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ABSTRACT Nanovesicles have been demonstrated to be the key agents in therapeutic encap-
sulations for drug delivery and diagnostic area, and the effectiveness and efficiency of these
applications strongly depend on the mechanical properties of nanovesicles. Based on the Helfrich
membrane theory, a theoretical investigation is conducted to explore the mechanical behaviors
of pressurized elastic fluid nanovesicles during the indentation by a rigid cylindrical indenter.
The effects of osmotic pressure, membrane bending rigidity, energy of adhesion between the vesi-
cle and substrate on the mechanical responses of the vesicle to the indentation are analyzed.
It is found that the osmotic pressure dominates the mechanical behaviors of strongly pressur-
ized nanovesicles as well as the effective vesicle stiffness and Young’s modulus. Our results may
have important implications on regulating the mechanical behaviors of inter- and intracellular
nanovesicles which are crucial for particle-based drug delivery systems.

KEY WORDS Nanovesicles, Indentation, Osmotic pressure, Young’s modulus, Stiffness, Force-
depth curves

1. Introduction
Nanovesicles, such as nanosized liposomes, extracellular vesicles, lysosomes, and endosomes, are

ubiquitous in living cells and widely used as delivery vehicles in biomedical applications. From a
mechanical point of view, a nanovesicle with a fluidic lipid membrane and a hollow interior compart-
ment can be regarded as an elastic fluid thin structure, which could undergo large deformation upon
small extent of external loading due to the fluidic and soft natures of the lipid membrane. Taking
advantages of the tunable geometrical, mechanical, and physicochemical properties, nanovesicles not
only play important functional roles in numerous cell activities including intercellular transport and
communication [1, 2], cell uptake [3, 4], and pathogen infections [5], but also serve as a promising
platform in drug delivery, biomedical diagnostics, and therapeutics [6–11]. So far, it has become widely
recognized that the mechanical properties of nanoparticles play critical roles in some of the fields
mentioned above, such as cell uptake, drug delivery, and cytotoxicity. For example, softer nanovesicles
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require more adhesion energy than stiffer ones to achieve a complete wrapping by the cell membrane
[3, 4]. The cytoskeleton and actin networks approximated as elastic solid thin shells underneath the
cell membranes are also expected to play important roles in regulating the cell uptake of nanovesicles
[12, 13]. It has been demonstrated that the intracellular accumulation rate and distribution of nanopar-
ticles exhibit stiffness-dependence [6, 14]. In addition, nanovesicles used as therapeutic encapsulations
for drug delivery exhibited efficient accumulation and penetration in comparison with conventional
solid micro-encapsulations [7]. Therefore, determination of the mechanical properties of nanovesicles is
a crucial step in comprehending the diagnostic functions of nanovesicles and developing effective drug
delivery strategies.

The techniques used for studying giant vesicles, such as micropipette aspiration and shape fluctua-
tion analysis, involving and relying on optical imaging of shape fluctuations, were developed for large
vesicles at microscale, and therefore, are less suitable for nanovesicles [15, 16]. Nanoscale indentations
using the atomic force microscopy (AFM) have been employed in studying the apparent mechanical
properties of nanovesicles, and demonstrated to be a valuable and sensitive approach [17–20]. How-
ever, the reported measurement results are inconsistent and exhibit large scatter, partly due to the
fact that these nanoindentation analyses on the mechanical properties of nanovesicles were based on
the classical continuum contact mechanics modeling such as the classical Hertz theory [21, 22], which
are more suitable for elastic solid materials rather than elastic fluid structures such as nanovesicles.
Other reasons complicating the modeling of nanovesicle indentation include the characterization of the
largely deformed vesicle and the contact between the vesicle and the indenter tip as well as the contact
between the vesicle and the substrate. A local point force was used in the existing literature to simplify
the contact between the indenter tip and the vesicle, and the vesicle–substrate contact was ignored as a
closed vesicle of a vertically symmetric configuration subject to a pair of contact forces upon the vesicle
poles was adopted [20]. Such treatment could induce unphysical contact and geometrical conditions.

Here we develop a theoretical model to probe the mechanical behaviors of pressurized elastic
fluid nanovesicles during the indentation by a rigid cylindrical indenter. Combing the angle-arclength
parametrization with the interior-point optimization approach to characterize the vesicle deformation,
we build a minimal model taking into account both small and large indentations with appropriate
mechanical conditions and systematically analyze the effects of osmotic pressure, membrane bending
rigidity, and energy of adhesion between the vesicle and the flat substrate on the indentation force-
depth curves. Moreover, the effective stiffness and Young’s modulus of the vesicle are determined.
Our results shed light on the mechanical behaviors of elastic fluid vesicles and may have important
implications in therapeutic encapsulations for drug delivery and diagnostic area.

2. Modeling and Method
In the adopted cylindrical coordinate (r, θ, z), we consider an initial spherical nanovesicle under-

going an axisymmetric deformation upon indentation by a rigid cylindrical indenter (Fig. 1). The
indentation depth Δh is defined as the distance between the apex of the indenter tip and the north
pole of the vesicle before indentation (the dashed line in Fig. 1). In the modeling, the vesicle is divided
into three regions: (1) the upper region of the contact between the indenter tip and the vesicle, (2)
the middle free region, and (3) the lower region of the contact between the vesicle and the substrate.
Quantities associated with these three regions are labeled by subscripts 1, 2, and 3, respectively.

In our model, the vesicle area A is assumed to be constant as A = 4πR2, with R the effective radius
of the vesicle. By adopting the Canham–Helfrich membrane theory, the total free energy of the system
at a certain indentation depth Δh is given as [23]

Etot = 2κ

∫
M2

1dA1 + 2κ

∫
M2

2dA2 − Δp(V − V0) − γA3 (1)

where κ, Mi, and Ai (i = 1, 2) are the bending rigidity, mean curvature and area element of the vesicle
membrane, respectively; Δp is the constant osmotic pressure or the pressure difference between the
interior and exterior of the vesicle; V0(= 4πR3/3) and V are the volumes of the original and deformed
vesicle, respectively; A3 is the area of the vesicle–substrate contact region; and γ is the adhesion energy.
The fixed total surface area requires A = A1 + A2 + A3. Zero spontaneous curvature is assumed. In
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Fig. 1. Schematic illustration of the indentation of a pressurized nanovesicle by a rigid cylindrical indenter (the gray
region). The red curve depicts the upper region of the contact between the indenter tip and the vesicle, and the total
arclength of this region is st. The arclength s of the free vesicle region is measured along the meridian of the nanovesicle,
originating from the upper contact edge and ending at the lower contact edge, whose r-coordinate is Rc. The total
arclength of the free vesicle region is I2. The tangent angle ψ is positive as it is measured counterclockwise from the
positive r-axis. (Color figure online)

this work, we focus on the case that the adhesive interaction between the indenter tip and the vesicle
is negligible.

The cylindrical indenter has a semi-spherical cap of radius Rt at the apex. From simple geometrical
considerations, we can determine the (r, z) coordinates of the upper contact edge as (rc, zc){

rc = Rt sin st
Rt

, zc = Rt

(
1 − cos st

Rt

)
− Δh

(
st ≤ πRt

2

)
rc = Rt, zc = st − Rt

(
π
2 − 1

) − Δh
(
st > πRt

2

) (2)

where st is the total arclength of the upper contact region. The tangent angle ψc at the upper contact
edge is ψc = st/Rt at st ≤ πRt/2 or ψc = π/2 at st > πRt/2.

The volume V1 of the tip covered by the upper contact region is

V1 =

⎧⎨
⎩

4
3πR3
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and the area A1 of the membrane in the upper contact region is

A1 =

⎧⎨
⎩

2πR2
t

(
1 − cos st

Rt

) (
st ≤ πRt

2

)

πR2
t

(
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) (
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2

) (4)

The bending energy E1 of the vesicle membrane in the upper contact region is determined as

E1 =

⎧⎨
⎩

4πκ
(
1 − cos st

Rt

) (
st ≤ πRt

2

)

πκ
(
4 − π

2 + st
Rt

) (
st > πRt

2

) (5)
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Fig. 2. Equilibrium configurations of pressurized nanovesicles for different indentation depths Δh/R = 0, 0.3, 0.5, 0.8,
and 1.2 at osmotic pressure Δp = 2000κ/R3 (a) and 200κ/R3 (b). The red curves represent the vesicle–indenter contact
region. (c) The normalized indentation force as a function of the normalized indentation depth. Here we take R = 100 nm,
Rt = 20 nm, κ = 20 kBT , and γ = 100κ/R2. (Color figure online)

In the free vesicle region, the vesicle configuration is characterized by the tangent angle ψ(s), with
s the arclength of the free region. Therefore, the mean curvature is M2 = (sinψ/r + dψ/ds)/2. The
bending energy E2 of the free region is

E2 = 2κ

∫
M2

2dA2 = πκ

∫ l2

0

(
dψ

ds
+

sin ψ

r

)2

rds (6)

where l2 is the undetermined total arclength of the free region. The area A2 of the free region is
A2 = 2π

∫ l2
0

rds. The volume of the deformed vesicle is V = −V1 − π
∫ l2
0

r2 sin ψds.
In the lower contact region, the flat membrane has zero bending energy and the contact area is

A3 = πR2
c , with Rc = rc +

∫ l2
0

cosψds the radius of contact between the vesicle and the substrate. At
the lower contact edge (s = l2), we have ψ = −π.

The total system energy Etot is characterized as a function of tangent angle ψ, which is approximated

by a cubic B-spline curve as ψ(t) =
n∑

i=0

aiNi(t). Here t = s/l2 is a new variable introduced to normalize

the unknown total arclength l2 of the free region to 1, so that t = 0 and 1 at the upper and lower contact
edges, respectively [24]. Here the control points ai are the coefficients of the basic function Ni(t), which
are defined on a nonuniform knot vector {η0, η1,. . . ,ηn+4} (η ∈ [0, 1]) with ηj = 0(j = 0, . . ., 3) and
ηj = 1(j = n + 1, . . ., n + 4). In our calculation, we choose n = 82.

The interior-point optimization approach taking into account nonlinear constraints is employed
to numerically minimize Etot at a given indentation depth Δh; the fixed vesicle area A serves as
an equality constraint; and inequality constraints are introduced to prevent penetration between the
vesicle and the cylindrical indenter [25, 26]. The first and second derivatives of Etot with respect to
the undetermined parameters ai, st and l2 are required. Once the minimum energy is obtained, the
indentation force F = dEtot/d(Δh) can be determined. Existing theoretical studies on the adhesion
of vesicles to a rigid flat surface [27] serve as good benchmarks for the validation of our numerical
approach. We perform a series of calculations at Δh = 0 and certain sets of Δp and γ, and successfully
repeat the reported results in [27]. Detailed comparisons are not shown here to stay focused on the
vesicle indentation.

3. Results and Discussion
Figure 2a, b shows the equilibrium configurations of pressurized nanovesicles of radius R = 100 nm

at different osmotic pressures Δp and indentation depths Δh/R = 0, 0.3, 0.5, 0.8 and 1.2. As the
indentation depth Δh increases, the areas of the upper and lower contact regions increase. Moreover,
at large Δh/R, a membrane nanotube is formed. This is consistent with the recent experimental
observation that an inward lipid membrane nanotube could be induced in a vesicle by pressing a
trapped bead [28]. The force–depth curve in Fig. 2c shows that the indentation force F increases
almost linearly with Δh, gradually deviates from that approximately linear relationship, rises to a
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Fig. 3. Effects of the osmotic pressure Δp (a), membrane bending rigidity κ (b), adhesion energy γ (c), and indenter tip
radius Rt (d) on the indentation force-depth curves

peak value fmax, and then decreases upon the formation of an inward tubular membrane protrusion.
Upon inward tubulation, the indentation force F almost saturates and is insensitive to Δh/R. Similar
features have been observed in the cases of packing of nanorods with finite diameters in vesicles [25, 29]
and in the cylindrical indentation of a hyperelastic membrane [30]. The inward tubulation here can
be regarded as a type of tubular morphological transition of vesicles. Another similar type of tubular
transition is the enforced detachment of an adhesive vesicle from the substrate, which is accompanied
with a sharp drop of the external pulling force [31].

Here we focus on the mechanical behaviors of the vesicle and assume that both the indenter and the
vesicle membrane remain intact. In the case of a rigid nanoindenter of strong surface hydrophobicity,
e.g., an indenter coated with pristine graphene, there exists strong hydrophobic interaction between the
indenter surface and the tails of lipid molecules composing the vesicle membrane, and upon persistent
indentation, phospholipids might be extracted from the vesicle membrane onto the indenter surface to
maximize the hydrophobic interaction [9, 32].

To systematically explore the mechanical behaviors of the pressurized nanovesicle subject to inden-
tation, we investigate the F -Δh relation at different values of osmotic pressure Δp, membrane bending
rigidity κ, adhesion energy γ and indenter radius Rt (Fig. 3). Figure 3 shows that the slopes of the
force-displacement curves increase as Δp, κ, γ, and Rt increase. Moreover, the osmotic pressure Δp
dominates the mechanical responses of the nanovesicle to indentation in comparison with κ, γ, and Rt

(Fig. 3).
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Fig. 4. Variations of the total system energy Etot and its three components Ebend, Evol and Eadh as functions of the
indentation depth Δh. Here the bending energy Ebend is defined as Ebend = 2κ

∫
M2

1dA1 +2κ
∫

M2
2dA2, the work done

by the osmotic pressure is Evol = −Δp(V − V0), and the adhesion energy is Eadh = −γA3

Fig. 5. Effects of the osmotic pressure Δp (a,e), membrane bending rigidity κ (b,f), adhesion energy γ (c,g), and indenter
tip radius Rt (d,h) on the effective stiffness K and Young’s modulus Y of the nanovesicles. The nanovesicle radius is
taken as R = 100 nm

Figure 4 shows variations of the total energy Etot and its three components Ebend, Evol and Eadh

as functions of Δh at Δp = 2000κ/R3. Other parameters have the same values as those in Fig. 2. It
is demonstrated that Evol plays a dominant role among these three components, while Ebend has a
minor effect on the nanovesicle response to the indentation. These conclusions are consistent with the
force-depth curves in Fig. 3, which show that the indentation force F strongly depends on osmotic
pressure Δp, but is relatively insensitive to the membrane bending rigidity κ.

The effective vesicle stiffness of the nanovesicle can be determined as the slope of the force-depth
curve K = dF/d(Δh). Here we linearize the F -Δh curves in the range of Δh/R from 0.2 to 0.3, and
define the corresponding slope as the effective vesicle stiffness K. Figure 5a shows a linear proportion-
ality between the osmotic pressure Δp and the effective vesicle stiffness K or dF/d(Δh) at sufficiently
large Δh. A similar linear relation of dF/d(Δh)-Δp has been reported theoretically for a pressurized
linear elastic solid thin shell upon indentation [33]. The K-κ and K-γ curves exhibit approximately
linear relations at relatively large κ and γ (Fig. 5b, c). One can find that the effects of κ and γ on K
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are minor compared with that of Δp. The dominance of K associated with Δp is consistent with our
analysis in Figs. 3 and 4. In addition, the effective vesicle stiffness K exhibits size-dependence on the
indenter radius Rt (Fig. 5d). A larger indenter induces a higher stiffness.

Besides the effective stiffness K, the Young’s modulus Y serves as another widely used parameter
to characterize the apparent rigidity of target materials or structures, which is usually estimated
based on the continuum contact mechanics theory [21, 22]. The classical Hertz theory, only suitable
for the shallow indentation, does not apply to soft matters such as elastic fluid vesicles which could
undergo finite deformation at a small indentation force. Here we employ the Sneddon theory [34, 35]
to achieve a more appropriate estimation on the Young’s modulus Y of vesicle, which releases the
enforcement of small deformation required by the classical Hertz theory. It is worth noting that the
Sneddon theory was originally proposed for a punch of arbitrary profile using the linear elastic contact
theory at small deformation [34], and later it has been shown that the Sneddon’s solution is applicable
for interpreting the indentation of nonlinear elastic materials when the ratio between the indentation
depth and indenter size is not significantly large [36].

According to the Sneddon theory [34, 35], the relation between the indentation force F and the
Young’s modulus Y is

F =
Y

1 − ν2

[
R2

t + a2

2
ln

(
Rt + a

Rt − a

)
− aRt

]
(7)

where a is the apparent contact radius given by Δh = (a/2)ln[(Rt + a)/(Rt − a)]. Assuming the
Poisson ratio ν = 0.5, we can determine the Young’s modulus Y at a given indentation depth Δh. In
our calculation, we take Y at Δh/R = 0.3 as the effective Young’s modulus of the vesicle.

The dependence of the effective Young’s modulus Y on the osmotic pressure Δp, membrane bending
rigidity κ, and adhesion energy γ, as shown in Fig. 5e–g, is analogous to that of K in Fig. 5a–c. Note
that the effective Young’s modulus Y decreases as the indenter size Rt increases (Fig. 5h), while the
effective vesicle stiffness K increases as Rt increases (Fig. 5d). The contrast of the effects of Rt on
Y and K is consistent with the previous experiments on the indentation of tomato mesocarp cells
[37]. This counterintuitive phenomenon could be explained as follows. As Rt increases, the indenter tip
is more flattened locally and F at the same Δh becomes larger, which leads to an increasing vesicle
stiffness K. According to the contact mechanics theory including the Sneddon theory, Y is proportional
to F but inversely proportional to Rt. A competition between the force F and indenter radius Rt leads
to a decreasing Young’s modulus Y as Rt increases.

The precise identification of the initial contact point is critical for the accurate analysis of the force-
depth curves and determination of the sample stiffness or modulus. In theoretical studies, the point of
initial contact between the indenter tip and the sample is known a priori at the north pole of the vesicle
before indentation (Δh = 0). In experimental studies, the determination of the initial contact point is
not as straightforward as in theoretical studies. Based on sequential search algorithms and fitting with
appropriate contact mechanics model, different automated and high-throughput approaches have been
proposed to experimentally locate the point of initial contact between the indenter tip and the sample
[38–41].

In practice, extracting the mechanical properties of samples from the measured force-depth curves
involves inverse analysis and optimization with certain techniques such as dimensional analysis and
iterative finite element analysis [42–46]. The central concerns in inverse analysis are the existence,
uniqueness and stability of the solutions of the inverse problem [42, 43], among which the uniqueness
and stability are more critical from an engineering point of view. Depending on the range of the
mechanical properties of sample materials, the indenter size and shape, and the number of force-depth
curves might be involved, and the systematic inverse analysis could be significantly challenging. The
inverse analysis of nanovesicle indentation experiments certainly require further investigation in the
future.

Theoretical models in the previous literature approximate the free region of the vesicle as a spherical
cap under the condition of strong adhesive interaction between the vesicle and the substrate [47, 48].
To simplify the modeling of the contact between the indenter and the vesicle, a local point loading
has been applied [20]. However, this approximation limits the modeling to the case of a small inden-
ter in comparison with the size of the vesicle. In contrast to these models, using the angle-arclength
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parametrization based on the B-spline curve, our model could accurately describe the vesicle deforma-
tion at deep and shallow indentations and integrate the precise boundary conditions at the upper and
lower contact edges.

In this work, we focus on the indentation of the nanovesicle enclosed merely by a fluid membrane. For
cells or engineered vesicles with actin cortex or protein network underlying the lipid bilayer membrane,
a precise description of the mechanical response to indentation or other external stimuli requires a
more sophisticated model incorporating the coupling of the Eulerian description of the fluid lipid
membranes and the Lagrangian description of the underlying solid thin structures. A thorough and
detailed theoretical analysis is deserved in the future.

4. Conclusions
A theoretical study has been performed to probe the indentation of pressurized nanovesicles, con-

sidering the effects of osmotic pressure, membrane bending rigidity, adhesive interaction between the
vesicle and the substrate, and indenter tip size. The indentation force-depth curves at different values
of osmotic pressure Δp, membrane bending rigidity κ, work of adhesion γ, and indenter tip radius
Rt are obtained, and the effective vesicle stiffness and Young’s modulus are determined. It is found
that larger Δp, κ, and γ induce larger vesicle stiffness and Young’s modulus. Moreover, the osmotic
pressure dominates the effective stiffness and Young’s modulus of the pressurized nanovesicle. Our
results indicate that the osmotic pressure is a crucial factor to regulate the mechanical behaviors of
inter- and intracellular nanovesicles, which has important implications in the fields of cell diagnostics
and drug delivery.
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[1] Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and

other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30(1):255–89.
[2] Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, et al. Cell-cell communi-

cation between malaria-infected red blood cells via exosome-like vesicles. Cell. 2013;153(5):1120–33.
[3] Yi X, Shi X, Gao H. Cellular uptake of elastic nanoparticles. Phys Rev Lett. 2011;107(9):098101.
[4] Sun J, Zhang L, Wang J, Feng Q, Liu D, Yin Q, Xu D, Wei Y, Ding B, Shi X, Jiang X. Tunable rigidity of

(polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Adv Mater. 2015;27(8):1402–7.
[5] Zhang W, Jiang X, Bao J, Wang Y, Liu H, Tang L. Exosomes in pathogen infections: a bridge to deliver

molecules and link functions. Front Immunol. 2018;9:90.
[6] Anselmo AC, Mitragotri S. Impact of particle elasticity on particle-based drug delivery systems. Adv Drug

Deliv Rev. 2017;108:51–67.
[7] Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med.

2012;63(1):185–98.
[8] Merkel TJ, Jones SW, Herlihy KP, Kersey FR, Shields AR, Napier M, et al. Using mechanobiological

mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci
USA. 2011;108(2):586–91.

[9] Zhu W, von dem Bussche A, Yi X, Qiu Y, Wang Z, Weston P, Hurt RH, Kane AB, Gao H. Nanomechanical
mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles. Proc
Natl Acad Sci USA. 2016;113(44):12374–9.

[10] Yu M, et al. Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular
barriers. Nat Commun. 2018;9:2607.

[11] Yu M, et al. Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels. Proc
Natl Acad Sci USA. 2019;116(12):5362–9.

[12] Li L, Liu X, Zhou Y, Wang J. On resistance to virus entry into host cells. Biophys J. 2012;102(9):2230–3.
[13] Wang J, Li L. Coupled elasticity-diffusion model for the effects of cytoskeleton deformation on cellular

uptake of cylindrical nanoparticles. J R Soc Interface. 2015;12(102):20141023.
[14] Anselmo AC, Zhang M, Kumar S, Vogus DR, Menegatti S, Helgeson ME, Mitragotri S. Elasticity of

nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano.
2015;9(3):3169–77.

[15] Dimova R. Recent developments in the field of bending rigidity measurements on membranes. Adv Colloid
Interface Sci. 2014;208:225–34.



Vol. 32, No. 5 X. Tang et al.: Finite Indentation of Pressurized Elastic Fluid Nanovesicles 641
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