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Premixed counterflow flames with thermally sensitive intermediate kinetics and radi-
ation heat loss are analysed within the framework of large activation energy. Unlike
previous studies considering one-step global reaction, two-step chemistry consisting
of a chain branching reaction and a recombination reaction is considered here. The
correlation between the flame front location and stretch rate is derived. Based on this
correlation, the extinction limit and bifurcation characteristics of the strained premixed
flame are studied, and the effects of fuel and radical Lewis numbers as well as radia-
tion heat loss are examined. Different flame regimes and their extinction characteristics
can be predicted by the present theory. It is found that fuel Lewis number affects the
flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only
has a quantitative influence. Stretch rates at the stretch and radiation extinction limits
respectively decrease and increase with fuel Lewis number before the flammability limit
is reached, while the radical Lewis number shows the opposite tendency. In addition,
the relation between the standard flammability limit and the limit derived from the
strained near stagnation flame is affected by the fuel Lewis number, but not by the
radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel
Lewis number, but with increased radical Lewis number. Radical behaviours at flame
front corresponding to flame bifurcation and extinction are also analysed in this work.
It is shown that radical concentration at the flame front, under extinction stretch rate
condition, increases with radical Lewis number but decreases with fuel Lewis number.
It decreases with increased radiation loss.

Keywords: premixed counterflow flame; extinction limit; flame bifurcation; Lewis
number; radiation loss

1. Introduction

Flame extinction is one of the most important fundamental combustion processes. Under-
standing the extinction mechanism of laminar premixed flames is critical for designing
novel combustion technologies (e.g. low NOX emission combustors), and also for accu-
rately modelling turbulent premixed flames with local and global extinctions. Extinction of
laminar premixed flames results from excessive radiation and flame stretch, both of which
can lead to an incomplete chemical reaction [1]. Furthermore, flammability limits under
specific configurations, like counterflow flames, are related to the extinction limits due to
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these two factors. Therefore, study of radiative and strained premixed flames is helpful for
understanding extinction behaviours.

The mechanisms for extinction of laminar premixed flames caused by the interac-
tions between radiation and stretch were analysed through several theoretical investigations
based on irreversible one-step chemistry and different flame configurations [2–7]. These
studies provide general conclusions concerning premixed flame extinction. For instance,
Sohrab and Law derived an explicit formula of critical Damköhler number at extinction [2].
Buckmaster identified five types of flame bifurcations and found that the inferior flamma-
bility limit increases with Lewis number (Le) [5]. However, extinction is expected to be
considerably affected by the finite-rate chemistry, and apparently theoretical analysis with
irreversible one-step reaction cannot examine the chemical kinetics effects on flame extinc-
tion. Inclusion of detailed chemistry and species transport properties was therefore tried
by different researchers. For instance, considering premixed counterflow methane/air and
propane/air flames (corresponding to different Le) with detailed mechanisms, Sung and Law
[8] reproduced the dual extinction limits and discussed the relations between standard and
extended flammability limits under different Le. Similar efforts were also made by Guo et al.
[9] through simulating counterflow premixed methane/air flames. Ju and his co-workers
[10–14] systematically analysed the interactions between flame stretch, Lewis number and
radiation loss in bifurcation and extinction of counterflow premixed flames. In their work,
the G-shaped and K-shaped curves (extinction stretch rate versus mixture equivalence ratio)
depicting different extinction limits were first demonstrated, and the relations between fun-
damental flammability limit and flammability limit from counterflow premixed flames with
variable Le were clarified. The aforementioned numerical computations based on detailed
chemistry (e.g. [8–10,14]) reasonably reproduce the measured extinction limits of different
premixed flames [15,16]. Moreover, Dixon-Lewis studied the different methane/air flame
configurations (i.e. single flame unburnt-to-burnt and twin-flame unburnt-to-unburnt op-
posed flows) and analysed their flame structures at two extinction limits with low and high
stretch rates [17,18]. Dixon-Lewis also discussed the preferential diffusion effect of the
near-limit pre-mixtures on their extinction behaviours [18].

The above work with detailed chemistry and transport properties provides information
about extinction limit and bifurcation of laminar premixed flames. However, general ef-
fects of intermediate kinetics and transport properties on flame extinction have not been
studied. Previous studies indicate that thermally sensitive intermediate has a significant
impact on near-limit phenomena, such as ignition [19,20] and extinction [21]. Therefore,
theoretical analysis about flame bifurcation and extinction considering intermediate kinet-
ics is necessary. Furthermore, extinction identification mainly relies on quantification of
some key intermediates, e.g. hydroxyl (OH) and formaldehyde (CH2O). This technique
has been widely adopted in experimental work on turbulent premixed flame extinction,
e.g. by Kariuki et al. [22] and by Chaudhuri et al. [23]. However, it is not clear how these
species evolve at the critical extinction state and whether they are sufficiently representative
in the reaction system for extinction of different flame regimes. Therefore, understanding
general behaviours of intermediates in extinction is also important for identifying the onset
of premixed flame extinguishment.

In this study, bifurcation and extinction limit of premixed counterflow flames will be
analysed by considering chain-branching intermediate kinetics and radiation. The objectives
are: (1) to assess the effects of fuel and radical Lewis numbers as well as radiation on
premixed counterflow flame bifurcation and extinction; (2) to examine the above-mentioned
factors on extinction limit and flammability; and (3) to study the intermediate behaviours in
flame bifurcation and extinction. Compared to previous work (e.g. [10,11,14]), the novelty
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Figure 1. Schematic of the premixed counterflow flame.

of this work is to incorporate generalised thermally sensitive intermediate kinetics, which
may enrich our existing appreciation of extinction and flammability limits of stretched
premixed flames. The rest of the paper is structured as follows: mathematical models and
theoretical analysis are given in Sections 2 and 3, respectively; results and discussion are
presented in Section 4; and finally the conclusions are summarised in Section 5.

2. Mathematical models

To consider the radical kinetics in the radiative premixed counterflow flame, a chemical
mechanism containing chain-branching reactions should be included. In the present work,
the simplified form of the Zel’dovich-Liñán model [24,25] proposed by Dold and co-workers
[26–29] is used as the chemical model. It consists of two steps:

F + Z → 2Z : kB = AB exp

(
−TB

T

)
, (1a)

Z + M → P + M : kC = AC, (1b)

where F, Z, P, and M represent fuel, intermediate (or radical; they will be used interchange-
ably hereafter), product, and any third body, respectively. AB and TB are the frequency factor
and activation temperature of Reaction (1a), respectively, while AC the frequency factor
of Reaction (1b). The simplified Zel’dovich-Liñán model consists of a thermally sensitive
chain branching Reaction (1a) with a rate constant kB in Arrhenius form and a completion
Reaction (1b ) with a rate constant kC which is equal to the frequency factor AC and does
not depend on temperature T. The applications of this model and its extended version can
be found in previous studies on ignition, extinction and propagation of premixed spherical
flames, flame balls and freely propagating planar flames [19,20,26–34].

The premixed counterflow flame is considered here. In this configuration, twin flames
are formed around the stagnation plane located at x = 0 (where x is the streamwise coordinate
as shown in Figure 1). Due to the symmetry, only half of the domain, i.e. x ∈ [0,+∞),
is taken into consideration (see Figure 1). Similar to our previous theoretical analysis
[19,20,34,35], constant properties are assumed for density ρ, specific heat CP, diffusion
coefficients of fuel DF and radical DZ, thermal conductivity λ, and heat of reaction Q. Based
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on the classical reactive-diffusive model and the two-step chemistry in Reactions (1a) and
(1b), the one-dimensional equations for mass fractions of fuel, YF, and radical, YZ, as well
as temperature T, are:

ρu
∂YF

∂x
= ∂

∂x

(
ρDF

∂YF

∂x

)
− WF ωB, (2a)

ρu
∂YZ

∂x
= ∂

∂x

(
ρDZ

∂YZ

∂x

)
+ WZ (ωB − ωC) , (2b)

ρCP u
∂T

∂x
= ∂

∂x

(
λ

∂T

∂x

)
+ QωC − L. (2c)

In Equations (2a)−(2c), u = −kx is the streamwise velocity and k is the stretch rate.
The reaction rates ωB and ωC are [27,29]:

ωB = ρYF

WF

ρYZ

WZ

ABexp

(
−TB

T

)
and ωC = ρ

W

ρYZ

WZ

AC, (3)

where WF and WZ are the molecular weights of fuel and radical, respectively, and W
represents the mean molecular weight. In addition, L denotes the radiative heat loss and,
for simplicity, is assumed to linearly depend on the temperature, i.e. L = hT . h is radiation
loss coefficient. This approximation has also been used by Dold and his co-workers with
the same chemical model [26–29]. In [35] this linear radiation model was compared to the
quartic radiation model (L ∼ T 4) and both models were found to yield qualitatively and
quantitatively similar results. However, according to the asymptotic analysis based on one-
step chemistry by Ju et al. [36], the linearised approximation may lead to under-prediction
of the flammability limit.

Following Dold et al. [27], we introduce the following non-dimensional variables to
normalise Equations (2a)−(2c):

x
′ = x

xs

, T
′ = T − T0

Ts

, Y
′
F = YF

YF0
, Y

′
Z = YZ

YZs

, k
′ = kts, L

′ = WL

Tsρ2CP AC

, (4)

along with the following definitions:

ts = x2
s

λ/ (ρCP )
, xs =

√
λW

ρ2CP AC

, YZs = WZYF0

WF

, Q
′ = QYF0

CP TsWF

,

β = TBTs

(T0 + Ts)
2

, σ = Ts

T0 + Ts

. (5)

Here T0 and YF0 are, respectively, the temperature and fuel mass fraction in the fresh mixture.
The Zel’dovich number, β, defined in Equation (5) is based on the reference temperature
T0 + Ts , instead of the adiabatic flame temperature [26,29]. Following the work in [26,29],
the scaling temperature, Ts, is chosen so that ωB = β2ωC at the temperature of T0 + Ts ,
i.e.:

ABW

ACWF

YF0 = β2 exp

(
TB

T0 + Ts

)
. (6)
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The non-dimensional equations for mass fractions of fuel and radical, YF and YZ, as
well as temperature, T, read (the prime superscripts are dropped for brevity):

− kx
dYF

dx
= 1

LeF

d2YF

dx2
− ω, (7a)

−kx
dYZ

dx
= 1

LeZ

d2YZ

dx2
+ ω − YZ, (7b)

−kx
dT

dx
= d2T

dx2
+ QYZ − L, (7c)

with the non-dimensional reaction rate ω written as [27]:

ω = β2 YF YZexp

[
β

T − 1

1 + σ (T − 1)

]
. (8)

The boundary conditions at x = 0 and x → +∞ are:

x = 0 :
dT

dx
= dYF

dx
= dYZ

dx
= 0, (9a)

x → +∞ : T = 0, YF = 1, YZ = 0. (9b)

In the limit of large activation energy (β→+∞), chemical reactions are confined at an
infinitesimally thin flame sheet (x = xf ) and beyond that the flow is chemically frozen.
Based on the asymptotic analysis conducted by Dold and his co-workers [26,29], the
following conditions must be valid across or at the flame front (x = xf ):

[YF ] = [YZ] = [T ] = T − 1 =
[
dT

dx

]
=

[
1

LeF

dYF

dx
+ 1

LeZ

dYZ

dx

]
= YF

dT

dx
= 0,(10)

where the square brackets denote the difference between the variables on the unburned and
burned sides, i.e. [f ] = f (x = x+

f ) − f (x = x−
f ).

3. Asymptotic analysis

With the assumption of large activation energy (β→+∞) and hence frozen chemistry
beyond the flame sheet (ω = 0 if x �= xf ), Equations (7a)–(7c) can be written in the
following form:

− kx
dYF

dx
= 1

LeF

d2YF

dx2
, (11a)

−kx
dYZ

dx
= 1

LeZ

d2YZ

dx2
− YZ, (11b)

−kx
dT

dx
= d2T

dx2
+ QYZ − hT . (11c)

Equations (11a)–(11c), together with boundary and jump conditions in Equations (9a), (9b)
and (10), can be solved analytically in the burned (0 ≤ x < xf ) and unburned (xf < x <

+∞) zones, respectively.
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The exact solutions for the mass fraction of fuel YF (x) are:

YF (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, if 0 ≤ x < xf

erf

(√
LeF k

2 xf

)
−erf

(√
LeF k

2 x

)
erf

(√
LeF k

2 xf

)
−1

, if xf < x < +∞ (12)

where erf (τ ) = 2√
π

τ

∫
0
e−t2

dt is the error function.

The distributions of the radical mass fraction YZ(x) are given by:

YZ (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yzf e
1
2 LeZk(x2

f −x2)
J+

(
1
k′

√
LeZk

2 x

)
+J−

(
1
k′

√
LeZk

2 x

)
J+

(
1
k′

√
LeZk

2 xf

)
+J−

(
1
k′

√
LeZk

2 xf

) , if 0 ≤ x < xf

Yzf e
1
2 LeZk(x2

f −x2)
J−

(
1
k′

√
LeZk

2 x

)
J−

(
1
k′

√
LeZk

2 xf

) , if xf < x < +∞
(13)

where J− (a, b) = ∫∞
0 ςae(− 1

4 ς2−bς )dς and J+ (a, b) = ∫∞
0 ςae(− 1

4 ς2+bς )dς . YZf in
Equation (13) is the radical mass fraction at the flame front x = xf , i.e. YZ (x = xf ) = YZf .
Substituting Equations (12) and (13) into the condition of [ 1

LeF

dYF

dx
+ 1

LeZ

dYZ

dx
] = 0 at

x = xf from Equation (10) yields the following expression for YZf :

YZf =

√
2LeZ

k
e
− 1

2 LeF kx2
f

LeF ∫+∞
xf

e
− 1

2 LeF kτ2
dτ

J+
(

1+ 1
k′

√
LeZk

2 xf

)
−J−

(
1+ 1

k′
√

LeZk

2 xf

)
J−

(
1
k′

√
LeZk

2 xf

)
+J+

(
1
k′

√
LeZk

2 xf

) +
J−

(
1+ 1

k′
√

LeZk

2 xf

)
J−

(
1
k′

√
LeZk

2 xf

)
(14)

The radiation heat loss is comparatively smaller than convection and diffusion terms
[5,6,37]. Therefore, the radiation loss coefficient h is a small quantity, i.e. h � 1, and
one can expand temperature T (x) in the burned and unburned zones with respect to small
radiation loss coefficient h, i.e. T (x) = T0 (x) + h · T1(x) + O(h2). The full expression for
T (x) is (terms of O(h2) are neglected):

T (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
xf

∫
x

η

∫
0
I1 (ξ, η) dξdη︸ ︷︷ ︸
T0(x)

+h · (−1)
xf

∫
x

η

∫
0
I2 (ξ, η) dξdη︸ ︷︷ ︸
T1(x)

, if 0 ≤ x < xf

∫+∞
x e− 1

2 ξ 2kdξ

∫+∞
xf

e− 1
2 ξ 2kdξ

[
1 +

+∞
∫
xf

+∞
∫
η

I1 (ξ, η) dξdη

]
−

+∞
∫
x

+∞
∫
η

I1 (ξ, η) dξdη

︸ ︷︷ ︸
T0(x)

+h ·
∫+∞

x e− 1
2 ς2k ∫+∞

xf
∫η

ς I2 (ξ, η) dξdηdς

∫+∞
xf

e− 1
2 ξ 2kdξ︸ ︷︷ ︸

T1(x)

, if xf < x < +∞

, (15)



Combustion Theory and Modelling 7

in which I1(ξ, η) and I2(ξ, η) are:

I1 (ξ, η) = QYZ (ξ ) e
1
2 k(ξ 2−η2) and I2 (ξ, η) = T0 (ξ ) e

1
2 k(ξ 2−η2). (16)

The temperature jump condition of [ dT
dx

] = 0 at the flame front x = xf is used and we
obtain the following implicit correlation between flame front location xf and flame stretch
k:

+∞
∫
xf

η

∫
0

[I1 (ξ, η) − h · I2 (ξ, η)] dξdη = 1. (17)

According to Equation (17), for given radiation loss coefficient h, heat of reaction Q, fuel
Lewis number LeF, and radical Lewis number LeZ, we can get xf as a function of k, and
furthermore the flame speed su based on su = k · xf .

Equation (17) can be numerically evaluated, and therefore the effects of fuel LeF, LeZ,
and Q on bifurcation and extinction of premixed counterflow flames considering radiation
and thermally sensitive intermediate kinetics can be assessed. In the current investigations,
the heat of reaction Q is set to be 2.0. This value is close to that of a typical hydrocarbon
mixture with initial temperature of 300–500 K [29].

For the adiabatic premixed counterflow flames (h = 0), the correlation between xf and
k in Equation (17) can be simplified to:

+∞
∫
xf

η

∫
0
I1 (ξ, η) dξdη = 1. (18)

To assist the discussion in Section 4, the results for the freely propagating planar flame
are also presented here. They are obtained from similar equations to Equations (11a)–(11c)
(in which kx is replaced by the propagating speed, U, of the planar flame), together with the
boundary and jump conditions, i.e. Equations (9a), (9b) and (10). The correlation between
the planar flame propagating speed U, radical Lewis numbers, LeZ, and heat of reaction Q
is:

λ1 + QY 0
zf (λ1 − γ1)

γ 2
1 + Uγ1 − h

= λ2 + QY 0
zf (λ2 − γ2)

γ 2
2 + Uγ2 − h

, (19)

in which:

Y 0
zf = LeZU

γ1 − γ2
, λ1 = −U + √

U 2 + 4h

2
, λ2 = −U − √

U 2 + 4h

2
,

γ1 =
−ULeZ +

√
(ULeZ)2 + 4LeZ

2
, γ2 =

−ULeZ −
√

(ULeZ)2 + 4LeZ

2
. (20)

It is noted that the correlation for the unstrained planar flame, Equation (19), is inde-
pendent of LeF and Q. Moreover, Y 0

zf is only affected by LeZ. The above results for planar
flames are the same as those in [29].
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Figure 2. Flame location (a) and flame speed (b) as a function of flame stretch for variable radiation
coefficients. LeF = LeZ = 1.0. Solid curves: stable flame; dashed curves: unstable flame. The legend
for curve type also applies for Figures 3–6 and Figure 11 .

4. Results and discussion

4.1. Flame bifurcation and flammable region

The location of premixed counterflow flame, xf, as a function of flame stretch, k, is plotted
in Figure 2(a) for LeF = LeZ = 1.0. For adiabatic flame with h = 0, only one reverse
C-shaped branch of solutions is obtained. For a small or intermediate stretch rate k, there
are two possible flame locations xf, demarcated by a turning point, as shown in Figure 2(a).
Based on the bifurcation theory [38], the upper branch (solid line) is physically stable,
whereas the lower branch (dashed line) is unstable. When the stretch rate is beyond the
turning point, no flame solutions exist. This is the stretch induced extinction limit, ks,ext,
which is caused by short residence time. For adiabatic flame, the flammable region is
k < ks,ext.
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For radiative flame with h = 0.05, there is a new Z-shaped flame branch on the left, which
has two turning points. Based on the general bifurcation knowledge [38], the middle section
with approximately 0.06 < k < 0.08 denotes the physical stable flame solutions, whereas
the upper and lower sections are unstable. When k is lower than the stretch rate at the lower
turning point of the left branch, no flame solution exists. This turning point corresponds
to the so-called radiation induced extinction limit, kr,ext. Different from the stretch induced
extinction limit at the right branch, this extinction is caused by the increased contribution of
radiation due to the decreased stretch and therefore increased flame thickness [14]. Along
the Z-shaped branch, if k is increased beyond the upper turning point, the flame solution
would jump vertically to the right branch. In Figure 2(a), the flame bifurcation curves of
h = 0.05 are similar to the open-mushroomed curves for non-adiabatic stretched CH4/air
premixed flames with Le ≈ 1.0 obtained from simulations by Ju et al. [10].

At h = 0.055, new flame bifurcation occurs: the upper and lower branches emerge,
through merging the left and right branches for smaller h (e.g. h = 0.05). Here we define
the radiation loss coefficient h with which merging of two branches critically occurs as the
merging limit. In this case, both branches have physically stable flame solutions. The stable
flame solutions along the upper branch were called the far standing weakly stretched flame
(FSWSF) by Ju et al. [10]. At the turning point the FSWSF jumps to the lower branch (called
the near stagnation flame (NSF) by Ju et al. [10]). This jump is caused by the increased
radiation loss. NSF solutions are confined by the left extinction limit due to radiation and
right limit due to the high stretch.

For h = 0.07 and 0.085, only NSF branches appear and thereby the flammable re-
gions shrink greatly. When the radiation loss coefficient h is greater than 0.085, two limits
merge and the flammability limit of this counterflow flame is reached. It is noted that
the upper branches, FSWSF, only exist for a relatively narrow range of h before it is
degraded with the flammability limit from unstretched planar flame (hereafter termed stan-
dard flammability limit), and for h = 0.07 and 0.085, there are no FSWSF solutions. This
will be further discussed for Figure 10(a). Therefore, this stretched counterflow flame can
burn below the standard flammability limit. Extension of flammability limit was also ob-
served in simulations with detailed chemistry for radiative premixed counterflow CH4/air
flames [10], and in micro-gravity experiments for stretched premixed CH4/air flames
[15,16].

The flame speed su as a function of k corresponding to LeF = LeZ = 1.0 is demonstrated
in Figure 2(b). For h = 0, su of the stable flame monotonically decreases when the stretch
rate increases and the flame extinguishes with finite flame speed at ks,ext. When h = 0.05,
the flame speed su of the right branch first slightly decreases, then increases and finally
decreases. It is much higher than that of the left stable weak flame branch. Therefore, the
left and right branches are respectively termed weak flame (WF) and normal flame (NF).
For h = 0.055, the flame speed su of FSWSF is higher than that of the NSF. For NSF, at the
peak flame location, increasing the flame stretch leads to first slight increase of su, which
reaches the maximum value at some k, and then decrease until extinction happens. The
first increase is caused by the decreased radiation loss intensity, while the ensuing decrease
results from the insufficient residence time.

Based on the results in Figure 2, flame bifurcation, extinction limit, flammability limit
and flammable region can be obtained through the model presented in Sections 2 and 3. The
results from Figure 2 are qualitatively consistent with the findings from theoretical analysis
with one-step chemistry, simulations considering detailed chemistry and also measurements
(e.g. [5,10,15,16]).
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Figure 3. Flame location (a) and flame speed (b) as a function of flame stretch for variable radiation
coefficients. LeF = 0.5 and LeZ = 1.0.

4.2. Effects of fuel and radical Lewis numbers

Figure 3 shows the flame position xf and flame speed su as functions of flame stretch k
with LeF = 0.5 and LeZ = 1.0. Bifurcation curves of adiabatic flame and radiative flames
with increased radiation loss coefficients are qualitatively similar to the results with LeF =
LeZ = 1.0 in Figure 2. The differences from the radiative flames needing to be highlighted
are as follows. First, between h = 0.07 and h = 0.09, there is no upper FSWSF stable
branch, unlike the one for h = 0.055 in Figure 2(a). Second, the radiation loss coefficient h
corresponding to the flammability limit, i.e. h = 0.25, is much higher than that with LeF =
LeZ = 1.0, i.e. h = 0.085. This is because, for LeF < 1.0, intermediate stretch enhances the
combustion through the Lewis number effect [1] and the mixture can burn under stronger
radiation intensity.

The fuel Lewis number effect is further examined through investigating the flame
bifurcations for LeF = 2.0 and LeZ = 1.0 in Figure 4. For the adiabatic flame and radiative
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Figure 4. Flame location (a) and flame speed (b) as a function of flame stretch for variable radiation
coefficients. LeF = 2.0 and LeZ = 1.0.

one with small h (e.g. = 0.01), the xf–k curve is reverse C-shaped with the turning point
being the stretch extinction limit. A new unstable left branch arises at h = 0.015. This
considerably reduces the flammable region, which becomes smaller when h increases
from 0.015 to 0.0371. Figure 4(b) shows that as stretch increases the flame speed su

decreases monotonically prior to extinction. When h is slightly above 0.0371, the left and
right branches merge, generating FSWSF and NSF solutions. When h = 0.042, the NSF
solutions no longer exist; only with the FSWSF branch. When LeF > 1.0, increasing k
weakens the flame through preferential diffusion effect and may also enhance it through
reducing the radiation loss. These two effects compete with each other, and in this case the
first one dominates the second, thereby making NSF not exist. If h is further increased, then
the FSWSF moves left until the standard flammability limit is reached. Therefore, for LeF

= 2.0 and LeZ = 1.0, the flammability limit of this counterflow flame equals the standard
limit. This finding is consistent with the results reported by Ju et al. [14] who conducted
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Figure 5. Flame location (a) and flame speed (b) as a function of flame stretch for variable radiation
coefficients. LeF = 1.0 and LeZ = 0.5.

simulations for CH4/N2/O2/He mixture with Le = 1.2 considering detailed chemical and
radiation models.

The radical Lewis number effects on bifurcation and extinction of radiative counterflow
premixed flames are investigated through changing LeZ to LeZ = 0.5 in Figure 5 and 2.0 in
Figure 6 with fixed LeF = 1.0. When LeZ = 0.5, the xf –k curves corresponding to adiabatic
and radiative flames bifurcate similar to the case with LeF = LeZ = 1.0 in Figure 2. However,
NSF with LeF = LeZ = 1.0 can exist under larger radiation intensity than this case. Besides,
for h = 0.045, the turning point on FSWSF branch does not indicate an extinction limit.
Instead, if the stretch rate is reduced, the FSWSF would jump to the lower NSF branch.

Figure 6 presents the results for LeF = 1.0 and LeZ = 2.0. The flame bifurcations are
qualitatively similar to those in Figure 5, although the flammability limit for the current
case is higher. Comparison among results in Figure 2 (LeZ = 1.0), Figure 5 (LeZ = 0.5)
and Figure 6 (LeZ = 2.0) indicates that the variations of the radical Lewis number LeZ

do not change the fashion in which the flames bifurcate. Nevertheless, the higher LeZ, the
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Figure 6. Flame location (a) and flame speed (b) as a function of flame stretch for variable radiation
coefficients. LeF = 1.0 and LeZ = 2.0.

larger the flammability limits for the counterflow premixed flame. Higher LeZ indicates the
weaker capacity of radical transport from the flame front and stronger flame reactivity.

4.3. Extinction and flammability limits

To generalise the variations of extinction limits demonstrated in Figures 2–6, Figures 7 and
8 show the variations of extinction and radiation stretch rates, ks,ext and kr,ext, with Lewis
numbers and radiation loss coefficients. In Figure 7, LeZ is fixed to be unity. For the adiabatic
case, ks,ext decreases monotonically with LeF. When radiation is included with h = 0.05 and
0.08, ks,ext also decreases with LeF, while kr,ext increases with LeF. The mixture becomes
not flammable when fuel Lewis number reaches a critical value, at which ks,ext = kr,ext. For
h = 0.05 and 0.08, these two values correspond to the flammability limits for LeF = 1.7
and 1.2, respectively. It is noted that in Figure 7 ks,ext is from the NF, whereas kr,ext may
be from WF when LeF is relatively small, or be from NSF when the flame approaches the
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flammability limit. Figure 8 shows the variations of ks,ext and kr,ext for different LeZ and h
with LeF = 1.0. Here ks,ext monotonically decreases when radiation intensity increases, i.e.
from h = 0 to 0.08. This tendency is the same as that in Figure 7. Nevertheless, here ks,ext

increases with h, and it slightly decreases with LeZ. Based on the results shown in Figures 7
and 8, the radiation has the considerable influence on both extinction limits ks,ext and kr,ext.

The extinction and flammability limit of freely propagating unstrained planar flames
are studied for comparison. Figure 9(a) shows the planar flame propagating speeds U as a
function of radiation loss coefficients h for different groups of Lewis numbers. When the
radiation loss is less than some critical value for all the shown cases, there are two solutions
of U: upper stable branch and lower unstable branch. At the turning point, only one solution
exists and the flammability limit of planar flame is reached. The planar flame is not affected
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Figure 9. Flame propagation speed (a) and radical mass fraction at the flame front (b) as functions
of radiation loss coefficient for variable Lewis numbers of fuel and radical for planar unstretched
flames. The number pairs in the parentheses in (a) are the flame speeds and radiation loss coefficients
at the turning points.

by LeF. However, its flammability limit increases with LeZ. This implies the effects of the
radical transport on the extinction and flammability limit of stretched laminar premixed
flames.

Radical mass fraction at unstrained planar flame front, Y 0
Zf , is plotted in Figure 9(b).

For the upper stable flames, the increased radiation weakens the flame, quantified by the
reduced Y 0

Zf , for all the three shown cases. In addition, LeZ affects Y 0
Zf considerably: the

higher LeZ, the higher Y 0
Zf . The extinction characteristics of planar flames indicated in

Figure 9 will be used below as references for investigations on the counterflow flame.
Figure 10 demonstrates the critical stretch rates kext (corresponding to the extinction

caused by stretch and radiation, as well as the jump limit from WF to NF, or from FSWSF
to NSF) as a function of h for the different cases discussed in Figures 2–6. In Figure 10(a)
corresponding to LeF = LeZ = 1.0, when h is lower than the merging limit, the stretch
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Figure 10. Extinction stretch rate as a function of radiation loss coefficient for variable fuel and
radical Lewis numbers. In (a, b, d, e): curves AB: stretch induced extinction limit for NF; BC: radiation
extinction limit for NSF; CD: radiation extinction limit for NSF; DG: radiation extinction limit for
WF; HE: jump limit for WF; EI: jump limit for FSWSF; IF: extinction limit for FSWSF. In (c): curve
AB: stretched extinction limit for NF; stretch extinction limit for NSF; CD: radiation limit for NSF;
DE: extinction limit for FSWSF. The left dashed lines: merging limits to produce NSF and FSWSF;
the right dashed lines: NSF flammability limit; Point F (Point E in (c)): standard flammability limit
from planar premixed flame with zero stretch.

extinction limit of NF, i.e. AB branch in Figure 10(a) (see the curve implications in the
caption of Figure 10), decreases with radiation loss coefficient h. The radiation extinction
limit and jump limit of WF are characterised by curves DG and HE. When h is smaller,
calculations of the WF become difficult and therefore we are not sure how DG and HE are
extended at h→0. Meanwhile, another open question is whether WF would arise even if h
is only slightly larger than zero. When h is beyond the merging limit, CD merges with BC
at h ≈ 0.11, the flammability limit for this stretched premixed flame. It is larger than the
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standard flammability limit, i.e. h = 0.071 (shown in Figure 9(a)) at Point F, extrapolated
from the FSWSF extinction limit. The pattern of the extinction curves in Figure 10(a) is
similar to those (extinction stretch rate versus mixture equivalence ratio) predicted from
stretched CH4/air flames (Le ≈ 1.0) based on detailed chemistry [10].

The effects of the fuel Lewis number are demonstrated by Figure 10(b), 10(c), re-
spectively for LeF = 0.5 and LeF = 2.0. For LeF = 0.5, the extinction curve in Figure
10(b) is qualitatively similar to that in Figure 10(a). Quantitatively, h corresponding to the
flammability limit at Point C is greater than that with LeF = 1.0. Moreover, the FSWSF
only appears for extremely narrow h, close to the merging limit. This justifies why there is
no FSWSF in Figure 3(a).

Nevertheless, the extinction curves for LeF = 2.0 in Figure 10(c) are quite different
from the previous two. Curve AB is the stretch extinction limit of NF. Additionally, WF
is not present here. This is probably caused by the two-step chemistry used here, i.e.
Equations (1a) and (1b). Prediction of WF may need detailed chemistry, which can be
confirmed from the work with detailed chemistry by Ju et al. [14]. Here NSF (confined by
BC and CD) can only exist for a small range of h under large stretch rate when LeF > 1.0.
In this case, the extinction limit of FSWSF is the standard flammability limit at Point E, h
= 0.071. Compared with Figure 10(a), 10(b), the range of h within which FSWSF exists
increases with LeF.

Figure 10(d), 10(e) are plotted for analysing the influence of radical Lewis number
on the extinction curves. These curves are qualitatively similar to that of LeZ = 1.0 in
Figure 10(a). The flammability limits from the premixed counterflow flame, i.e. the NSF
flammability limit at Point C, are extended relative to the standard limits, and increase as
LeZ increases.

4.4. Radical behaviours in flame bifurcation

Variations of radical mass fractions at the flame front, YZf, with stretch rate k are plotted
in Figure 11, corresponding to the five cases in Figures 2–6. Here YZf is calculated from
Equation (14) based on the solutions in Figures 2–6. For reference, the radical mass fractions
at the unstrained planar flame front, Y 0

Zf , from Figure 9(b) is also schematically shown.
In Figure 11(a) with LeF = LeZ = 1.0, for the adiabatic case, YZf does not change with
the stretch rate because of the unity LeZ. When h = 0.05, for the upper NF branch, YZf

first decreases and then increases with the stretch rate. It is consistently higher than that
of the lower WF. At the jump limit (marked with the arrow in Figure 11(a)), YZf increases
considerably from WF to NF, indicating the sudden change of flame reactivity. For h =
0.055, YZf of the FSWSF branch shows the monotonic decrease with k, while the NSF
branch demonstrates the opposite tendency.

Figure 11(b) and 11(c) demonstrate the LeF effects on YZf. In Figure 11(b), for the
adiabatic flame and radiative flames far from flammability limit, YZf demonstrates more
pronounced increase with increased stretch rate, than that in Figure 11(a). This is related
to the combustion enhancement of moderate stretch combined with LeF < 1.0. For LeF =
2.0 in Figure 11(c), YZf-k curves are quite different from those in Figure 11(a) and 11(b).
For the adiabatic flame and the flames with small h, the stretch reduces YZf monotonically,
due to LeF < 1.0. Moreover, YZf of the NSF solutions decrease when the stretch increases
or decreases towards the stretch extinction limit and radiation extinction limit. This differs
from the NSF behaviours in Figure 11(a) and 11(b).

The effects of radical Lewis number on the YZf-k curves are shown in Figure 11(d)
and11(e). They respectively correspond to LeZ = 0.5 and LeZ = 2.0 with LeF = 1.0. The
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Figure 11. The radical mass fraction at flame front as a function of stretch rate with different Lewis
numbers and radiation loss coefficients. (a) LeF = 1.0, LeZ = 1.0; (b) LeF = 0.5, LeZ = 1.0; (c) LeF =
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of unstretched planar flame front under the respective Lewis number conditions.

YZf-k curves are qualitatively similar to those in Figure 11(a). Nevertheless, the radical
mass fractions at both stretch and radiation extinction limits are generally higher with LeZ

= 0.5 than those with LeZ = 2.0. This implies the effect of radical transport property on its
concentrations when extinction occurs.
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Figure 12. Profiles of fuel and radical mass fractions for (a) weak flames and normal flames, and
(b) near stagnation flames and far standing weakly stretched flame. Different flames marked by
numbers in (a) and letters in (b) are also indicated in Figure 11(a).

The profiles of fuel and radical mass fractions at the representative flame states for
LeF = LeZ = 1.0 are plotted in Figure 12(a) and 12(b). The numbers 1−4 corresponding to
h = 0.05 in Figure 12(a) and letters A−D corresponding to h = 0.055 in Figure 12(b) are
also marked in Figure 11(a). Figure 12(a) compares the flame structures of WF (marked
with 1 and 2) and NF (3 and 4). Weak flame 1 is close to the radiation extinction limit, while
flame 2 would jump to NF with a slightly higher stretch. The peak radical concentration
for flame 1 is higher than that for flame 2. The sudden shift from weak flame 2 to normal
flame 3 leads to movement of the flame front off the stagnation plane and the pronounced
increase of YZf. In addition, normal flame 4 is located at the stretch extinction limit, and its
flame location is nearly the same as that of weak flame 1. However, their flame structures
differ as shown in Figure 12(a) and normal flame 4 demonstrates stronger reactivity with
high YZf. The flame structures of FSWSF and NSF are compared in Figure 12(b). A is on
the FSWSF branch, and B−D flames on the NSF branch. Moreover, A is near the extinction
limit of FSWSF, whereas B and D are close to the radiation and stretch limits of NSF. In
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Figure 13. Radical mass fraction as a function of extinction stretch rate for (a) adiabatic and
(b) radiative flames with various fuel and radical Lewis numbers.

general, the peak radical mass fraction of A is higher than those of B and C, lower than D.
This is consistent with Figure 11(a).

Figure 13 shows radical mass fraction YZf at the stretch extinction limits as a function
of Lewis numbers and radiation intensities. Figure 13(a) shows the results of the adiabatic
flames. YZf at different extinction stretch rates monotonically increases with radical Lewis
number. Meanwhile, for the same LeZ, YZf becomes larger when the fuel Lewis number is
smaller. In Figure 13(b), the influences of radiation on YZf are shown. For the same radiation
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intensity h, YZf at the extinction limit increases with LeZ. Meanwhile, for the same LeZ, YZf

decreases with increased radiation intensity.

5. Conclusions

Bifurcation and extinction limit of premixed counterflow flame considering thermally sen-
sitive intermediate kinetics and radiation heat loss are theoretically studied. The correlation
between the flame front location and stretch rate is derived. Based on this correlation, the
bifurcation behaviours, extinction limit and flammability limit of the stretched premixed
counterflow flame are studied, considering variations of fuel and radical Lewis numbers, as
well as radiation heat loss.

The present analysis predicts different flame types and their extinction characteris-
tics, including normal flame, weak flame, near stagnation flame, and far standing weakly
stretched flame. It is found that stretch rates at the stretch-induced (radiation-induced) ex-
tinction limits deceases (increases) with fuel Lewis number before the flammability limit is
reached. The opposite trend is observed for changing radical Lewis number. In addition, the
fuel Lewis number shows a significant effect on the relation between the standard flamma-
bility limit and the limit corresponding to the strained near stagnation flame. When fuel
Lewis number is greater than unity, the flammability limit equals the standard flammability
limit; otherwise, it is determined from near stagnation flames. The radical Lewis number has
little influence on this relation, though it demonstrates considerable impact on the stretch-
and radiation-induced extinction limits. Meanwhile, the flammability limit increases with
decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours
at flame front and the corresponding flame structures when flame bifurcation and extinction
occur are also studied. It is shown that the Lewis number and radiation heat loss have pro-
nounced effects on radical mass fraction at the flame front. Specifically, under extinction
stretch rate condition, radical mass fraction at the flame front increases with radical Lewis
number and decreases with fuel Lewis number. Additionally, it decreases with increased
radiation loss.
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J. Jimáenez and J.M. Vega, eds., Barcelona, Spain, 2004.



Combustion Theory and Modelling 23

[29] J.W. Dold. Premixed flames modelled with thermally sensitive intermediate branching kinetics.
Combust. Theory Model. 11 (2007), pp. 909–948.

[30] V.V. Gubernov, H.S. Sidhu, and G.N. Mercer, Combustion waves in a model with chain branch-
ing reaction and their stability. Combust. Theory Model. 12 (2008), pp. 407–431.

[31] V.V. Gubernov, H.S. Sidhu, G.N. Mercer, A.V. Kolobov, and A.A. Polezhaev, The effect of
Lewis number variation on combustion waves in a model with chain-branching reaction. J.
Math. Chem. 44 (2008), pp. 816–830.

[32] V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, and H.S. Sidhu, Stability of combustion waves
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