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Spherical flame initiation and propagation in particle-laden mixtures are investigated
theoretically in this work. Within the framework of constant density, large activation
energy and quasi-steady assumptions, a correlation describing spherical flame propa-
gation speed as a function of flame radius is derived. This correlation is used to assess
the influence of gas and particle properties on initiation and propagation of premixed
spherical flames. Spherical flame initiation and propagation are shown to be influenced
noticeably by the appearance of inert solid particles. It is found that the flame propa-
gation speed and temperature both decrease with increased particle heat capacity and
thermal relaxation time. A non-monotonic change of the flame propagation speed with
flame radius is observed when there are particles with large heat capacity. Further-
more, the bifurcation of flame propagation speed is observed for particles with large
heat capacity and thermal relaxation time. Within a certain flame radius range, there are
both strong and weak flame solutions. The abrupt jump from the strong flame to weak
flame results from the excessive heat loss caused by the solid particles and the energy
balance is re-established along the weak flame branch. The Lewis number strongly
affects the flame propagation speed, particularly for small thermal response time and
high particle heat capacity. Additionally, the minimum ignition energy of the particle-
laden spherical flames is found to increase with the Lewis number. At higher Lewis
number, the difference of minimum ignition energy between gaseous and particle-laden
situations becomes larger. To validate the theoretical results, one-dimensional transient
simulations of particle-laden spherical flames with detailed chemistry have been con-
ducted. Qualitative agreement is achieved for results from numerical simulations and
theoretical analysis.

Keywords: Inert solid particle; spherical flame; ignition; flame propagation; Lewis
number

1. Introduction

Gaseous combustion laden with dispersed solid particles is quite common in practical engi-
neering applications, e.g. pulverised coal combustion, sooty flames in gas turbine engines
and even in novel material synthesis. Some of these particles are burned as fuels, while
others are generated intrinsically from the combustion processes. The existence of solid
particles may result in new phenomena in the combustion process, due to the inter-phase
interactions in terms of mass, momentum and energy exchanges [1].
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For the premixed flames laden with inert solid particles, Joulin [2] and Mitani [3] the-
oretically studied the effects of heat conduction between gas and particles. They found
that the presence of solid particles leads to a considerable decrease in flame speed. When
the particle size exceeds a critical value, the variation of flame speed with particle con-
centration was not monotonic and multiplicity of the flame speed appears. However, in
the experiments of Mitani and Niioka [4], the flame speed was observed to monotonically
decrease with particle concentration. Blouquin et al. [5,6] studied the radiation-induced
dynamics of particle-laden spherical flames. Ju and Law [7] found that heat transfer caused
by the particles has a strong impact on flame temperature, flame propagation speed and
flammability limit, and it also results in various flame regimes. The inter-phase momen-
tum exchange between gas and particle phases and its effects on flame propagation and
extinction in various gravity conditions were discussed by Makhviladze et al. [8]. They
observed that the propagating flame can extinguish abruptly when the particle loading is
sufficiently large. In spite of the above previous investigations, there are still limited stud-
ies on how the solid particles affect initiation and propagation of premixed spherical flames
with positive stretch.

The propagating spherical flame has been widely used in theoretical studies because of
its simple geometry. For instance, the effects of thermal expansion and Lewis number were
discussed by Frankel and Sivashinsky [9]. Chung and Law [10] performed integral anal-
ysis for the propagating spherical flames, while Ronney and Sivashisky [11] studied the
outwardly propagating spherical flame using slowly varying flame theory. Bechtold et al.
[12–14] investigated the hydrodynamic and thermal-diffusion instabilities and the radiation
heat loss in propagating spherical flames. He [15] studied the critical conditions for spheri-
cal flame initiation in a mixture with large Lewis number and found that the conditions for
the existence of a self-sustained propagating spherical flame determine the critical power
and energy of the ignition source for successful initiation. Chen and Ju [16] found that the
spherical flame initiation was considerably influenced by fuel Lewis number and radiation
heat loss. Recently, the role of thermally sensitive intermediate kinetics in initiation and
propagation of spherical flames was discussed through considering the two-step chemistry
[17–19]. It was found that the transport and reaction of radicals have quantitative rather
than qualitative effects on ignition and spherical flame propagation.

For two-phase spherical flames, Greenberg [20] derived an evolution equation for a lam-
inar spherical flame front propagating into a spray mist cloud. Han and Chen [21] assessed
the effects of finite rate vapourisation on ignition and propagation of spherical spray flames.
Zhuang and Zhang theoretically investigated the water-droplet-laden premixed spherical
flames for fully and partially droplet distributions, and it is found that the presence of the
water droplets has significant influence on the flame initiation, propagation and extinction
[22]. For spherical flames with inert solid particles, Blouquin et al. [5,6] analytically stud-
ied the radiation heat loss effects, but the effect on flame extinction was not mentioned.
Qiao [23] has conducted a one-dimensional simulation to study the transient flame propa-
gation process and flame speed oscillation phenomenon in a carbon dust cloud. However,
to the authors’ best knowledge, no theoretical analysis was performed to understand the
influence of inter-phase coupling on spherical flame initiation and propagation.

The objective of this work is to examine the effects of chemically inert solid particles on
spherical flame initiation and propagation through theoretical analysis. The focus is on the
effects of Lewis number and solid particle properties on flame propagation, flame regime
and Minimum Ignition Energy (MIE) for the particle-laden premixed spherical flames. The
rest of the paper is structured as below. The mathematical models for the particle phase and
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gas phase are presented in Section 2, and the analytical solutions are shown in Section 3.
In Section 4, the effects of solid particle properties and gaseous species Lewis number are
assessed. The theoretical analysis is validated through the transient simulations in Section
5. Finally, the conclusions are made in Section 6.

2. Mathematical model

In this work, one-dimensional particle-laden spherical premixed flame is considered. We
assume that the thermal properties and transport coefficients are constant [7,15,16–19,24–
27,28], such as density and thermal conductivity. Chemically inert solid particles are
uniformly dispersed in the gaseous pre-mixture. The Eulerian description is adopted for
the particle phase, which is treated as an inter-penetrating continuum [1]. Due to the
dilute particle concentration, the inter-particle collisions are not considered and there-
fore the diffusion terms in the equations for particle phase are neglected. The inter-phase
kinetic equilibrium is assumed, and their velocity difference is neglected. The particles are
spherical and their properties (e.g. diameter, density and heat capacity) are assumed to be
constant. The above assumptions for the particle phase are also used in previous theoretical
work on particle-laden flames [5–7]. Radiative heat transfer is not considered in this work.
Although it may be critical for particle-laden flame dynamics as shown in Refs. [5–7], here
we mainly focus on the effects of convective heat transfer on spherical flames and the radi-
ation effects will be investigated in a future study. The validity of the above assumptions
will be further examined in Section 5 through transient numerical simulations considering
detailed chemistry and particle models.

Under the above assumptions, the equation for the gas phase temperature is

ρ̃gC̃p,g
∂T̃g

∂ t̃
= 1

r̃2

∂

∂ r̃

(
r̃2λ̃

∂T̃g

∂ r̃

)
+ q̃rω̃r − ñpq̃c, (1)

where ρ̃g is the density, C̃p,g is the gas specific heat capacity at constant pressure, λ̃ is the
thermal conductivity, q̃r is the heat release rate per unit mass of fuel, ñp is the particle
number density, ω̃r is the homogeneous reaction rate, and q̃c is the heat transfer between
gas and particle.

Since the heat conductivity in the particle phase is much faster than that in the gas phase,
the particle is assumed to have a uniform temperature. The equation for the particle phase
temperature is

Ṽpρ̃pC̃p,p
∂T̃p

∂ t̃
= q̃c, (2)

where Ṽp, ρ̃p, C̃p,p are the particle volume, density, and specific heat capacity at constant
pressure, respectively.

The heat exchange term, q̃c, in Equations (1) and (2) can be estimated through

q̃c = h̃Ãp(T̃g − T̃p), (3)

where Ãp is the surface area of a single particle, i.e. Ãp = π d̃2
p . d̃p is the particle diameter

and h̃ is the heat transfer coefficient, which is estimated using the following correlation
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from Ranz and Marshall [29]:

Nu = h̃d̃p

λ̃
= 2.0 + 0.6 Re1/2Pr1/3 (4)

where Nu, Pr and Re are the Nusselt number, Prandtl number and particle Reynolds num-
ber, respectively. We can neglect the effect of particle Reynolds number Re due to the
assumption of kinetic equilibrium and therefore Nu ≈ 2. Therefore, Equation (3) becomes

q̃c = 2π d̃pλ̃(T̃g − T̃p). (5)

For gas phase chemistry, one-step, irreversible, Arrhenius type reaction (F + O → P) is
adopted. The mass fraction equation under fuel-lean condition is for fuel F, while under
fuel-rich condition it is for oxidiser O. The respective equations for these two cases are

ρ̃g
∂ỸF

∂ t̃
= 1

r̃2

∂

∂ r̃

(
r̃2ρ̃gD̃F

∂ỸF

∂ r̃

)
− ω̃r, (6)

ρ̃g
∂ỸO

∂ t̃
= 1

r̃2

∂

∂ r̃

(
r̃2ρ̃gD̃O

∂ỸO

∂ r̃

)
− ω̃r, (7)

where ỸF and ỸO are mass fractions of fuel and oxidiser, respectively. D̃F and D̃O are mass
diffusivities of fuel and oxidiser, respectively.

The reaction rate ω̃r in Equation (1) is

ω̃r = ρ̃gÃỸα
F Ỹ 1−α

O exp(−Ẽ/R̃0T̃g), (8)

where α is 1 for fuel-lean case and 0 for fuel-rich case. The quantities Ã, Ẽ, R̃0 in Equation
(8) are the pre-factor of Arrhenius law, activation energy and the universal gas constant,
respectively.

The boundary conditions at the spherical centre (r̃ = 0) and unburned far-field (r̃ → ∞)
are specified as below

r̃ = 0 : r̃2 ∂T̃g

∂ r̃
= − Q̃

4πλ̃
, ∂ỸF/∂ r̃ = 0, ∂ỸO/∂ r̃ = 0, (9)

r̃ → ∞ : T̃g = T̃u, T̃p = T̃u, ỸF = ỸF,u, ỸO = ỸO,u, (10)

in which the subscript u denotes the unburned fresh mixture, and Q̃ denotes the energy
from the central ignition source, to mimic the external energy deposition at the spherical
centre. This ignition model is similar to the one used in the previous theoretical analysis
[15–17,30] and is adequate to obtain qualitative understanding of spherical flame initiation
and propagation, based on the numerical results in Refs. [16,17].

To improve the universality of theoretical analysis, the above equations and boundary
conditions can be normalised. The reference variables are introduced, including the adia-
batic planar gaseous flame speed ũad , the adiabatic planar gaseous flame temperature T̃ad ,
the flame thickness l̃ad and other relevant quantities at the unburned zone (i.e. T̃u, ỸF,u and
ỸO,u).
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For the reference variables ũad , T̃ad and l̃ad , they can be expressed as [25]

ũad =
[

2λ̃Leα
FLe1−α

O

ρ̃gC̃p,gZ2
Ã exp

(
− Ẽ

R̃0T̃ad

)] 1
2

, T̃ad = T̃u + q̃rỸα
F,uỸ 1−α

O,u

C̃p,g
, l̃ad = λ̃

ρ̃gC̃p,gũad

,

(11)
where Z = Ẽ(T̃ad − T̃u)/R̃0T̃2

ad is the Zel’dovich number. Le is the Lewis number of the
deficient species (fuel or oxidiser).

With the above reference variables, the following normalisation can be made

r = r̃

l̃ad

, t = t̃

l̃ad/ũad

, Tg = T̃g − T̃u

T̃ad − T̃u

, Tp = T̃p − T̃u

T̃ad − T̃u

, YF = ỸF

ỸF,u
, YO = ỸO

ỸO,u
, u = ũ

ũad
.

(12)
Substituting Equation (12) into Equations (1), (2), (6) and (7) yields the following
dimensionless equations for gas and particle phases

∂Tg

∂t
= 1

r2

∂

∂r

(
r2 ∂Tg

∂r

)
+ ωr − CK(Tg − Tp)

Z
, (13)

∂YF

∂t
= Le−1

F

r2

∂

∂r

[
r2 ∂YF

∂r

]
− ωr, (14)

∂YO

∂t
= Le−1

O

r2

∂

∂r

[
r2 ∂YO

∂r

]
− ωr, (15)

∂Tp

∂t
= K(Tg − Tp), (16)

where the non-dimensional quantities present in Equations (13)–(16) are

ωr = 1

2Leα
FLe1−α

O

Yα
F Y 1−α

O Z2 exp

(
Z(Tg − 1)

σ + (1 − σ)Tg

)
, (17)

σ = ρ̃ad

ρ̃u
= T̃u

T̃ad

, (18)

K = λ̃2/(ρ̃gC̃p,gũ2
ad)

C̃p,pρ̃pd̃2
p/12

= λ̃

(1/6)d̃2
p ρ̃pC̃p,pLeα

FLe1−α
O Ã

Z2 exp(
Ẽ

R̃0T̃ad

), (19)

C = Z
ñpρ̃pC̃p,pπ d̃3

p/6

ρ̃gC̃p,g

, (20)

where ωr is the non-dimensional reaction rate, σ is thermal expansion ratio, K (termed
as ‘particle thermal relaxation time’ hereafter) is the ratio of the residence time in the
preheat zone to the thermal relaxation time of the particles, while C (termed as ‘particle
heat capacity’ hereafter) is the ratio of heat capacity of particles to the heat capacity of gas
mixture [7]. For parameter K, it essentially denotes the response time of the solid particle
to reach thermal equilibrium with the local gas mixture. The lower K, the longer thermal
response time, and therefore the lower heat exchange rate and slower change rate of gas
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temperature. For the parameter C, it quantifies the relative magnitudes of heat capacities of
the particle and gas phases. Noticeably, C is also a function of particle number density ñp.
Specifically, the lower C, the smaller the reduction of gas temperature for a fixed amount
of heat transferred from the gas to particles, and accordingly the less obvious the effects
of solid particles on the gas phase. Note that the particle temperature is only affected by
K, whilst the gas phase temperature is affected by both C and K. Their influences on flame
initiation and propagation will be discussed in detail in Section 4.

The typical values for the above particle properties, i.e. C and K in Equations (19) and
(20), can be estimated, assuming that they are dispersed in a hydrogen/air combustion sys-
tem. The particle diameter and number density of interest range from 10 to 100 µm and
1000–10,000 cm−3, respectively. The material density of the solid particle is assumed to
be 1,500kg/m3, while the specific heat capacity is 500 J/(kg·K). For stoichiometric H2/air
flames, the laminar flame speed ũad is about 2.15 m/s, the density of the pre-mixture ρ̃g is
around 0.24 kg/m3, the heat capacity C̃p,g is about 5000 J/(kg K), and the heat conductivity
λ̃ is 0.18 W/(m K). These parameters are extracted from our transient numerical simu-
lations in Section 5. The relevant ranges of C and K corresponding to variable particle
diameters and number densities are 0.003-70 and 0.01-1, respectively.

The dimensionless boundary conditions, corresponding to Equations (9) and (10), are

r = 0 :
r2dTg

∂r
= −Q,

dYF

∂r
= dYO

∂r
= 0, (21)

r → ∞ : Tg = Tp = 0, YF = 1, YO = 1. (22)

The dimensionless ignition energy Q in Equation (21) is

Q = Q̃

4π l̃ad λ̃(T̃ad − T̃u)
. (23)

To further simplify the theoretical analysis, we study the propagating spherical flame in the
coordinate attached to the moving flame front r = R(t) (dimensionless form). Accordingly,
the spatial coordinate is transformed into η = r − R(t). Meanwhile, since the critical flame
radius for propagating spherical flames is larger than the flame thickness, the time scale
based on the critical flame radius is larger than the flame transient time. Therefore, the
propagation of the flame front can be considered as in a quasi-steady state in η coordinate
system [15]. The steady-state assumption has been successfully used in the theoretical anal-
ysis of premixed flames in both purely gaseous [9,15–19,24,25] and two-phase [7,21,22]
pre-mixture. In addition, its validity has been confirmed from the previous studies through
transient numerical simulations [15–18]. With the above assumptions, the equations for the
gas phase and particle phase can be rewritten in η coordinate system as

− U
dTg

dη
= 1

(η + R)2

d

dη

[
(η + R)2 dTg

dη

]
+ ωr − CK(Tg − Tp)

Z
, (24)

− U
dYF

dη
= Le−1

F

(η + R)2

d

dη

[
(η + R)2 dYF

dη

]
− ωr, (25)

− U
dYO

dη
= Le−1

O

(η + R)2

d

dη

[
(η + R)2 dYO

dη

]
− ωr, (26)
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− U
dTp

dη
= K(Tg − Tp), (27)

in which U = dR(t)/dt is the flame propagating speed and the non-dimensional
boundary conditions in the new coordinate η = r − R(t) read

η = −R : (η + R)2 dTg

dη
= −Q,

dYF

dη
= dYO

dη
= 0, (28)

η → ∞ : Tg = Tp = 0, YF = 1, Yo = 1. (29)

3. Theoretical analysis

3.1. Analytical solution

The large activation energy assumption is applied in this study. With this, chemical reac-
tions are assumed to be confined at an infinitesimally thin flame sheet (η = 0). This
simplification is used for theoretical analysis of both gaseous [15–19] and particle- or
droplet-laden [5–7,20–22] flames, and is shown to be adequate to predict the main char-
acteristics of flame dynamics, such as ignition and propagation. Therefore, the governing
equations for gas and particle phases in the burned zone (η < 0) and unburned (η > 0)
zone read

− U
dTg

dη
= 1

(η + R)2

d

dη

[
(η + R)2 dTg

dη

]
− CK(Tg − Tp)

Z
, (30)

− U
dYF

dη
= Le−1

F

(η + R)2

d

dη

[
(η + R)2 dYF

dη

]
, (31)

− U
dYO

dη
= Le−1

O

(η + R)2

d

dη

[
(η + R)2 dYO

dη

]
, (32)

− U
dTp

dη
= K(Tg − Tp). (33)

At the flame front (η = 0), the following jump conditions hold [25]

Tg = Tf , [Tp] = 0, Yα
F Y 1−α

O = 0, (34)

dTg

dη
|0+ − dTg

dη
|0− = 1

Leα
FLe1−α

O

(
d(Yα

F Y 1−α
O )

dη
|0+ − d(Yα

F Y 1−α
O )

dη
|0−

)

= [σ + (1 − σ)Tf ]2 exp

[
Z

2

Tf − 1

σ + (1 − σ)Tf

]
. (35)

The subscript ‘0+’ denotes the quantities at the unburned size of the flame front, while
‘0–’ denotes the quantities at the burned side. One can obtain the exact solutions through
analytically solving Equations (30)–(33) with the boundary conditions, i.e. Equations (28)
and (29), and jump conditions, i.e. Equations (34) and (35), and their exact solutions will
be given below.
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The analytical expressions of particle temperature Tp read

Tp(η) =

⎧⎪⎪⎨
⎪⎪⎩

C1I1(η) − (C1 − C2)

[
I ′
1(0)

I ′
2(0)

I2(η) + I1(0)

]
−R < η < 0.

− Tf
U
K I ′

1(0) − I1(0)
I1(η) 0 < η < ∞.

(36)

Substituting Equation (36) into Equation (27), we can obtain the solutions of gas
temperature Tg as

Tg(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C1

[
I1(η) − U

K
I ′
1(η)

]

−(C1 − C2)

[
I ′
1(0)

I ′
2(0)

(
I2(η) − U

K I ′
2(η)

)+ I1(0)

]
−R < η < 0.

− Tf
U
K I ′

1(0) − I1(0)
I1(η) + Tf

I ′
1(0)− K

U I1(0)
I ′
1(η) 0 < η < ∞,

(37)

where C1 and C2 are the constants with the following expressions

C1 =
KQ(K + U2)


( √
Z(K+U2)√

4CKU2+Z(K+U2)
2

)

U
√

4CKU2

Z + (K + U2)
2

, (38)

C2 = KTf

KI1(0) − UI1
′(0)

. (39)

In Equations (36) and (37), I1(η) and I2(η) take the following form

I1(η) =
∫ ∞

η

⎧⎪⎪⎨
⎪⎪⎩

1

s + R
exp

⎡
⎢⎢⎣−

(s + R)

(√
4CKU2 + Z(K + U2)

2 + √
Z(U2 − K)

)
2U

√
Z

⎤
⎥⎥⎦

× F2

⎛
⎝ √

Z(K + U2)√
4CKU2 + Z(K + U2)

2
, 0,

(R + s)
√

4CKU2 + Z(K + U2)
2

U
√

Z

⎞
⎠
⎫⎬
⎭ ds,

(40)

I2(η) =
∫ η

0

⎧⎪⎪⎨
⎪⎪⎩

1

s + R
exp

⎡
⎢⎢⎣−

(s + R)

(√
4CKU2 + Z(K + U2)

2 + √
Z(U2 − K)

)
2U

√
Z

⎤
⎥⎥⎦

× G

⎛
⎝−

√
Z(K + U2)√

4CKU2 + Z(K + U2)
2

, −1,
(R + s)

√
4CKU2 + Z(K + U2)

2

U
√

Z

⎞
⎠
⎫⎬
⎭ ds,

(41)
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where

F2(a, b, c) = 1


(a)

∫ ∞

0
e−ctta−1(1 + t)b−a−1dt, (42)

G(a, b, c) = 
(a + b + 1)


(a + 1)
F1(−a, b + 1, c), (43)

F1(a, b, c) = 
(b)


(b − a)
(a)

∫ 1

0
ectta−1(1 − t)b−a−1dt, 
(z) =

∫ ∞

0

tz−1

et
dt. (44)

In Equations (42) and (43), F1(a, b, c) is the confluent Hypergeometric function of the
first kind, F2(a, b, c) is the confluent Hypergeometric function of the second kind and G(a,
b, c) is the generalised Laguerre function [31]. In addition, in Equations (36) and (37),
I1

′(η) and I2
′(η) are the first derivatives of I1(η) and I2(η), respectively.

The distributions of fuel (fuel-lean condition) or oxidiser (fuel-rich condition) mass
fraction in burned (−R < η < 0) and unburned (0 < η < ∞) zones are

Y{F,O}(η) =

⎧⎪⎨
⎪⎩

0 −R < η < 0,

1 −
∫∞
η+R ξ−2 exp(−ULe{F,O}ξ)dξ∫∞
R ξ−2 exp(−ULe{F,O}ξ)dξ

0 < η < ∞.
(45)

Here the subscripts in the brackets, ‘F’ and ‘O’, for both Y and Le denote fuel and oxidiser,
respectively.

The correlation between flame propagation speed U, spherical flame radius R, and flame
temperature Tf can be derived based on the jump condition, Equation (35), which reads
(I

′′
1(η) and I

′′
2(η) are the second derivatives of I1(η) and I2(η), respectively)

C1

[
I ′
1(0) − U

K
I

′′
1(0)

]
− (C1 − C2)

[
I ′
1(0)

I ′
2(0)

(
I ′
2(0) − U

K
I

′′
2(0)

)]

− Tf

I1(0) − U
K I ′

1(0)

(
−U

K
I

′′
1(0) + I ′

1(0)

)

= [σ + (1 − σ)Tf ]2

= 1

Le{F,O}

R−2 exp(−ULe{F,O}R)∫∞
R s−2 exp(−ULe{F,O}s)ds

exp

[
Z

2

Tf − 1

σ + (1 − σ)Tf

]
. (46)

Therefore, the general theory describing initiation and propagation of spherical flames
in a premixed gas mixture with inert solid particles has been derived. The effects of the
Lewis number of fuel or oxidiser (Le), particle heat capacity (C), particle thermal relax-
ation time (K) and central ignition power (Q) can be investigated. Through numerically
solving Equation (46), the relation between flame propagation speed U, flame radius R and
flame temperature Tf at different flame regimes can be analysed, considering the different
foregoing parameters. Note that with this correlation, both fuel-rich and fuel-lean situa-
tions can be studied. However, it can be seen that their equations literally take the identical
form. As a result, the Lewis numbers of the fuel and oxidiser, LeF and LeO, will be not
discussed separately in the following; instead, only Le is used for brevity. The current the-
oretical analysis can recover the results for particle-free spherical flames when the limit
of CK → 0 is taken in Equation (30), which corresponds to that from Refs. [16,28]. For
Zel’dovich number and thermal expansion ratio in Equation (46), they are set to be Z = 10
and σ = 0.15, following the values used in our previous theoretical analysis [16,25].
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4. Results and discussion

4.1. Effects of particle thermal relaxation time

The flame propagation speed and flame temperature as functions of the flame radius with
various particle thermal relaxation time (i.e. quantified by the parameter K) are shown in
Figure 1(a and b), respectively. Here the ignition energy Q is set to be zero, particle heat
capacity C = 1, and the Lewis number Le = 1. It can be seen from Figure 1(a) that, in
purely gaseous case, the flame propagation speed gradually increases with the flame radius
and approaches a constant value when the flame radius is large, which is close to the speed
of freely propagating planar flames (in the limit of R → +∞). This tendency is consistent
with the findings from the previous theoretical analysis [16,17]. However, when the inert
solid particles are present, the flame propagation speed is decreased, and the higher the
value of K, the smaller the flame propagating speed U. This can be justified by the fact
that larger K means the shorter thermal response time, and therefore faster heat exchange
rate between the gas phase and particle phase, which weakens the gas phase reaction and
reduces flame propagation speed.

Besides, the change of flame propagation speed with K is not monotonic, as shown in
Figure 1(a). When K is small (say 0.01) or large (10), the reduction of propagation speed is
relatively smaller than that corresponding to intermediate K. When K is further increased to
100, the results are nearly the same as those for K = 10. This implies that when the particle
relaxation time is very short (large K) and very long (small K), variation of this time scale
only leads to small change of flame propagation speed. Figure 1(b) shows that the flame
temperatures as a function of flame radius for different K. The temperature of a purely
gaseous case is always unity. However, for the particle-laden cases, the flame temperature
is decreased with increased particle K (i.e. decreased particle thermal relaxation time).

4.2. Effects of particle heat capacity

The flame propagation speed and flame temperature as functions of the flame radius with
various values of particle heat capacity (i.e. the parameter C) are shown in Figure 2. Here
Q = 0, K = 0.1, and Le = 1 are assumed. When C is relatively small (e.g. C = 1 in
Figure 2), the flame propagation speed continuously increases as the flame propagates
outwardly and approaches the planar flame speed (U = 1). This is similar to the results
of purely gaseous flames, as indicated in Figure 1(a). However, when C = 3, the flame
propagation speed exhibits a non-monotonic behaviour. Specifically, it first increases, then
decreases and finally is close to a constant small value (about 0.18) at large radii. This is
also observed when C = 5 in Figure 2(a). It is noted that, according to Equation (20), the
parameter C represents the ratio of the heat capacity of the particles to the heat capacity of
the gas mixture. The larger the value of C, the more heat the solid particles can store, and
hence the more heat loss from the gas phase. Consequently, the flame propagation speed
and flame temperature decrease (see Figure 2(b)). The non-monotonic behaviours about
the flame propagation speed when the particle heat capacity C is large will be discussed in
Section 4.3.

Figure 3 shows the flame propagation speed as a function of the flame radius with
K = 0.025. New patterns and bifurcations of U–R solution curves appear in this condi-
tion. When C = 4, the spherical flame can successfully evolve into a planar flame. Here it
is still monotonic even if C = 4, which has already led to a non-monotonic behaviour with
K = 0.1 as indicated in Figure 2(a). This is due to the smaller K value here, indicating
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Figure 1. (a) Flame propagation speed and (b) flame temperature as functions of flame radius for
Q = 0, C = 1, Le = 1, and different values of K.

the longer particle thermal relaxation time. Accordingly, the induced heat transfer rate is
smaller, which dominates the effects from increased C (enhance the particle heat capacity
and therefore weaken the spherical flame). For C = 6.3, two separate flame branches can
be seen: the upper branch is stable, whereas the lower one has both stable and unstable
solutions. When C is between 6.5 and 6.9, only one curve exists with upper stable strong
flame, middle unstable flame and lower stable weak flame. Therefore, for 6.3 < C < 6.9
the flame bifurcates and multiplicity of the flame propagation speed U occurs, which was
also found by Ju et al. in the theoretical analysis of particle-laden premixed planar flames
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Figure 2. (a) Flame propagation speed and (b) flame temperature as functions of flame radius for
K = 0.1, Le = 1, Q = 0, and different values of C. The solid circles in (a) indicate the flame radii,
used for flame structure analysis in Figure 4.

[7]. It is noticeable from Figure 3 that extinction of a propagating flame would occur when
6.5 ≤ C ≤ 6.9. Take the curve of C = 6.5 as an example, the flame propagation speed
gradually increases with increased radius, and then reaches the maximum when R ≈ 100,
which corresponds to a critical state. As the flame propagates further, it jumps from the
upper stable strong branch to the lower stable weak branch. The flame propagation speed
along the lower branch is much lower than that of the upper flame branch. However, when
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Figure 3. Flame propagation speed as a function of flame radius for K = 0.025, Le = 1, Q = 0,
and different values of C. Circles indicates the turning points for flame bifurcations. A: upper stable
flame; B: unstable flame; C: lower stable flame.

C is further increased (e.g. C ≥ 7.1 in Figure 3), the above foregoing flame bifurcation
and multiplicity cannot be seen; instead, non-monotonicity of flame propagating speed U
appears, similar to the results of C = 3 in Figure 2(a).

4.3. Non-monotonicity and bifurcation of particle-laden spherical flames

The results in Section 4.2 show that in the case of K = 0.1 and C = 3 (in Figure 2),
the non-monotonic behaviour of the propagation speed is observed for travelling particle-
laden spherical flames. Also, under the condition of K = 0.025 and 6.5 ≤ C ≤ 6.9
(in Figure 3) discussed in Section 4.2, flame bifurcation occurs with three various flame
regimes and sudden shift from the strong to weak flames is observed. In this Sub-section,
these two phenomena are investigated through analysing the corresponding temperature
distributions.

Figure 4 shows the spatial distributions of gas and particle temperatures at four selected
flame radii (R = 4, 8, 25 and 63) with the non-monotonic behaviours of U, which have
been marked by solid circles in Figure 2(a). Note that the first two radii correspond to the
solution curves with increasing U, while the latter two are from the solutions with declining
U. It can be seen that as the spherical flame expands outwardly, the temperature of the
particle in the post-flame region increases due to the heating from the hot burnt gas, while
the temperatures of the flame front and the gas phase decrease. Due to the intermediate
particle thermal response time (K = 0.1 in Figure 2(a)), the particles cannot quickly reach
the thermal equilibrium with the surrounding gas. In the meantime, for spherical flames
with small radii, there are limited particles inside, so the heat exchange is comparatively
small. Therefore, at the early stage, the flame propagation speed can continuously increase.
Nevertheless, as the flame expands further outwardly, the number of particles within the
spherical flame is increased. When the energy from the chemical reaction cannot afford
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Figure 4. Distributions of gas and particle temperatures at four flame radii R = 4, 8, 25 and 63
(indicated in Figure 2(a) with solid circles). Here K = 0.1 and C = 3.

the excessive heat loss of the gas phase, the flame speed decreases towards a low value.
However, no extinction is observed here (see Figure 2(a)), and the spherical flame can still
sustain itself towards planar flame limit with low speed. This indicates that the energy from
the chemical reactions and the heat loss due to the exchange between two phases can reach
a new balance characterised by relatively low flame propagating speed as demonstrated in
Figure 2.

Along the U-R curve of K = 0.025 and C = 6.7 in Figure 3, we selected five radii to
plot their temperature distributions in Figure 5. For R = 6, it lies at the upper stable flame
branch, while for R = 20 and 32, they correspond to the lower weak stable flame branch.
At R = 15, two points are selected for discussion here, one at the turning point, whilst
the other at the lower flame branch. It is found from Figure 5 that the temperature distribu-
tions along the upper and lower flame branches have a pronounced difference. Specifically,
the particle temperatures along the upper flame branch are significantly lower than the
gas temperature. Furthermore, this inter-phase temperature difference always exists with
an increased flame radius, e.g. from R = 6–15. The particle temperatures from the lower
flame branch considerably increase, and also the temperature difference between the two
phases decreases. For R = 15, when the flame is at the upper branch, its temperature is not
significantly reduced than that at R = 6. In addition, the gas temperature is consistently
higher than the particle temperature. When it jumps to the lower branch (R > 15), the gas
temperature is significantly reduced, whereas the particle temperature is increased.

The evolutions of the temperatures of both phases along the upper stable branch can
be justified by the smaller value of K (i.e. 0.025) in this case, indicating the relatively
longer particle thermal relaxation time. This results in slower heat transfer between the
two phases, so the particle temperature is smaller and the temperature difference between
two phases for the shown radius range is more pronounced. When the spherical flame
propagates outwardly, its radius increases and more particles travel through the flame front
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Figure 5. Distributions of gas and particle temperature at various flame radii R = 6, 15, 20 and 32.
For R = 15, there are two selected radii, at upper and lower branches, respectively. Here K = 0.025
and C = 6.7.

and are dispersed in the burned zone. When a critical amount of solid particles is involved,
the heat transfer between gas and particle may lead to excessively energy loss in the gas
phase. In this scenario, the energy released from the chemical reaction cannot support the
self-sustained propagation of the spherical flame. A sudden decrease in flame propagation
speed and temperature would help to build a new equilibrium between two phases along
the lower weak flame branch, see the temperature distributions at three radii (R = 15, 20
and 32) along the weak flame branch.

In summary, the flame bifurcation phenomenon, which results in the jump from strong
flame to weak flame, occurs under the combined conditions of a small K value and a large
C value. A small K represents a large particle thermal response time, whilst a large C
indicates a high particle heat capacity and therefore large total heat loss for the gas phase.
This combination can make the heat exchange effect comparatively small at the initial
stage, so the flame propagation speed continuously increases. When the spherical flame
propagates at a large radius, the gas heat loss becomes large due to accumulated solid
particles, and the flame cannot sustain itself, and then sudden transition occurs from strong
to weak flames.

4.4. Effects of Lewis number

The influence of the Lewis number on the flame propagation is investigated here with
K = 0.1, C = 1 and Q = 0. Figure 6(a) shows the flame propagation speed as a function
of radius for Le = 0.5, 1 and 2. For comparisons, the gaseous flames with the same Le
numbers are also shown. It is well known that for gaseous flames the influences of the
stretch rate on the flame propagation speed are highly dependent on the Lewis number Le
[16,17,32]. As presented in Figure 6(a), the particle-laden spherical flame has similar prop-
agation behaviours to those of gaseous flames with the same Lewis numbers. The inclusion
of inert solid particles does not qualitatively change the shapes of U-R curves for the same
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Figure 6. Flame propagation speed as a function of the flame radius with different Lewis numbers
(Le = 0.5, 1 and 2). (a) K = 0.1 and C = 1; (b) K = 0.025 and C = 6.5. Particle-free cases with
Le = 0.5, 1 and 2 are also shown for comparisons.

Lewis numbers. However, generally, the flame propagation speed is reduced in particle-
laden cases compared to that in gaseous cases. This is caused by the heat loss effects from
the solid particles. Exceptions are the propagation speed of spherical flames with small
radius and Lewis number (say Le = 0.5 in Figure 6(a)), where negligible reduction can
be observed for R < 5. In this case, the enhancement of the flame propagation speed due
to the positive stretch and smaller Lewis number may dominate the particle-induced heat
loss, and therefore the influences from the latter are relatively small.
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Figure 6(b) shows the flame propagation speed from the case of K = 0.025, C = 6.5 and
Q = 0. The Lewis number considerably affects the U-R curves from the particle-laden
and particle-free cases. For Le = 0.5, there are three flame speeds when R is large (say
R = 103) and they are from upper stable branch, middle unstable branch and lower stable
branch, respectively. The latter two are not present in the gaseous flame with Le = 0.5.
For Le = 1, the jump from the upper branch to lower stable branch occurs, which has
been discussed in Figure 3, and there is only one flame speed for the large radius (e.g.
R > 200). When Le = 2, the flame propagation speed is very low, and only one branch
appears. Therefore, the dependence of flame propagation speed on the flame radius can be
affected by the Lewis number qualitatively and/or quantitatively due to the heat loss from
the solid particles.

4.5. Effects of central ignition energy

In this Sub-section, the effects of central ignition energy Q on propagation of the spherical
flame with inert solid particles are investigated. Figure 7(a and b) show the flame prop-
agation speeds as functions of flame radius for gaseous flame and particle-laden flame,
respectively. Here, Le = 1, K = 0.1 and C = 1 are assumed. Overall, in this case, the
presence of the inert particles does not change the pattern of the U–R curves. It can be
seen from Figure 7 that, besides the right travelling flame branch, the left flame kernel
branch at small radii arises due to the deposition of ignition energy Q at the spherical cen-
tre. When Q is small, along the flame kernel branch, the flame propagation speed rapidly
decreases to zero and the flame is extinguished at the flame ball radius (corresponding
to U = 0). This corresponds to ignition failure of the spherical flame. The critical radius
of the right branch is reduced compared to that with Q = 0. As the ignition energy Q is
further increased, the two branches become close, finally merge and form a curve. This
corresponds to the critical successful ignition of the spherical flame. In this situation, the
spherical flame is initiated from the flame kernel, then propagates outwardly and finally
approaches the planar flame. For both cases, the MIE is close, i.e. Qmin = 0.065 for the
pure gas flame while Qmin = 0.068 for the particle-laden flame. However, as shown in
Figure 7(a and b), the flame propagation speed of travelling branch in the particle-laden
case is lower than that in the gaseous case, caused by the heat loss from the inert solid
particles.

The results of Lewis number Le = 2 are shown in Figure 8. Similar to Figure 7,
Figure 8(a and b) correspond to gaseous and particle-laden cases, respectively. Here the
travelling flame branch is C-shaped, different from the results in Figure 7. It is worth not-
ing that when Lewis number Le is large (e.g. here Le = 2), increasing the ignition energy
has a limited effect on the right branch. Conversely, with increased Q, the left branch con-
tinuously moves to the right branch and finally merges into one curve, which corresponds
to successful ignition. By comparing the two cases in Figure 8(a and b), it is also found
that the presence of inert particles does not qualitatively change the flame bifurcation, but
leads to an increase of MIE (from 1.97 in the purely gaseous case to 2.4 in particle-laden
case).

Figure 9 demonstrates the MIE Qmin as a function of Lewis number Le. Here Qmin is
calculated through the calculations of U–R curves using the trial-and-error method, with
relative error less than 5%. Both gaseous and particle-laden flames are considered. For the
latter, K = 0.1 and C = 1 are assumed. As in Figure 9, for both situations, Qmin increases
with Lewis number. This tendency is also observed in ignition of particle-free gaseous
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Figure 7. Flame propagation speed as a function of flame radius for (a) gaseous flame and (b)
particle-laden flame. For the particle-laden case, Le = 1, K = 0.1, and C = 1 are assumed.

spherical flames through our recent theoretical analysis [16,17]. When Lewis number is
less than 1.7 as shown in Figure 9, MIE corresponding to both cases is close to each
other. Nevertheless, when it is greater than 1.7, the MIE difference between them starts
to increase with Lewis number. For the spherical premixed flames, when Lewis number
increases, the extent to which they are weakened by the combined effects of Lewis num-
ber and the positively stretched rate becomes large. In this situation, the influences of the
particles dispersed in the pre-mixture on MIE are pronounced.
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Figure 8. Flame propagation speed as a function of flame radius for (a) gaseous flame and (b)
particle-laden flame. For the particle-laden case, Le = 2, K = 0.1, and C = 1 are assumed.

5. Numerical validation

Assumptions, such as quasi-steady-state and large activation energy, are introduced to
perform the above theoretical analysis. To examine the validity of the findings from the
above analysis, transient simulations of particle-laden spherical premixed flames are per-
formed with a time-accurate and space-adaptive numerical solver, A-SURF [17,32–34].
The accuracy of A-SURF on propagating gaseous spherical flames has been validated
extensively in previous studies [17,32–34]. The Eulerian solver for the particle phase is
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Figure 9. Minimum ignition energy as a function of Lewis number for gaseous and particle-laden
flames. For the particle-laden case, K = 0.1 and C = 1 are assumed.

implemented in A-SURF, and two-way coupling is performed between the gas phase and
solid particle phase, in terms of mass, momentum, and energy exchanges. The governing
equations and sub-models in the Eulerian solver for the solid particle phase are detailed in
the supplemental document.

In our simulations, the computational domain is set to be 0 ≤ r ≤ 100cm and the
minimum mesh size is 8 µ m. The boundary conditions at the left (r = 0) and right
(r = 100 cm) are set to be zero gradient. The gas mixture is initially quiescent with 300 K
and 1 atm. The initial particle temperature is 298 K and the number density is 8000 1/cm3.
The mixture is composed of H2/O2/Ar/He. Ar and He account for 70% (by vol.) in total,
and the equivalence ratio is fixed to be 2. A detailed chemical mechanism developed by Li
et al. [35] is used in the simulations.

To mimic spark ignition, an energy source is placed at the left boundary (i.e. at spherical
centre r = 0) to provide an energy deposition lasted for a given ignition time τig as [36]

qig(r, t) =

⎧⎪⎨
⎪⎩

Eig

π1.5r3
igτig

exp

[
−
(

r

rig

)2
]

if t < τig,

0 if t ≥ τig,

(47)

where Eig is the total ignition energy and rig is the ignition kernel radius. In this study, τig =
200 µ s and rig = 200 µ m are assumed, following Chen et al. [37]. Unless otherwise stated,
the total ignition energy Eig used is sufficiently large, i.e. 0.8 mJ, to achieve successful
ignition.

Here the effects of particle thermal response time, particle heat capacity and mixture
Lewis number on initiation and propagation of spherical flames will be investigated. The
Lewis number can be adjusted through changing the helium volumetric fraction in the
mixture of H2/O2/Ar/He, since the thermal diffusivity of the pre-mixture increases due
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Figure 10. Flame propagation speed as a function of flame radius for different (a) particle
diameters (with fixed C̃p,p = 500 J/kg/K) and (b) particle heat capacity (with fixed d̃p = 30 μm).

to the large helium fraction [37]. For particle heat capacity, three values (500, 1000 and
1500 J/kg/K) are selected to examine its influence on spherical flame propagation. The
particle thermal response time can be estimated as [1]

τT = ρ̃pC̃p,pd̃2
p

12λ̃
, (48)
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Figure 11. Distributions of gas and particle temperatures with different (a) particle diameters (with
fixed C̃p,p = 500 J/kg/K) and (b) heat capacities (with fixed d̃p = 30 μm).

which shows that the thermal response time τT is a function of the particle heat capacity and
diameter. Therefore, we will also study the particle diameter effects on the initiation and
propagation of spherical flames. In general, larger particles have a longer thermal response
time, indicating that it takes a longer time to establish the thermal equilibrium between the
gas and particle phases.

Figure 10 shows the flame propagation speed as a function of flame radius with vari-
ous values of particle diameter and heat capacity. The solid particles show a significant
influence on the propagation of spherical flames, which can be clearly seen in Figure 10
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Figure 12. Minimum ignition energy as a function of helium volumetric fraction in the initial
mixture.

through comparisons with the purely gaseous flames. Specifically, the increase in the par-
ticle diameter and heat capacity could lead to a decrease in the flame propagation speed.
When the particle diameter is small (say 10 µ m in Figure 10), the reduction of the flame
propagation speed is comparatively small. When the diameter is further increased, the
propagation speed is substantially reduced, e.g. approximately 15% for 30 µ m and 38%
for 50 µ m compared to that of purely gaseous flame. For the selected particle heat capacity
in Figure 10(b), the propagation speed is decreased by about 15%, 20% and 23%, respec-
tively, compared to the gaseous flame situation. Since particle diameter and heat capacity
are directly related to the thermal response time as given in Equation (48), the observa-
tions made here are qualitatively consistent with those from the theoretical analysis shown
in Figure 1 and 2.

Figure 11 shows the spatial distributions of gas and particle temperatures in propagat-
ing spherical flame laden with solid particles of different diameters and heat capacities.
Here the estimated particle thermal relaxation time K from Equation (19) is between 0.013
and 0.95. All the results in Figure 11 correspond to t = 0.01 s (t = 0 s corresponds to the
flame initiation time). For small particles with diameter of 10 µ m, the temperature differ-
ence between gas and solid particles in the burned zone is negligible, which implies that
the thermal response time is short and the equilibrium has been established for the shown
radius range. When the diameter is increased, both gas and particle temperatures are con-
siderably reduced. The gas temperature gradients in the burned zones become steeper with
increased diameter, which would further cool down the flame through heat conduction.
The distance behind the flame front to reach the thermal equilibrium is longer with a larger
particle diameter. Since all the results shown in Figure 11(a) are from t = 0.01 s, one can
also observe that the increased particle diameter slows down the propagating spherical
flames, which is in line with what is shown in Figure 10(a). In addition, one can see from
Figure 11(b) that increased particle heat capacity leads to lower gas temperature in the
burned zone and therefore larger gas temperature gradient, although the temperature at the
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flame front is negligibly affected. Compared to the particle diameter, heat capacity shows
a comparatively small influence on flame propagation speed, which is also presented in
Figure 10.

Plotted in Figure 12 is the MIE as a function of helium volumetric fraction in the particle-
laden mixture. Here the particle diameter is assumed to be 30 μm. For comparisons, the
MIEs from gaseous flames are also plotted in Figure 12. The MIE is determined through
the method of trial-and-error with relative error less than 5%. As the helium volumetric
fraction is increased (indicating the increased Lewis number here), the MIE monotoni-
cally increases for the shown range of helium fractions. This tendency is also found for
gaseous flame case, as shown in Figure 12. Nevertheless, the MIEs of the particle-laden
mixture are about 40–50% higher than those of gaseous flames. When the volumetric
fraction of helium is larger than 60%, the particle-laden mixture is very difficult to be
ignited, quantified by the considerably increased MIE ( > 10 mJ). Their MIEs are not indi-
cated in Figure 12. As such, the dependence of MIE on the Lewis number indicated from
the present numerical simulations is qualitatively in accordance with theoretical results in
Figure 9.

6. Conclusions

Initiation and propagation of spherical flames laden with chemically inert solid parti-
cles are investigated theoretically. Within the framework of large activation energy and
quasi-steady assumptions, a correlation describing spherical flame propagation speed as a
function of flame radius is derived. With this correlation, the influences of gas and particle
properties (e.g. Lewis number, particle thermal response time and heat capacity) on the
initiation and propagation of spherical flames can be assessed.

The results indicate that particle thermal response time could affect the heat transfer
between gas and particle phases, and a higher thermal response time leads to a faster rate
to reach the thermal equilibrium. In addition, particle heat capacity quantifies the heat stor-
age capacity, and more heat is transferred from the gas to the particle with a higher particle
heat capacity. Therefore, the flame propagation speed and temperature are decreased with
increased particle thermal response time and heat capacity. A non-monotonic variation
of the flame propagation speed is observed for large particle heat capacity. This can be
justified by the balance between heat release from chemical reactions and heat loss due
to the gradually increased solid particles in the burned zone of an outwardly propagat-
ing spherical flames. In addition, multiplicity and bifurcation of flame propagation speed
are present under some critical conditions (e.g. large particle heat capacity and thermal
relaxation time). This is caused by the combined effects of large particle heat capacity and
thermal relaxation time, which results in the excessive heat loss from the solid particles
and therefore flame extinction occurs. The Lewis number strongly affects the flame propa-
gation speed, particularly for small thermal response time and high particle heat capacity.
Besides, the minimum ignition energy of the particle-laden flames is shown to increase
with the Lewis number. With the increase of Lewis number, the difference of minimum
ignition energy between gaseous and particle-laden spherical flames increases.

It is noted that the theoretical analysis is constrained by constant-density, quasi-steady
and large activation energy assumptions. To confirm the validity of theoretical prediction,
one-dimensional transient numerical simulations of particle-laden spherical flames with
detailed chemistry and Eulerian particle model have been conducted to examine the effects
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of Lewis number and solid particle properties on initiation and propagation of spherical
flames. The numerical results agree qualitatively with those from theoretical analysis.
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