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a b s t r a c t 

Fuel-lean or diluted combustion is widely used in advanced internal combustion engines (ICEs) such as 

homogeneous charge compression ignition (HCCI) engines, low temperature combustion (LTC) engines, 

and engines utilizing exhaust gas recirculation (EGR). The thermal efficiency of ICEs is constrained by 

knock and super-knock due to end-gas autoignition and detonation development. Therefore, the effects 

of equivalence ratio and CO 2 dilution on autoignition and detonation development induced by a hot spot 

are numerically investigated here. It is found that the decrease of equivalence ratio and increase of CO 2 

dilution ratio can both greatly increase the excitation time and reduce the total heat release. Under fuel- 

leaner or more diluted conditions, the interaction between chemical reaction and pressure wave becomes 

weaker and thereby the propensity of detonation development is lower. Different autoignition modes 

are identified and quantified. The excitation time is shown to play a controlling role in the chemical- 

acoustic interaction and detonation development. It is demonstrated that reducing equivalence ratio and 

increasing CO 2 dilution have the same influence on the autoignition mode if the same excitation time 

is maintained. Furthermore, the detonation development regimes for n-heptane and dimethyl ether at 

different conditions are obtained and compared. Non-dimensional parameters used to well quantify the 

detonation development regime are identified and discussed. 

© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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1. Introduction 

Recently, downsizing of spark-ignition engines (SIEs) utilizing

highly boosting technologies such as turbocharging has become a

popular way to improve thermal efficiency. However, propensity

of knock and super-knock increases greatly in SIEs under boosted

environment [1–5] , especially in low-speed and high-load condi-

tion. This brings the major challenge for developing engines with

high efficiency. It is generally accepted that conventional knock

in SIEs originates from end-gas autoignition, while the intensive

chemical-acoustic interaction and detonation development induced

by localized hot spot are the major cause of super-knock [6–9] . On

the other hand, fuel-lean and low-temperature combustion has the

advantage of reducing both NOx emission and fuel consumption

[10–14] , and it is used in advanced engines such as homogeneous

charge compression ignition (HCCI) engines, low temperature com-

bustion (LTC) engines, and engines utilizing exhaust gas recircu-

lation (EGR). During the combustion process in these engines,
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eactivity non-uniformity is inevitable which might induce deto-

ation development [9,15] . Therefore, fundamental understanding

f end-gas autoignition and detonation development induced by

eactivity non-uniformity under fuel-lean or diluted condition is

eeded. 

According to the reactivity gradient theory of Zel’dovich [16,17] ,

ifferent autoignition modes including detonation development

ay be induced by a hot spot. The theory was confirmed by simu-

ations considering simplified [18–23] or detailed chemical mecha-

isms [24–33] . Among them, Bradley and co-workers [25 , 26] iden-

ified a detonation peninsular based on two non-dimensional pa-

ameters: the normalized temperature gradient, ξ , and the ratio

f acoustic time to excitation time, ε. This detonation peninsular

as then widely used in studies related to engine knock [3 , 6–

 , 34 –44] . For examples, Bates et al. [37] quantitatively analyzed

ifferent engine conditions corresponding to regimes from benign

utoignition to super-knock by utilizing the ξ - ε diagram; Robert

t al. [8] investigated various scenarios for knock and super-knock

y using LES and the ξ - ε diagram; and in our work [30–32]

etonation development regimes were identified in ξ - ε diagram

or large hydrocarbons with low-temperature chemistry. More re-

ently, we have introduced a new non-dimensional parameter, ξ a ,
. 
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o quantify regimes of different autoignition modes [33] . The new

arameter ξ a is based on the transient autoignition front propa-

ation speed and it is more suitable in describing different au-

oignition modes [33] . Besides, Yu et al. [45 , 46] , Terashima et al.

47 , 48] and Wei and co-workers [41 , 49–51] studied the interaction

etween flame propagation and end-gas autoignition. 

However, stoichiometric fuel/air mixtures were considered in

ost of previous studies; and there are few studies on detona-

ion development due to reactivity gradient in fuel-lean or diluted

ixtures [25 , 44 , 52] . For fuel-learner or more diluted mixtures, the

xcitation time becomes longer and the volumetric energy den-

ity is lower. Consequently, the pressure wave intensity, the in-

eraction between pressure wave and chemical reaction, and the

ropensity of detonation should depend on the equivalence ratio

nd dilution. Therefore, the objectives of this study are to assess

nd interpret the effects of equivalence ratio and CO 2 dilution on

utoignition and detonation development induced by a hot spot

n n-heptane/air mixture and to assess the performance of differ-

nt parameters in terms of quantitatively describing autoignition

odes under different conditions. 

. Numerical model and methodologies 

The transient autoignition front propagation process initiated by

 hot spot at the center of a 1-D, adiabatic, closed, spherical cham-

er is investigated in this study. The hot spot is characterized by a

inear temperature distribution with negative gradient: 

 i ( r ) = 

{
T i, 0 + ( r − r 0 ) ( dT / dr ) i ( r ≤ r 0 ) 

T i, 0 = 10 0 0 K( r 0 < r ≤ R w 

) 
(1) 

here r is radial spatial coordinate; r 0 is the hot spot radius vary-

ng from 1 to 8 mm which is representative for length scale of ther-

al stratification; R w 

= 4 cm is the radius of the spherical cham-

er; ( dT/dr ) i is the specified temperature gradient within the hot

pot, and T i, 0 = 10 0 0 K is the initial temperature outside of the hot

pot. The initial n-heptane/air/CO 2 mixture composition is uniform

n the chamber with specified equivalence ratio, φ, and CO 2 di-

ution ratio, c CO2 . The mixture is initially static (i.e., u = 0 m/s) at

 0 = 40 atm. 

The skeletal mechanism for n-heptane oxidation [53] consisting

f 44 species and 112 elementary reactions is used in simulation.

t has been demonstrated to be able to accurately predict ignition

nd flame propagation in n-heptane/air mixture at a broad range

f temperature, pressure and equivalence ratio [53] . It is noted that

ompared to the detailed mechanism, the skeletal mechanism can

ccurately predict the ignition delay time, while there are large

iscrepancies in the excitation time (see Fig. S2 in the Supplemen-

al Material). In fact, it is difficult to measure the excitation time

n experiments; and both detailed and skeletal mechanisms were

ot validated against experiments in terms of excitation time. This

eserves further study, which is beyond the scope of the current

ork. Moreover, the skeletal mechanism was not validated for CO 2 

iluted mixtures. Nevertheless, the effects of CO 2 dilution on the

gnition delay and excitation times are at least qualitatively pre-

icted by the skeletal mechanism. 

The transient autoignition process is simulated using the in-

ouse code A-SURF (Adaptive Simulation of Unsteady Reactive

low) [29 , 54 , 55] which solves the conservation equations for 1-

, adiabatic, multi-component, reactive flow using finite volume

ethod. A multi-level, dynamically adaptive mesh refinement al-

orithm [56 , 57] is used to ensure adequate numerical resolution of

he reaction zone, pressure wave, shock wave, and detonation wave

54 , 55] , which are always covered by the finest mesh with 1.56 μm

n width. The time step is 0.312 ns. Details on the numerical model,

overning equations, numerical scheme, and grid convergence are

rovided in Section S1 of the Supplemental Material. 
. Results and discussion 

.1. 0-D homogeneous ignition 

0-D homogeneous ignition of n-heptane/air/CO 2 mixture at con-

tant volume is first investigated. The ignition delay time, τ , is de-

ned as the time for maximum heat release rate. The excitation

ime, τ e , evaluates the rapidity of major ignition heat release, and

t is defined as the time interval between 5% and maximum heat

elease rate [26] . Figure 1 shows the influence of equivalence ratio

nd CO 2 dilution on τ and τ e at T 0 = 10 0 0 K and P 0 = 40 atm. Both

and τ e increase with decreasing φ or increasing c CO2 . However,

ompared to τ , τ e is much more sensitive to φ and c CO2 . The ex-

itation time can be enlarged by 100 times through reducing the

quivalence ratio or increasing the CO 2 dilution. This indicates that

he heat release process can be significantly mitigated under fuel-

eaner or more diluted condition. Similar trend can be observed for

ther initial temperature as shown by Fig. S4 in the Supplemental

aterial. 

According to the theory of Zel’dovich [17] and Gu et al. [26] ,

here is a critical temperature gradient at which the theoretical au-

oignition front propagation speed, u a , is equal to the sound speed,

 . This critical temperature gradient is defined as [26] : 

( d T /d r ) c = ( a ( d τ/d T 0 ) ) 
−1 

(2) 

here d τ /dT 0 can be obtained from 0-D ignition simulation. The

ritical temperature gradient is also plotted in Fig. 1 . It is ob-

erved that the critical temperature gradient can be reduced by

0% through reducing the equivalence ratio or increasing the CO 2 

ilution. This also indicates that the autoignition mode may change

hen the mixture becomes fuel-leaner or more diluted. 

At fuel-leaner or higher CO 2 diluted condition, the volumet-

ic energy density becomes lower. Figure 2 shows that with the

ecrease of equivalence ratio or increase of CO 2 dilution, the ex-

itation time becomes longer and the volumetric energy density

s lower. Consequently, it is expected that the pressure wave and

ts interaction with chemical reaction both become weaker and

hereby the propensity of detonation development becomes lower.

his will be demonstrated in the next subsection. 

.2. 1-D autoignition with hot spot 

The autoignition front propagation process induced by a hot

pot is simulated at different fuel-lean or CO 2 diluted conditions.

he normalized temperature gradient of the hot spot, ξ , is defined

s [26] : 

= ( d T /d r ) i / ( d T /d r ) c, r 0 / 2 (3) 

here ( dT/dr ) i is the specified temperature gradient within the hot

pot (see Eq. (1 )); the subscript r 0 /2 denotes that the value of crit-

cal temperature gradient is evaluated at r = r 0 /2 in order to rep-

esent the average condition within the hot spot [26] . The theo-

etical autoignition front propagation speed, u a , can therefore be

alculated by ξ through [26] : 

 a = a/ξ (4) 

It is noted that u a usually differs from the actual transient au-

oignition front propagation speed, denoted as S , due to the impact

f thermal/mass diffusion transport around the hot spot during in-

uction period. Therefore, in Ref. [33] we introduced another non-

imensional parameter, ξ a , based on the actual autoignition front

ropagation speed: 

a = a r 0 / 2 / S AVG (5) 

here a r 0 /2 and S AVG are respectively the sound speed at r = r 0 /2

nd the average speed of autoignition front propagating within

he hot spot (i.e., 0 ≤ r ≤ r ) calculated from 1-D simulation. It was
0 
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Fig. 1. Change of 0-D ignition delay time, excitation time and critical temperature gradient with (a) equvalence ratio (without CO 2 dilution, i.e., c CO2 = 0) and (b) CO 2 molar 

fraction (for stoichiometric mixture with φ= 1) in n-heptane/air/CO 2 mixture at T 0 = 10 0 0 K and P 0 = 40 atm. 

Fig. 2. Change of total heat release during 0-D ignition with the corresponding ex- 

citation time, which are respectively normalized by the values of undiluted stoichio- 

metric mixture (i.e., Q T0 and τ e 0 at φ= 1.0 and c CO2 = 0). The initial temperature and 

pressure are repectively T 0 = 10 0 0 K and P 0 = 40 atm. 
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demonstrated that ξ a increases monotonously with ξ and that the

detonation development regime can be better quantified in the ξ a -

ε diagram than in the ξ - ε diagram [33] . 

The influences of equivalence ratio and CO 2 dilution on au-

toignition process are investigated by considering n-heptane/air

without CO 2 dilution (i.e., φ≤ 1.0, c CO2 = 0) and stoichiometric n-

heptane/air with different amounts of CO 2 dilution (i.e., φ= 1.0,

c CO2 ≥ 0), respectively. Details of the simulated cases are summa-

rized in Figs. S6–S8 in the Supplemental Material. Only the au-

toignition modes are summarized and shown in Fig. 3 for three

hot spot sizes of r 0 = 2, 3.5 and 5 mm. For each hot spot size,

three autoignition modes can be sequentially identified with the

increase of ξ a , namely: (I) supersonic reaction front propagation,

(II) detonation development, and (III) subsonic reaction front prop-

agation. Figure 3 (a) shows that the detonation development mode

is located within a C-shaped curve in the ξ a - φ diagram. As ex-

pected, the propensity of detonation development induced by a

hot spot is reduced in fuel-leaner mixture. Under very lean condi-

tion (e.g., φ≤ 0.6 at r = 5 mm), detonation development cannot be
0 o  
bserved. Therefore, detonation development and super-knock can

e prevented in ICEs using ultra-lean combustion. Similarly, Fig.

 (b) indicates that detonation development and super-knock be-

ome more difficult at higher CO 2 dilution and they can be pre-

ented when high EGR is used. Figure 3 also shows that the det-

nation development regime is narrower for smaller hot spot size,

mplying that it is more difficult to achieve detonation develop-

ent for a smaller hot spot. This is mainly because the total chem-

cal energy deposited into the developing pressure wave within the

ot spot is reduced as r 0 decreases [26 , 30] . 

In order to further reveal the effects of equivalence ratio and

O 2 dilution as well as the hot spot size on autoignition modes,

our typical autoignition cases, i.e., cases A–D, are analyzed. Case

 is chosen for reference ( φ= 1.0, c CO2 = 0, r 0 = 5 mm); and cases

, C, and D respectively reduces equivalence ratio ( φ= 0.6, c CO2 = 0,

 0 = 5 mm), increases CO 2 dilution ( φ= 1.0, c CO2 = 0.2, r 0 = 5 mm),

nd reduces hot spot size ( φ= 1.0, c CO2 = 0, r 0 = 2 mm). The tem-

erature gradients for these four cases are specified in order to

chieve the same value of ξ a = 1.5 (i.e., cases A, B, C, and D are

n the same horizontal line as marked in Fig. 3 ). In addition, cases

 and C have the same excitation time of τ e = 2.4 μs. Parameters

orresponding to these four cases are summarized in Table S1 in

he Supplemental Material. 

Figure 4 shows the temporal evolution of pressure distribution

or these four cases (more details are shown in Figs. S9–S12 in the

upplemental Material). Among these four cases, case A is iden-

ified as detonation development mode, while cases B, C and D

ll correspond to subsonic reaction front propagation mode. It is

oted that the same value of ξ a for these four cases leads to very

lose reaction front propagation speed within the hot spot, which

ssentially excludes the influence of transient reaction front prop-

gation within the hot spot. Therefore, the change of autoignition

odes in these four cases is mainly due to the modified mixture

omposition and hot spot size. On the other hand, the autoigni-

ion processes for cases B and C which share the same value of

e are quite similar to each other. This indicates that reducing

quivalence ratio and increasing CO 2 dilution have the same influ-

nce on the autoignition mode if the same excitation time is main-

ained. 

To further demonstrate the effect of excitation time on au-

oignition process, Fig. 5 plots the normalized maximum pressure

gainst normalized excitation time. It is noted that by normal-

zing the maximum pressure by corresponding equilibrium value

f 0-D constant-volume ignition, the effect of total reaction heat
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a b

Fig. 3. Regimes of autoignition modes induced by a hot spot with different radii in (a) undiluted n-heptane/air with different equivalence ratios and (b) stoichiometric 

n-heptane/air with different amounts of CO 2 dilution. Three autoignition modes are (I) supersonic reaction front propagation, (II) detonation development, and (III) subsonic 

reaction front propagation, respectively. 

Fig. 4. Temporal evolution of pressure distribution during autoignition with a hot 

spot for cases A to D. The horizontal dashed line in each sub-figure denotes the 

corresponding equilibrium pressure of 0-D constant-volume ignition, namely: (a) 

P e = 134 atm, (b) P e = 108 atm, (c) P e = 112 atm, (d) P e = 134 atm. 

r  

p  

c  

t  

l  

i  

Fig. 5. Change of the maximum pressure, P max , normalized by the equilibrium value 

of 0-D constant-volume ignition, P e , with excitation time, τ e , normalized by the 

value in undiluted stoichiometric mixture, τ e 0 , under undiluted fuel-lean or CO 2 
diluted stoichiometric conditions. The hot spot size is r 0 = 5 mm. 

i  

m

 

a  

o  

τ  

q  
elease is excluded. Figure 5 indicates that the excitation time

lays a dominating role in the chemical-acoustic interaction pro-

ess during autoignition. Besides, the results for fuel-lean mix-

ures with c CO2 = 0 are shown to overlap with those for CO 2 di-

uted mixtures with φ= 1. This further demonstrates that change

n equivalence ratio and change in CO dilution can have the same
2 
nfluence on the autoignition mode if the same excitation time is

aintained. 

Based on the above discussion, Fig. 6 plots the regimes of three

utoignition modes in a ξ a - τ e / τ e 0 diagram. The detonation devel-

pment regime, II, lies within a reversed C-shaped curve in ξ a -

e / τ e 0 diagram. The results at fuel-lean and CO 2 diluted conditions

uantitatively agree with each other for a specified hot spot size.
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Fig. 6. Regimes of autoignition modes induced by a hot spot in n-heptane/air mix- 

tures under undiluted fuel-lean condition (solid lines) and CO 2 diluted stoichiomet- 

ric condition (dashed lines). 

Fig. 7. Regimes of autoignition modes induced by a hot spot with different radii in 

fuel-lean (solid lines) or CO 2 diluted (dashed lines) n-heptane/air mixtures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Regimes of autoignition modes induced by a hot spot in n-heptane/air/CO 2 
mixtures at T i ,0 = 10 0 0 K and P 0 = 40 atm and by a cold spot in DME/air/NO mix- 

tures at T i ,0 = 975 K and P 0 = 40 atm (from Ref. [33] ) in ξ a - ε diagram. 
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Therefore, for both fuel-lean and CO 2 diluted mixtures, the detona-

tion development regime can be quantified by ξ a and τ e / τ e 0 . 

In the ξ a - τ e / τ e 0 diagram in Fig. 6 , the effects of hot spot size

are clearly demonstrated. The ratio between the acoustic time, r 0 / a ,

and excitation time, τ e , is then introduced as ε = r 0 /( a τ e ) [26] and

all the results are plotted in the ξ a - ε diagram as shown in Fig. 7 .

The detonation development limits indicated by the C-shaped

curves are observed to be almost unaffected by the initial condi-

tion (including r 0 ). This indicates that ε can well quantify different

autoignition modes by comprehensively assessing the impact of

chemical energy deposition into developing pressure wave within

the hot spot. 

All the above-mentioned detonation limits are obtained by

changing the mixture composition (i.e. varying either the equiva-

lence ratio or the CO 2 concentration) at a specified hot spot size.

Detonation limits in terms of varying hot spot size (i.e. r 0 = 1–

8 mm) at specified mixture compositions are also identified (details

are shown in Section S3.5 of the Supplemental Material); and the

results are plotted in Fig. 8 . 

Three mixture compositions are considered, namely the

undiluted stoichiometric mixture ( φ= 1.0, c = 0), undiluted
CO2 
uel-lean mixture ( φ= 0.7, c CO2 = 0), and diluted stoichiometric

ixture ( φ= 1.0, c CO2 = 0.13). The latter two compositions are cho-

en since they have the same excitation time of τ e = 1.2 μs which

s much longer than τ e = 0.38 μs for the undiluted stoichiometric

ixture. Therefore, as shown in Fig. 8 , in the range of r 0 con-

idered in this study, the detonation limit can be identified at

uch larger ε for undiluted stoichiometric mixture (i.e. ε ≈ 22 at

 0 = 5 mm) than the fuel-lean and CO 2 diluted mixtures (i.e. ε ≈ 12

t r 0 = 8 mm). Moreover, limits of detonation development regime

nduced by cold spot in dimethyl ether (DME)/air mixture with NO

ddition from Ref. [33] are also plotted together for comparison. It

s seen that the detonation limits for different mixture composi-

ions and initial conditions quantitatively agree with one another

n the ξ a - ε diagram while there are obvious discrepancies among

hose in ξ - ε diagram (see Fig. S15 in the Supplemental Material,

lso see Fig. 6 in Ref. [33] and Fig. 3 in Ref. [31] ). Therefore, param-

ter ξ a is better than ξ in terms of quantifying detonation develop-

ent regime. However, considering the expensive 1-D simulation

equired to evaluate ξ a , ξ a cannot readily replace ξ in predict-

ng autoignition modes for practical application, but rather com-

lement ξ for better quantitative analysis. Further investigation on

he relationship between ξ a and ξ under different conditions is

eeded. Furthermore, Fig. 8 shows that the low-temperature chem-

stry (i.e. in cases with cold spot for DME/air) has negligible effect

n the detonation development regime in the ξ a - ε diagram. This

s mainly due to the fact that the reaction front propagation is

riven by the main portion of heat release at high temperatures

nd that low-temperature chemistry only has secondary influence

n the chemical-acoustic interaction. 

The detonation development regimes for n-heptane/air/CO 2 

ixtures shown in Fig. 8 are also compared with those in

ig. 7 (see Fig. S16 in the Supplemental Material). It is found that

he regime diagrams identified by varying equivalence ratio, CO 2 

oncentration, and hot spot size at various conditions quantita-

ively agree with one another in ξ a - ε diagram. This indicates that

he main physical-chemical factors affecting autoignition process

an be adequately represented by the two parameters, ξ a and ε. 

. Conclusions 

Numerical simulation considering detailed chemistry and trans-

ort is conducted to study the effects of equivalence ratio and

O dilution on autoignition modes induced by a hot spot in
2 
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-heptane/air mixture. It is found that the decrease of equiva-

ence ratio or increase of CO 2 dilution can greatly increase the ex-

itation time and reduce total ignition heat release (or volumet-

ic energy density). 1-D autoignition front propagation induced by

 hot spot under fuel-lean or CO 2 diluted condition is systemati-

ally investigated. Three typical autoignition modes are identified,

amely (I) supersonic reaction front propagation, (II) detonation

evelopment, and (III) subsonic reaction front propagation. The ξ a -

diagram and ξ a - c CO2 diagram are introduced to quantitatively 

ssess the effects of equivalence ratio and CO 2 dilution on au-

oignition modes. With the decrease of equivalence ratio or in-

rease of CO 2 dilution, the propensity of detonation development

ecomes lower since the pressure wave and its interaction with

hemical reaction both become weaker. Furthermore, the excitation

ime is found to play a controlling role in the chemical-acoustic

nteraction during autoignition. Reducing equivalence ratio and in-

reasing CO 2 dilution can have the same influence on the autoigni-

ion mode if the same excitation time is kept. Autoignition regimes

nduced by a hot spot in n-heptane/air/CO 2 mixtures which are

btained by varying equivalence ratio, CO 2 concentration or hot

pot size, and those induced by a cold spot in DME/air/NO mix-

ures [33] are compared in ξ a - ε diagram. The corresponding deto-

ation development regimes are observed to quantitatively agree

ith one another under various conditions, indicating that the

ain physical-chemical factors affecting autoignition process can

e adequately represented by ξ a and ε. 
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