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a b s t r a c t

Mechanical properties play fundamental roles in regulating the biological behaviors of nanovesicles
in a wide range of implications including cell uptake, intercellular communication and developing
nanocarriers for drug delivery. Here we theoretically probe the mechanical properties of nanovesicles
using indentation analysis based on a minimal model fully accounting for both small and large
indentation without introducing unphysical contact and geometrical conditions. Two types of vesicles
are considered: one having a fixed area and the other undergoing areal stretch. The indentation
response of pressurized elastic fluid vesicles depends on the membrane bending rigidity, osmotic
pressure, adhesion energy and size of the indenter tip. Moreover, the osmotic pressure dominates
the indentation response, effective stiffness and Young’s modulus for strongly pressurized vesicles. An
analytical and universal relation which offers a new and easy way to determine the osmotic pressure
from the measured indentation force–depth curve is identified. Effects of the nanovesicle size on the
effective stiffness at finite and zero osmotic pressures are analyzed and show significantly different
trends. Further discussion is made on the differences between the indentation of fluid vesicles and
solid thin shells.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Nanovesicles with a hollow interior compartment surrounded
by a fluidic lipid membrane can be treated as an elastic fluid thin
shell structure, and could undergo large to extreme deformation
in response to internal and external loading of small magni-
tude. With high adaptability in mechanical and physicochemical
responses to external stimuli, nanovesicles (e.g. nanosized lipo-
somes, extracellular vesicles, and endo/lysosomes) function not
only in many cell activities including cell uptake, intercellular
trafficking and communication [1–4], but also as prospective
vehicles for the targeting in drug delivery and therapeutics [4–
8]. For example, exosomes secreted from oral epithelial cells into
saliva via exocytosis, have abundant tumor-antigen and func-
tion as biomarkers of the oral-cancer [5]. An exosomes-based
delivery system is expected as a versatile strategy to treat inflam-
matory and neurodegenerative disorders such as a Parkinson’s
disease [8].
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Mechanical properties so far have been recognized as impor-
tant aspects in regulating the biological behaviors of nanopar-
ticles in cell uptake, drug delivery and cytotoxicity. For exam-
ples, a complete cell membrane wrapping of a softer nanovesi-
cle requires more adhesion energy than that of a stiffer vesi-
cle [2,3]. Stiffness-dependent intracellular accumulation is ob-
served for elastic nanoparticles [4,9,10]. Compared with solid
capsules, nanovesicles of good flexibility exhibit good therapeutic
efficacy [11]. Recently, it is found that exosomes derived from
erythrocytes in hereditary spherocytosis have significantly differ-
ent mechanical properties compared with these in the healthy
situation [12]. This result suggests that mechanical properties of
exosomes can be used as important parameters to characterize
and diagnose diseases. Therefore, determination of the mechan-
ical properties of nanovesicles becomes a key step in under-
standing the biological functions of nanovesicles and developing
rational drug delivery strategies.

In comparison with approaches such as micropipette aspi-
ration and thermal fluctuation which function well in optical
observation at micro- and larger scales and less suitable for
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nanovesicles, nanoindentation measurement has been demon-
strated to be a valuable approach to capture the apparent me-
chanical properties of vesicles at nanoscale [13–16]. However,
the reported experimental data exhibit large scatter. One of the
possible reasons is that post-processing of these nanoindentation
analyses is based on the classical contact mechanics modeling
such as the Hertz contact theory [17], which shall be more suit-
able for solid materials rather than elastic fluid structures such as
lipid vesicles. Moreover, a rational modeling of the nanovesicle
indentation is complicated by a precise characterization of the
configuration of the largely deformed vesicle and the vesicle–
indenter and vesicle–substrate contact conditions, and so far a
robust modeling without unphysical assumptions on the config-
uration and contact conditions of the deformed nanovesicle is
lacked.

In this study, we theoretically analyze the mechanical behav-
iors of pressurized elastic fluid nanovesicles upon indentation by
a rigid parabolic indenter. Characterizing the vesicle deformation
through a combination of the angle-arclength parametrization
and numerical optimization approach, a minimal model is devel-
oped fully taking into account both small and large indentation
with explicit consideration of the vesicle–indenter contact and
vesicle–substrate contact. We systematically analyze how the
indentation force–depth curves are affected by the membrane
bending rigidity, osmotic pressure, adhesion energy and indenter
size. The effective stiffness and Young’s modulus of the vesicle
are determined. A linear relation correlating the slope of the
force–depth curve to the osmotic pressure at sufficiently large
depth is identified. Shedding light on the mechanical behaviors of
nanovesicles upon compressive external stimuli, our results may
have important implications in nanovesicle-based drug delivery.

2. Modeling and method

We consider the indentation of a spherical lipid nanovesicle
with an osmotic pressure ∆p adhering on a rigid flat substrate.
The axisymmetric deformation of the vesicle is assumed as il-
lustrated in Fig. 1. The system is divided into three regions:
the indenter tip-vesicle contact region, the outer free vesicle re-
gion, the vesicle–substrate contact region. Hereinafter, quantities
pertaining to these three regions in sequence are identified by
subscripts 1, 2 and 3, respectively.

In this work, we focus on two different types of vesicles of zero
spontaneous curvature. The vesicle of the first type is assumed
to have a fixed total surface area A(= 4πR2) and its bending
deformation obeys the Canham–Helfrich model [18]. Therefore,
the total system energy at the indentation depth ∆h is described
by the Helfrich functional as [19–21]

Etot = 2κ
∫

M2
1dA1 + 2κ

∫
M2

2dA2 −∆p(V − V0) − γA3,

where κ is the membrane bending rigidity, Mi and dAi (i =

1, 2) are the mean curvature and surface element of the vesicle
in regions 1 and 2, respectively; V0(= 4πR3/3) and V are the
original and deformed volumes of the vesicle under the pressure
difference ∆p between the interior and exterior of the vesicles;
γ (> 0) is the adhesion energy and A3 the surface area of the
vesicle-substrate contact region. The total surface area is fixed
as

∑3
i=1 Ai = A. The adhesive interaction between the indenter

tip and vesicle is assumed to be negligible. Here we focus on
the case of fixed pressure difference, which is valid for vesicles
of high water permeability or indentation of a long time scale.
For vesicles of low water permeability or in the case of a fast
indentation with a compression process less than few seconds,
the vesicle volume is more appropriately to be approximated
as constant since the water permeation across the membrane is
much slower compared with the compression process [22].

Fig. 1. Indentation of a pressurized nanovesicle by a parabolic indenter tip (gray
region) in a cylindrical coordinate (r, θ, z) with the region of contact between
the vesicle and indenter tip depicted by a red curve. In the outer free vesicle
region, the arclength s is defined along the vesicle meridian originating from
the edge of contact (r = rc) between the indenter tip and vesicle to the vesicle-
substrate contact edge (r = Rc, ψ = −π ). In our notation, the tangent angle ψ is
negative as it is measured clockwise from the positive r-axis and ψ is required to
be equal to −π at the bottom contact edge to enforce the angle continuity. The
dashed line depicts the configuration of the vesicle in the absence of indentation.
The indentation depth ∆h(> 0) denotes the distance between the tip apex and
north pole of the vesicle before indentation.

In comparison with the first vesicle type considered above, the
vesicle of the second type is subject to area stretch. In the case
of uniform areal stretch (A−A0)/A with A0(= 4πR2) and A as the
areas of the original and deformed vesicle, the total free energy
of this system is

Etot = 2κ
∫

M2
1dA1 + 2κ

∫
M2

2dA2

+
KA

2
(A − A0)2

A0
−∆p(V − V0) − γA3,

where KA is the area compression modulus and has characteristic
values in the range 0.08 N/m–0.2 N/m [23].

Assuming the axisymmetric indenter of a parabolic shape with
a radius of curvature Rt at the apex, the parabolic region of the
indenter is described by

hc =
r2c
2Rt

,

where rc and hc are the contact radius and depth, respectively.
The tangent angle ψc at the tip-vesicle contact edge is determined
by tanψc = rc/Rt. The characteristic tip radius Rt is in the range
of 5 nm to 40 nm.

From simple geometrical arguments, we can obtain the vol-
ume of the indenter tip in contact with the vesicle as

V1 =
πr2c hc

2
=
πr4c
4Rt

,

the corresponding contact surface area as

A1 =
πrc
6h2

c
[(r2c + 4h2

c )
3/2

− r3c ] =
2πR2

t

3

[(
1 +

r2c
R2
t

)3/2

− 1

]
,

and the bending energy of the vesicle membrane in region 1 as

E1 = 2κ
∫

M2
1dA1 =

πκ

3

[
4 +

3r4c /R
4
t − 4

(1 + r2c /R
2
t )

3/2

]



X. Tang, X. Shi, Y. Gan et al. / Extreme Mechanics Letters 34 (2020) 100613 3

Fig. 2. Initial equilibrium configurations of vesicles with R = 100 nm at different values of the membrane bending rigidity κ with small and large osmotic pressure
∆p (a,b), and adhesion energy γ (c).

with the local mean curvature M1 = (r2 + 2R2
t )/[2(r

2
+ R2

t )
3/2

].
The configuration of the free vesicle region is characterized

by the tangent angle ψ and arclength s with geometric relations
dr/ds = cosψ and dz/ds = sinψ , and the mean curvature is
M2 = (dψ/ds + sinψ/r)/2. Therefore, the membrane bending
energy in region 2 is

E2 = 2κ
∫

M2
2dA2 = πκ

∫ l2

0
r
(
dψ
ds

+
sinψ
r

)2

ds,

where s, r and l2 are the arclength, radial coordinate and unde-
termined total arclength of the free vesicle region, respectively.
The volume V of the deformed vesicle is

V = −V1 − π

∫ l2

0
r2 sinψds,

and the area of the free vesicle is A2 = 2π
∫ l2
0 rds.

In the vesicle-substrate contact region, the membrane bending
energy is zero as the membrane is flat, and the contact area is
A3 = πR2

c with Rc = rc +
∫ l2
0 cosψds as the radius of the

vesicle-substrate contact region.
Once the vesicle configuration is determined, the system en-

ergy Etot can be obtained. In the free vesicle region, Etot is rep-
resented as a function of ψ approximated by a cubic B-spline
curve as ψ(t) =

∑n
i=0 aiNi(t). Here the variable t is defined as

t = s/l2 such that t = 0 at the tip-vesicle contact edge and t = 1
at the vesicle-substrate contact edge as the total arclength l2 of
the free vesicle region is unknown. In the above representation
of ψ(t) by a B-spline curve, ai denotes control points and Ni(t)
is the basic function defined recursively following the de Boor
algorithm [24] on a location vector T = {t0, . . . , tj, . . . , tn+4}

containing n+5 elements in a non-descending order tj ≤ t ≤ tj+1.
The locations tj are called knots with j(= 0, 1, . . . , n + 4) as the
knot index, and the location vector T as a set of coordinates in the
parametric space is called knot vector. As the vesicle deformation
might be relatively large in the vicinities of the indenter tip and
the vesicle–substrate contact edge, a non-uniform knot vector is
introduced with smaller knot distances tj+1− tj at small and large
j. Moreover, tj = 0 (j = 0, . . . , 3) and tj = 1 (j = n+1, . . . , n+4)
are specified for the non-periodic B-spline curve here.

At a given indentation depth ∆h, the minimum energy state
of the vesicle is numerically determined employing the inte-
rior point optimization technique, in which the first and second
derivatives of Etot as well as the necessary inequality or equality
constraints with respect to parameters ai, rc and l2 are required. In
our case, inequality constraints that the indenter tip surface has
a larger z-coordinate than that of the vesicle are introduced to
prevent penetration between the vesicle and indenter tip. Other

boundary conditions include the continuities of the angle ψ and
the r- and z-coordinates at the top and bottom contact edges
(t = 0 and 1). For example, ψ(t = 0) = arctan(rc/Rt) and
ψ(t = 1) = −π , requiring a0 = arctan(rc/Rt) and an = −π .
For the first type vesicle, the fixed vesicle area A = A1 + A2 + A3
behaves as an additional equality constraint. Once all required
first and second derivatives are obtained, the minimized energy
Etot can be determined using the interior point method. With the
knowledge of Etot(∆h), the effective axial indentation force F can
be given from F (∆h) = dEtot/d(∆h), and then the effective (or
apparent) stiffness and Young’s modulus can be determined.

3. Results

We first probe the equilibrium configurations of pressurized
nanovesicles before indentation (Fig. 2). The nanovesicle is of ra-
dius R = 100 nm at different values of bending rigidity κ , osmotic
pressure ∆p, and adhesion energy γ . As κ or ∆p decreases and
γ increases, the vesicle undergoes deformation of an increasing
extent as expected.

The equilibrium configurations of pressurized nanovesicles
with R = 100 nm and κ = 240 pN· nm at different inden-
tation depths ∆h/R are shown in Fig. 3. As ∆h increases, the
region of contact between the substrate and vesicle increases,
and the vesicle undergoes shape transformation from an approx-
imately spherical cap to a concave shape. Decreasing ∆p leads
to a more flattened vesicle configuration as the vesicle becomes
more flexible at a lower ∆p. Increasing γ also leads to a more
flattened vesicle with a larger area of contact between the vesicle
and substrate. At relatively large ∆p, the vesicle configuration
is insensitive to κ but more sensitive to ∆p and γ (Figs. 2 and
3). This feature is also reflected in the indentation force–depth
curves (Fig. 4).

To investigate the mechanical behaviors of the pressurized
nanovesicle upon indentation, we investigate the relation be-
tween the axial indentation force F and the indentation depth ∆h
(Fig. 4). It is shown that the slope of the force curve dF/d(∆h)
increases as ∆h increases, which is due to the more significant
vesicle deformation at a larger ∆h. For a vesicle of a given size, its
deformation upon indentation depends together on κ , ∆p, γ and
Rt. Therefore, we propose to identify and analyze their individual
effects on the F–∆h relation. Fig. 4a shows that the membrane
bending rigidity κ has a minor effect on the F–∆h curve at
relatively large ∆p. Moreover, the adhesion energy plays an im-
portant role and the osmotic pressure∆p plays a more significant
role in regulating the indentation force profile while noting that
larger ∆p and γ correspond to larger indentation force (Fig. 4b
and c). The osmotic effect on the F–∆h curves in Fig. 4b is con-
sistent with experimental studies on the indentation of MDCK-II
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Fig. 3. Equilibrium configurations of pressurized nanovesicles with radius R = 100 nm and bending rigidity κ = 240 pN· nm at different normalized indentation
depths ∆h/R = 0, 0.25, 0.5, 0.8 and 1.2. Three parameter sets of (∆p, γ ) are considered: (a) ∆p = 0.15 MPa, γ = 1.2 mJ/m2 , (b) ∆p = 0.05 MPa, γ = 1.2 mJ/m2 ,
(c) ∆p = 0.15 MPa, γ = 6 mJ/m2 . The indenter tip of Rt = 20 nm is not shown for clarity. Red curves represent the indenter tip-vesicle contact regions.

Fig. 4. Effects of the membrane bending rigidity κ (a), osmotic pressure ∆p
(b), adhesion energy γ (c) and tip radius Rt (d) on the indentation force–depth
curves.

kidney cells under the different osmotic conditions [25]. We also
investigate the dependence of the indentation force F on the tip
radius Rt. It is shown that F is directly proportional to Rt (Fig. 4d),
consistent with experimental measurement [16,26].

A careful observation of Fig. 4b suggests that the F–∆h curves
demonstrate a linear relationship at large ∆h as

dF ×
R
πκ

∼ d(∆h) ×
α

R
∆pR3

κ
or

dF
d(∆h)

∼ απ∆pR,

where the parameter is α = 1/3 insensitive to the adhesion
energy γ , confirmed by further calculations. Taking advantage
of this simple relation, for a strongly pressurized vesicle we can
determine the osmotic pressure ∆p from the measured F–∆h
curve. Interestingly, a similar relation dF/d(∆h) ∼ π∆pR or F ∼

π∆pR∆h (with α = 1) has been found in the case of indenting
a pressurized linear elastic solid thin shell in the absence of
adhesion energy [27].

The total system energy Etot for the first type vesicle consists
of three components: the bending energy Ebend = 2κ

∫
M2

1dA1 +

2κ
∫
M2

2dA2, the work done by the osmotic pressure Evol =

−∆p(V −V0), and the adhesion energy Eadh = −γA3. To illustrate
the contribution of each energy component to Etot, we plot the

Fig. 5. Variations of Etot of the first type vesicle with R = 100 nm and its
three components as a function of the indentation depth ∆h at Rt = 20 nm,
κ = 240 pN· nm, ∆p = 0.15 MPa and γ = 1.2 mJ/m2 (p̄ ≡ ∆pR3/κ =

625, γ̄ ≡ γ R2/κ = 50). Here Etot = Ebend + Evol + Eadh with the bending
energy as Ebend = 2κ

∫
M2

1dA1 +2κ
∫
M2

2dA2 , the vesicle volume associated term
Evol = −∆p(V − V0) and the adhesion energy Eadh = −γA3 .

total energy Etot and its three components as functions of the
indentation depth ∆h (Fig. 5). Our case study at ∆p = 0.15 MPa
and γ = 1.2 mJ/m2 indicates that Evol plays the most important
role among these three components and Ebend plays a minor role
in regulating the vesicle indentation from an energetic point of
view. These features are consistent with the F–∆h curves in Fig. 4
showing that F is insensitive to κ but strongly depends on ∆p.

The conclusion that the variation of the total energy Etot during
the vesicle indentation is primarily owing to Evol rather than Ebend
can also be drawn based on a simple analysis as follows [28].
Imagine that the top portion of a height h of the spherical vesicle
is flattened and assume that the rest part of the vesicle remains as
a spherical cap. The surface area and the volume of the flattened
spherical top portion is 2πRh and πh2(3R−h)/3, respectively. As
the membrane bending energy change per unit area is 2κ/R2, the
variation of Ebend has a magnitude of 4πκh/R and the work of ∆p
is the pressure times the volume change as ∆pπh2(3R − h)/3.
Therefore, the ratio of the work done against the membrane
bending to that against the pressure is 12κ/[∆pRh(3R−h)], which
is about 0.0154 for κ = 240 pN· nm,∆p = 0.15 MPa, R = 100 nm
and h = 50 nm.

With knowledge of the F–∆h curves in Fig. 4, the slope K ≡

dF/d(∆h) is adopted to characterize the effective vesicle stiffness.
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Fig. 6. Effective stiffness K the nanovesicle as functions of the membrane
bending rigidity κ (a), osmotic pressure ∆p (b), adhesion energy γ (c) and
indenter tip radius Rt (d).

Fig. 7. Effective Young’s modulus Y of the nanovesicle as functions of κ (a), ∆p
(b), γ (c) and Rt (d).

In the present study, we fit the F–∆h curves in the range of ∆h/R
from 0.2 to 0.3 by a linear function and define its slope as the
effective vesicle stiffness K . Fig. 6a shows that the vesicle stiffness
K is nearly a constant at small κ , while K is almost linearly
proportional to κ of a relatively large value (e.g. κ >100 pN· nm
here). Similar linear proportionality could also be found in the K–
∆p and K–γ relations (Fig. 6b and c). Comparing the magnitudes
of the curve slopes in Fig. 6a–c, one can draw a conclusion that
the osmotic pressure ∆p is a dominant variable on the vesicle
stiffness, consistent with our analysis on Figs. 4 and 5. The simu-
lated vesicle stiffness K also exhibits size-dependence on the tip
radius Rt. A larger Rt corresponds to a larger K (Fig. 6d).

Another featured parameter for the vesicle rigidity is the effec-
tive Young’s modulus Y which is usually estimated based on the
continuum contact mechanics modeling [17]. The classical Hertz
contact theory is developed for indentation much smaller than
the indenter tip radius, and cannot be directly employed for soft
materials including vesicles undergoing large deformation upon

indentation. To achieve a more sound estimation on the effec-
tive Young’s modulus of vesicles undergoing finite deformation,
here we adopt the Sneddon theory which does not require the
condition of indentation much smaller than the tip radius [29–
31].

Assuming the Poisson ratio ν = 0.5, we can calculate the
Young’s modulus Y at a given ∆h according to the Sneddon
theory [29,30] as

F =
Y

1 − ν2

[
(R2

t + a2)
∆h
a

− aRt

]
,

where a is the apparent contact radius determined by the in-
dentation depth ∆h and the tip radius Rt via the relation ∆h =

(a/2) ln [(Rt + a)/(Rt − a)]. In the following analysis, the effective
Young’s modulus Y of the vesicle is taken at ∆h = 0.3R.

The dependence of the effective Young’s modulus Y and the
stiffness K on κ , ∆p and γ is quite similar (comparing Fig. 6a–c
with Fig. 7a–c). As shown in Fig. 6d, the estimated vesicle stiffness
K is significantly affected by tip size. It is more intriguing that
the estimated stiffness K increases as the tip size Rt increases,
while the effective Young’s modulus Y decreases as Rt increases
(Figs. 6d and 7d). The trend of Y–Rt curve is also obtained using
the Hertz theory while we keep in mind that the Hertz theory is
not applicable in the current case of soft vesicles. The significant
contrast between the K–Rt and Y–Rt profiles in our theoretical
analysis is consistent with experimental studies on the inden-
tation of tomato mesocarp cells which show that the measured
Young’s modulus of the cell increases but the stiffness decreases
as the indenter tip size becomes smaller [26].

An explanation for this slightly counterintuitive phenomenon
is offered as follows. As the tip radius Rt increases, the indenter
tip becomes more flattened and the indenter force F at the same
indentation depth increases, which leads to a larger vesicle stiff-
ness K of K ∼ F ∼ Rβt with β as a positive geometry parameter.
Based on the contact mechanics theory, Y is proportional to F but
inversely proportional to the tip size or radius Rt. A competition
between the force F and the geometry factor Rt leads to a de-
creasing Young’s modulus Y of the vesicle as Rt increases, that is,
Y ∼ R−β

t . The above discussion can be readily illustrated using
the analytical solution on the non-adhesive contact between a
rigid spherical indenter and an elastic half-space [17,32]. For a
rigid spherical tip of radius Rt indenting an elastic isotropic half-
space of a Young’s modulus Y and Poisson ratio ν, the indentation
force F at the depth ∆h is given as F = 4Y ′R1/2

t (∆h)3/2/3 with
Y ′

= Y/(1 − ν2), which leads to K = dF/d(∆h) = 3F/(2∆h) and
Y ′

= 3FR−1/2
t (∆h)−3/2/4, or in a scaling form as K ∼ R1/2

t and
Y ∼ R−1/2

t .
For a strongly pressurized vesicle, the effective stiffness K

decrease with increasing vesicle radius R; while for a nonpres-
surized vesicle, K increases as R increases (Fig. 8), which is con-
sistent with reported experimental results on the indentation of
nanosized dimyristoyl-phosphatidylcholine (DMPC) liposomes at
a small osmotic pressure estimated around tens of kPa [14].

For the second type of vesicle taking into account the mem-
brane area stretch, we perform case studies on the effect of the
area compressibility modulus KA on the indentation force–depth
curve. Characteristic values of KA fall in the range of 0.08 N/m to
0.2 N/m [23]. Though the total free energy Etot strongly depends
on KA (Fig. 9a), KA in a biological range has infinitesimal effects
on the indentation force–depth curves (Fig. 9b). In addition to
the bending energy Ebend, the vesicle volume associated term Evol
and the adhesion energy Eadh as related with the free energy of
the first type vesicle, the stretching energy Estr contributes to the
total energy Etot of the second type vesicle. Further calculations
indicate that the variation of Evol as a function of ∆h has signifi-
cant influence, the variations of Estr and Eadh have minor effects,
and the variation of Ebend has the least effect on the evolution of
Etot(∆h) (see Fig. 10).
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Fig. 8. Effects of the nanovesicle size on the effective stiffness K at finite and
zero ∆p.

Fig. 9. Effects of the area compression modulus KA on the total free energy (a)
and the indentation force–depth curves (b). Two different values of KA (0.1 N/m
and 0.2 N/m) are considered in comparison with the case of the first type vesicle
of a fixed area (∆A = A − A0 = 0) or equivalently an infinitely large KA .

4. Discussion

Upon indentation and adhesive interaction with the substrate,
the vesicle evolves from an initial spherical shape to a strongly
curved configuration with overhang profile segments which can-
not be fully described as a whole by a Monge parametrization. To
characterize the deformed vesicle, theoretical models in previous
literature approximate the free part of the vesicle as a spherical
cap in the case of strong vesicle-substrate adhesion or through

Fig. 10. Variations of the total free energy Etot of the second type vesicle (R =

100 nm, KA = 0.1 N/m) and its four components as a function of the indentation
depth ∆h at Rt = 20 nm, κ = 240 pN· nm, ∆p = 0.15 MPa, and γ = 1.2 mJ/m2

(p̄ ≡ ∆pR3/κ = 625, γ̄ ≡ γ R2/κ = 50). Here Etot = Ebend + Estr + Evol + Eadh
with the bending energy as Ebend = 2κ

∫
M2

1dA1 + 2κ
∫
M2

2dA2 , the stretching
energy Estr = KA(A − A0)2/(2A0), the work done by the osmotic pressure Evol =

−∆p(V − V0), and the adhesion energy Eadh = −γA3 .

a combination of several spherical caps [33]. To simplify the
contact conditions, a local point force has been used in existing
literature to model the contact between the indenter tip and
vesicle and the vesicle-substrate contact is ignored [16]. In our
current study, the vesicle configurations at both small and large
indentation depths are fully described using the angle-arclength
parametrization, which enables us to characterize the overhang
profile segments and integrate the precise boundary conditions
of the contact between the indenter tip and vesicle and that
between the vesicle and substrate.

In the current study, we model the vesicle with a lipid mem-
brane in a fluidic state with the classical Canham–Helfrich mem-
brane theory [18], which is based on the facts that the lipid
molecules undergo free lateral movement and the membrane is
of high resistance to lateral stretching. Therefore, the membrane
stretching if incorporated is uniform and independent of the local
position in the lipid membrane at equilibrium as we adopted. In
addition to vesicles, capsules such as polymeric capsules, poly-
meric micelles and viral capsids are elastic solid thin shells from
a mechanical point of view and they serve as another important
type of soft particles with broad biomedical applications, espe-
cially in the fields of drug delivery and diagnostics. For a solid thin
shell subject to vertical indentation, the strain field is not uni-
form and the stretch along the longitudinal and circumferential
directions are different. The high energetic cost of circumferential
stretch associated with the flattening of the curved shell leads to
a significantly larger indentation stiffness than that of the vesicle
with a comparable bending rigidity. Moreover, the solid thin shell
could exhibit different types of mechanical instabilities such as
buckling and wrinkling as a manner of releasing strain energy by
relieving the circumferential compression through bending [27,
34–36], which cannot be observed in the indentation of a vesicle
due to the fluidic feature of the lipid membrane. For example,
gel phase vesicles, rather than the fluid phase vesicles, subject
to osmotic shock could develop complex morphological changes
including bowl-like conformations along with buckling instability
owing to the solid elastic nature of the gel phase membranes [34].
Long-range strong adhesion between a spherical thin elastic shell
and a flat rigid substrate can induce possible wrinkling in the shell
near the contact edge and the inversion buckling of the central
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adhesion region of the shell away from the substrate [35]. The
indentation of a pressurized linear elastic shell could induce a
wrinkling instability as the indentation depth increases [36] and
the relationship between the indentation force and depth demon-
strates two linear regimes [27]. The solid nature of the capsule
shell and the consequent anisotropic and non-uniform stretch
lead to much higher energy cost of the capsule deformation in
comparison to the fluid lipid vesicles [37]. Therefore, modeling
fluid phase vesicles using the elastic thin shell theory would
significantly overestimate the stiffness and Young’s modulus of
the vesicle. For the vesicles with an interior actin cortex lying
immediately beneath the membrane, a two-layer model consider-
ing the fluid lipid membrane and solid cortex shell shall be more
appropriate.

Besides the axisymmetric parabolic indenter we consider here,
another kind of axisymmetric indenters widely used has a cylin-
drical tip. At intermediate and deep indentation depths ∆h, the
radius of the circular edge of contact between the tip and vesicle
would main the same value as that of the cylindrical tip. This
geometric feature of contact is strikingly different from the case
of the indentation by a parabolic indenter in which the size of
contact edge continuously increases as ∆h increases. Our recent
theoretical study on the vesicle indentation by a rigid cylindrical
indenter indicates that as ∆h increases the indentation force F
increases to a peak value, then drops steeply and almost saturates
at a certain value upon the formation of an inward tubular mem-
brane protrusion [21]. A relevant experimental work exhibiting
an inward tubulation is pulling a vesicle toward its interior by
pressing a trapped bead [38]. It is shown that the indented vesicle
maintains its configuration as a spherical cap along the formation
of an inward membrane nanotube [38]. The formation of long
cylindrical tubular structures is commonly observed for fluidic
lipid membranes subject to a localized force or displacement [38–
40] but is suppressed for solid elastic thin shells due to the
high energetic cost of in-plane stretching. As a result, only a
relatively short tubular structure could be possibly observed for
the soft solid shell at a large indentation depth and moreover
there always exists in the shell a highly deformed outer free
region with a size significantly larger than the indenter radius at
the base of the cylindrical indenter [27,41,42].

For a strongly pressurized elastic fluid lipid vesicle of radius
R, our results indicate that the slope of the F–∆h curve at suffi-
ciently large ∆h exhibits a linear relationship with the osmotic
pressure ∆p as dF/d(∆h) ∼ απ∆pR with α = 1/3. A similar
relation with dF/d(∆h) ∼ π∆pR with α = 1 has been found
for a pressurized linear elastic solid thin shell [27]. It seems that
α depends on and might be assigned as a featured parameter
to characterize the physical nature of the shell structures in
the indentation analysis. Related veiled questions include the
determination of α for vesicles in gel phase and solid capsules of
other types of constitutive relations even with consideration of
the effects of the membrane/shell thickness and viscosity. It will
be interesting and might be challenging to conduct a thorough
theoretical analysis on these aspects in the future.

Though lipid vesicles have been widely used as a minimal
biomimetic model of cells to probe the mechanical and bio-
physical features of certain cellular activities such as membrane
tubulation and endocytosis, several key differences between lipid
vesicles and animal cells limit the applicability of the current
theoretical results to measuring mechanical properties of living
cells from mechanical and biophysical viewpoints. One significant
difference is that lipid vesicles have no cellular organelles such
as nucleus and mitochondria, which could give rise to much
larger stiffness for cells upon a deep indentation. Moreover, cells
undergo shape and volume change regulated by the dynamic
cytoskeletal network [43] and passive or active ion channels [44],

which could lead to rheological behaviors and rate-dependent
responses of cells under distinct loading conditions. There are
also some special cases that the current model about nanovesicle
indentation can be generalized and become applicable in mea-
surement of cellular mechanical properties. For example, mature
red blood cells, with spectrin network attached to the membrane
but lacking cell nucleus and most organelles, can be modeled
by a lipid vesicle of a given reduced volume with actin-based
cortex (regarded as a elastic solid layer with pre-stress) assem-
bled at the inner leaflet of the vesicle. In short words, stiffness
or Young’s modulus alone is not adequate to capture the me-
chanical properties of living cells. Depending on cell types more
sophisticated models taking into account cytoskeleton mechanics,
rate-dependent behaviors and active cellular forces are required
in the determination of cell properties.

5. Conclusions

We theoretically investigate the mechanical properties of pres-
surized nanovesicles using indentation analysis. In this study,
two types of vesicles are considered, one with a prescribed area
constraint and the other subject to uniform area stretch. Using
the angle-arclength parametrization, the vesicle configurations at
small and large indentation depths and the boundary conditions
of the contact between the indenter tip and vesicle and that be-
tween the vesicle and substrate are appropriately integrated. The
indentation force–depth curves as well as the effective stiffness
and Young’s modulus of the nanovesicles at different osmotic
pressures ∆p, membrane bending rigidities κ , adhesion energy
γ of the substrate-vesicle interface and indenter tip sizes are de-
termined. A larger vesicle stiffness is expected at larger ∆p, κ and
γ . It is found that the osmotic pressure dominates the effective
stiffness or Young’s modulus of a pressurized nanovesicle over
the membrane bending rigidity, consistent with the energetic
analysis. A linear relation correlating the slope of the indentation
force–depth curve to the osmotic pressure ∆p of the vesicle at
sufficiently large depth is identified, which offers a new way
to determine ∆p from the measured force–depth data. At finite
and zero osmotic pressures, the vesicle stiffness increases and
decreases, respectively, as the vesicle size increases. Our results
show that tuning the osmotic pressure of vesicles is an effective
way to regulate the mechanical behaviors of the inter- and in-
tracellular nanovesicles which are widely used or encountered in
cell uptake, medical diagnostics, intercellular communication and
drug delivery.

Our theoretical approach is readily extended to axisymmetric
deformation of lipid membrane patches, gel phase vesicles, and
solid thin shell structures [15,27,34,41,42]. The present analysis
can serve as a foundation for future work on the cell membrane
penetration by nanoprobes and nanoparticles with consideration
of the microstructure of the deformed membrane [45–47] and on
the indentation and extraction of vesicles and cells taking into
account the viscosity associated with the membrane or the fluidic
environment [48–50], water permeation [44], and the mechanical
coupling between the cytoskeleton and membrane [33,43,51].
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