{NO} \) is slowly converted into \(\text{N}_2 \) through reaction \(\text{N}+\text{NO} \rightarrow \text{N}_2 + \text{O} \), for which the \(\text{N} \) atom is mainly produced through slow reaction \(\text{NO} + \text{H} \rightarrow \text{N} + \text{OH} \).

In order to identify the chemical reactions responsible for the two-stage heat release, we conducted reaction pathway analysis for nitromethane/air flame at \(\phi = 0.9, T_n = 423 \) K and \(P = 1 \) atm. The results are shown in Fig. 2. For each species, the percentage of consumption rate through specific reaction is indicated by the number in parenthesis. It is observed that 92% of nitromethane dissociates into \(\text{CH}_3 \) and \(\text{NO}_2 \) through reaction \(\text{CH}_3\text{NO}_2(+) \rightarrow \text{CH}_3 + \text{NO}_2 (+) \). The first stage heat release is mainly induced by \(\text{NO}_2 \) consumption and \(\text{NO} \) production through reactions \(\text{NO}_2 + \text{H} \rightarrow \text{NO} + \text{OH} \) and \(\text{CH}_3 + \text{NO}_2 \rightarrow \text{CH}_3\text{O} + \text{NO} \). During the first stage heat release, the oxidation pathway for \(\text{CH}_3 \) is shown to follow \(\text{CH}_3 \rightarrow \text{CH}_3\text{O} \rightarrow \text{HCO} \rightarrow \text{CO} \rightarrow \text{CO}_2 \). Similar observation was made in [15]. During the second stage heat release, \(\text{NO} \) is mainly converted into \(\text{N}_2 \) through reactions \(\text{N}+\text{NO} \rightarrow \text{N}_2 + \text{O} \), and the reverse reaction of \(\text{N}+\text{OH} \rightarrow \text{NO} + \text{H} \). The simulation results indicate that the reverse reaction of \(\text{R387} \) (i.e., \(\text{NO} + \text{H} \rightarrow \text{N} + \text{OH} \)) has low reaction rate, and thereby the second stage heat release is much longer than the first stage heat release. As will be discussed later, the low reaction rate of \(\text{R387} \) is mainly due to the low concentration of \(\text{H} \) atom during the second stage heat release.

To further demonstrate the key reactions involved in the second stage heat release, two mechanisms, Mech-1 and Mech-2, were obtained by deleting some elementary reactions listed in Table 1 from the original mechanism (detonated as Mech-0). The results predicted by these three mechanisms are compared in Fig. 3. Comparison between results from Mech-0 and Mech-1 indicates that the second stage heat release and \(\text{NO} \) consumption are mainly due to the reverse of \(\text{R387} \), i.e., \(\text{NO} + \text{H} \rightarrow \text{N} + \text{OH} \). However, the second stage heat release is not completely forbidden by deleting \(\text{R387} \). The results for Mech-2 indicate that the second stage heat release disappears only when the six reactions \(\text{R346}, \text{R375}, \text{R376}, \text{R387}, \text{R388} \) and \(\text{R389} \) listed in Table 1 are all deleted. Therefore, the second stage heat release is mainly caused by \(\text{R387} \) and it is also contributed by five other reactions: \(\text{R346}, \text{R375}, \text{R376}, \text{R388} \) and \(\text{R389} \). Davidenko et al. [39] found that the second stage heat release merges with the first one after artificially setting the activation energy of \(\text{NO} + \text{H} \rightarrow \text{N} + \text{OH} \) to be zero (i.e., to greatly increase the reaction rate of this reaction much faster). Their observation is consistent with our results mentioned above.
Table 1
Different versions of chemical mechanism based on the one of Brequigny et al. [15].

<table>
<thead>
<tr>
<th>Version</th>
<th>Reactions that are deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech-0</td>
<td>Non (the original mechanism)</td>
</tr>
<tr>
<td>Mech-1</td>
<td>R387: N + OH = NO + H</td>
</tr>
<tr>
<td>Mech-2</td>
<td>R346: N₂O + O = NO + NO</td>
</tr>
<tr>
<td></td>
<td>R375: NH + O = NO + H</td>
</tr>
<tr>
<td></td>
<td>R376: NH + OH = HNO + H</td>
</tr>
<tr>
<td></td>
<td>R387: N + OH = NO + H</td>
</tr>
<tr>
<td></td>
<td>R388: N + O₂ = NO + O</td>
</tr>
<tr>
<td></td>
<td>R389: N + NO = N₂ + O</td>
</tr>
</tbody>
</table>

Figure 4. Temperature profiles of premixed nitromethane/air flames at $T_r = 423$ K, $P = 1$ atm and different equivalence ratios. The original mechanism (Mech-0) is used in the simulation.

Figure 5. Laminar flame speed of nitromethane/air at $T_r = 423$ K and $P = 1$ atm.

Figure 6. Distributions of temperature and molar fractions of NO, H and N in nitromethane/air flame with $T_r = 423$ K, $P = 1$ atm and different equivalence ratios.

Figure 4 compares the temperature distributions of nitromethane/air flames with different equivalence ratios. For the very lean case of $\phi = 0.5$, the temperature profile indicates that there is only one stage heat release, for which the main reaction pathways are those for stage 1 shown in **Fig. 2.** With the increase of the equivalence ratio, the second stage heat release occurs. It is noted that the flame temperature after the first stage heat release (i.e., temperature around $x = 0$ cm) becomes the highest for $\phi = 0.7$, though the mixture with $\phi = 1.3$ has the highest flame temperature after the second stage heat release. In [5,15] the maximum laminar flame speed was found to occur for the equivalence ratio around 0.75. This was confirmed by **Fig. 5**, which shows the laminar flame speed predicted by Mech-0 and Mech-2, respectively, with and without forbidding the second stage heat release. At low equivalence ratio ($\phi < 0.5$), the laminar flame speed predicted by Mech-0 is close to that by Mech-2 since only one stage heat release occurs for very lean case as shown in **Fig. 4.** **Figure 5** indicates that the second stage heat release helps to enlarge the laminar flame speed though it is mainly determined by the first stage heat release.

To further assess the influence of equivalence ratio on the second stage heat release, the temperature and NO, H and N molar fraction distributions for $\phi = 0.5$, 0.9 and 1.3 are compared in **Fig. 6.** It is seen while NO is not consumed and remains as a stable product for $\phi = 0.5$, it is consumed completely for $\phi = 0.9$ and 1.3. Therefore, Eq. (2) accurately defines the global reaction of nitromethane/air at $\phi = 0.5$, while Eq. (1) should be used for $\phi = 0.9$ and 1.1. Moreover, the NO consumption rate for $\phi = 1.3$ is...
much faster than that for $\phi=0.9$, which explains why the flame is much thicker at $\phi=0.9$. As mentioned before, the second stage heat release is mainly caused by the reverse reaction of R387, i.e., NO+H→N+OH. As shown in Fig. 6(b), for $\phi=0.5$ there is little H atom after the main reaction zone around $x=0\text{ cm}$ and thereby the second stage heat release does not occur. Besides, the production rate of H for $\phi=0.9$ is much smaller than that for $\phi=1.3$. This causes lower reaction rate of R387 for $\phi=0.9$ and consequently increases the length of second stage heat release as shown in Fig. 6.

The above results are only for $T_u=423\text{ K}$ and $P=1\text{ atm}$. Besides the equivalence ratio, the initial pressure and temperature also affect the second stage heat release. The influence of initial pressure and temperature on the temperature profile of premixed nitromethane/air flame with $\phi=0.9$ are demonstrated in Fig. 7. According to Fig. 7(a), the temperature increment occurs faster and the flame thickness becomes smaller at higher pressure. However, Fig. 7(b) shows that the thickness of the second stage heat release only slightly reduces as the initial temperature increases from 423 K to 800 K. The influence of the initial pressure and temperature on the second stage heat release is further demonstrated in Fig. 8, which compares the distributions of NO and N_2 molar fraction. It is observed that during the second stage heat release, NO consumption and N_2 production become much faster at higher pressure of $P=10\text{ atm}$ while they are changed slightly at higher initial temperature of $T_u=800\text{ K}$. Therefore, the second stage heat release is strongly affected by the initial pressure while the initial temperature has little influence.

4. Impact of two-stage heat release on laminar flame speed measurement

In this section we considered spherical flame propagation in nitromethane/air mixture and investigated the impact of two-stage heat release on the determination of laminar flame speed.

Figure 9 shows the temporal evolution of temperature and flow speed distributions for spherical nitromethane/air flame at $\phi=0.9$, $T_u=423\text{ K}$ and $P=1\text{ atm}$. The results predicted by two mechanisms, Mech-0 and Mech-2, were plotted together for comparison. As mentioned before and indicated by the temperature distributions shown in Fig. 9(a), two-stage heat release occurs for the results predicted by Mech-0; while there is only single-stage heat release for Mech-2. The second stage heat release after the main flame front induces further thermal expansion and thereby the burned gas is shown to have positive flow speed in Fig. 9(b). When the second stage heat release is terminated as in Mech-2, the burned gas is shown to be static. Therefore, the second stage heat release induces non-zero flow in burned gas.

As found in previous studies [13,17,29,34], non-static burned gas, which can also be induced by radiation and compression, has great impact on the accuracy of laminar flame speed measurement from propagating spherical flames. In outwardly propagating spherical flames, the laminar flame speed relative to burned gas is $S_b=S-u_b$, where $S=\frac{dR}{dt}$ is the flame propagation speed and u_b is the flow speed of burned gas close to the reaction front. Usually only the flame front history $R_f=R_f(t)$ is recorded and it is difficult to measure the flow speed of burned gas in experiments [35,36]. Consequently, the flame propagation speed is usually considered as the laminar flame speed relative to burned gas (i.e., $S_b \approx S$), and the accuracy of laminar flame speed measurement depends on the magnitude of burned gas speed, i.e., $|u_b|$. Therefore, the second stage heat release affects the determination of laminar flame speed through non-zero burned gas speed.

Figure 10 shows the change of flame propagation speed S with stretch rate K, which is $K=2S/R_f$ for propagating spherical flame. When the second stage heat release is terminated as in Mech-2, S changes linearly with K and the unstretched flame speed can be obtained from linear extrapolation. However, when the two-stage heat release appears as in Mech-0, S does not change linearly with K. It is observed that linear extrapolation II based on $1 \leq R_f \leq 2 \text{ cm}$
Fig. 9. The evolution of temperature (a) and flow speed (b) distributions for spherical nitromethane/air flame at \(\phi = 0.9, T_0 = 423 \) K and \(P=1 \) atm.

Fig. 10. Flame propagation speed as a function of stretch rate for spherical nitromethane/air at \(\phi = 0.9, T_0 = 423 \) K and \(P=1 \) atm. The symbols denote simulation results using two mechanisms. The solid lines stand for linear fitting and the dashed lines denote the flame radii contours (they are straight lines since \(R \sim 25(K) \)).

Fig. 11. Laminar flame speed from linear extrapolation based on different flame radius ranges of \([R_f^0, R_f^0+1 \text{ cm}]\) for nitromethane/air flames at \(T_0 = 423 \) K and \(P=1 \) atm.

Table 2

<table>
<thead>
<tr>
<th>Method</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(S_f = \partial R_f/\partial t), (S_0 = S_0^0 = L_0 K), (S_f^0 = \sigma^{c_{in}} S_0^0)</td>
</tr>
<tr>
<td>II</td>
<td>(S_f = \partial R_f/\partial t), (S_0 = S_0^0 = L_0 K), (S_f^0 = \sigma^{c_{in}} S_0^0)</td>
</tr>
<tr>
<td>III</td>
<td>(S_f = \partial R_f/\partial t - u_{a}), (S_0 = S_0^0 = L_0 K), (S_f^0 = \sigma^{c_{in}} S_0^0)</td>
</tr>
<tr>
<td>IV</td>
<td>(S_f = \partial R_f/\partial t - u_{a}), (S_0 = S_0^0 = L_0 K)</td>
</tr>
</tbody>
</table>

yields different result from linear extrapolation III based on \(3 \leq R_f \leq 5 \) cm. Therefore, the unstretched laminar flame speed is sensitive to the flame radius range used in linear extrapolation when there is two-stage heat release.

This is further demonstrated by Fig. 11, in which the laminar flame speeds from linear extrapolation based on different flame radius ranges are depicted. The laminar flame speed \(S_f^0 \) was obtained through multiplying \(S_f^0 \) from linear extrapolation by the density ratio between burned gas (at equilibrium condition) and unburned gas \(\sigma^{c_{in}} \), i.e., \(S_f^0 = \sigma^{c_{in}} S_0^0 \). For Mech-2 without two-stage heat release, flame radius range has little effect on the extrapolated laminar flame speed. However, when two-stage heat release occurs as for Mech-0, the results are sensitive to the flame radius range used in linear extrapolation: \(S_f^0 \) extrapolated from the range of \(1 \leq R_f \leq 2 \) cm is \(32.2 \) cm/s and \(22.6 \) cm/s for \(\phi = 0.9 \) and \(\phi = 1.1 \), respectively; while that from the range of \(5 \leq R_f \leq 6 \) cm is \(35.0 \) cm/s and \(24.7 \) cm/s for \(\phi = 0.9 \) and \(\phi = 1.1 \), respectively. In order to diminish the confinement effect [17,29], the flame radius range used in experiments is usually close to \(1 \leq R_f \leq 2 \) cm (e.g., [15]). Therefore, Fig. 11 indicates the error in laminar flame speed measured by Brequigny et al. [15] can exceed 8% due to the non-zero burned gas speed induced by two-stage heat release.

Table 2 lists four methods to determine \(S_0^0 \). Method I is popularly used and it was used by Brequigny et al. [15]. It works well for mixtures with single stage heat release and with effective Lewis number close to unity [13]. However, as mentioned before, method I does not work well for nitromethane/air since the two-stage heat release induces positive burned gas speed which should not be neglected. Instead of using the density ratio at equilibrium condition,
in method II we use the density ratio between burned gas at the center (i.e., \(r = 0 \)) and unburned gas, \(\sigma_{\text{center}} \). The burned gas speed and the burned gas density at the center are related through the continuity equation. As shall be demonstrated, using this density ratio \(\sigma_{\text{center}} \) helps to reduce the error induced by neglecting the positive burned gas speed. In method III, the burned gas speed, \(u_b \), is included and \(\sigma_{\text{flame}} \) is the density ratio between burned gas near the flame front and unburned gas. Noted that it is difficult to get \(\sigma_{\text{center}} \), \(u_b \) and \(\sigma_{\text{flame}} \) in experiments though they are readily available in the present simulation. In method IV, the density ratio is not used and the stretched flame speed relative to unburned gas is obtained through simultaneous measurement of flame front history and flow speed of unburned gas (using both high-speed Schlieren and particle image velocimetry method) [35–38] In simulation, the flow speed of unburned gas, \(u_u \), is obtained from extrapolating the unburned gas speed to the location of the flame front. For Method IV, both \(\frac{dR}{dt} \) and \(u_u \) are much larger than \(S_u \). Therefore, the uncertainty in the measurement of \(u_u \) can greatly affect the accuracy of laminar flame speed measurement.

Figure 12 compares the laminar flame speeds obtained from different methods. The results from PREMIX are shown together for comparison. As expected, method I is shown to greatly under-predict laminar flame speed, especially for extrapolation based on small flames with \(1 \leq R_f \leq 2 \) cm. Unlike method I, methods II, III and IV make the extrapolation results nearly independent of flame radius range and close to those predicted by PREMIX. Therefore, using method II, III or IV helps to increase the accuracy in laminar flame speed measurement for nitromethane. This is further demonstrated by results at different equivalence ratios (see Fig. 13) and different initial pressures and temperatures (see Fig. 14).

Since method II is much more accurate than method I, it can be used to correct the experimental data reported by Brequigny et al. [15]. The only difference between methods I and II is that different density ratios, \(\sigma_{\text{eq}} \) and \(\sigma_{\text{center}} \), are used. Figure 15 compares these two density ratios. The difference is shown to increase with the equivalence ratio. This is because the two-stage heat release becomes stronger at larger equivalence ratio as shown in Fig. 4. The density ratio \(\sigma_{\text{center}} \) from the present simulation was used to correct the laminar flame speeds measured in [15] and the results are shown in Fig. 16. After the correction the laminar flame speeds become larger since \(\sigma_{\text{center}} > \sigma_{\text{eq}} \) as shown in Fig. 15. Besides, Fig. 16(a) shows that the corrected values agree well with those predicted by the power law expression of Naucler et al. [5]. It is noted that the flat flame experiments were originally performed for \(T_u = 338 \) K, 348 K and 358 K and the power law was used to extrapolate the laminar flame speeds at \(T_u = 423 \) K [5]. According to [5], the extrapolated laminar flame speed at \(T_u = 423 \) K induced \(\pm 1.5\sim2 \) cm/s uncertainty in reported results.

5. Conclusions

Numerical simulations considering detailed chemistry and transport were conducted for premixed nitromethane/air flames. The two-stage heat release and its influence on laminar flame speed measurement were investigated for nitromethane/air mixtures at different equivalence ratios, initial pressures and initial temperatures. The main conclusions are:

1. For premixed planar nitromethane/air flame, the occurrence of two-stage heat release strongly depends on the equivalence ratio and single-stage heat release occurs for very fuel-rich mixture. During the second stage heat release, NO is slowly converted into \(N_2 \). Therefore, the global reaction for nitromethane/air combustion is described by Eqs. (1) and (2), respectively for cases with and without the second stage heat release. Comparison between predictions from different mechanisms demonstrates that the second stage heat release is mainly caused by the reaction of NO+H→N+OH. With the increase of the initial pressure, the reaction zone length of the second stage heat release is greatly reduced. Compared to the
initial pressure, the initial temperature has much smaller influence on the reaction zone length of the second stage heat release.

2. For premixed spherical nitromethane/air flame, the second stage heat release induces positive burned gas speed and thereby it affects the laminar flame speed measurement of nitromethane/air from propagating spherical flames. When there is two-stage heat release, the unstretched laminar flame speed is very sensitive to the flame radius range used in linear extrapolation. Traditional method neglecting burned gas speed and using the density ratio at equilibrium condition can greatly under-predict the laminar flame speed of nitromethane/air, especially for extrapolation based on small flames with $1 \leq R_f \leq 2$ cm. The experimental data reported by Brequigny et al. [15] were corrected by using the density ratio between burned gas at the center and unburned gas. Compared to the original data, the corrected results were shown to have better agreement with those predicted by the power law expression based on experimental data of flat flames by Nauclér et al. [5].

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 51322602 and 91541204). We thank Dr. Zhen-yu Tian (at Institute of Engineering Thermophysics, Chinese Academy
of Sciences) for helpful discussion on the chemical kinetics of nitromethane.

References

