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ARTICLE INFO ABSTRACT

Two-dimensional (2D) silicon oxides have received considerable attention in recent years because of their ex-
cellent compatibility with the well-developed Si-based semiconductor technology. Though the ground state
structure of 2D silicon dioxide (SiO,) was identified many years ago, the corresponding study of 2D silicon
monoxide (SiO) has not yet been reported. Herein, using global structure search method combined with density
functional theory and Boltzmann transport theory, we find the ground state structure of 2D SiO, named Orth-SiO,
and systematically study its physical properties. Orth-SiO is found to be thermally, dynamically and mechani-
cally stable, and possesses a direct band gap of 1.52 eV, which is much smaller as compared to that of a-2D silica
(7.31 eV). Moreover, it exhibits significant anisotropies in mechanical properties and optical adsorption due to
its exceptional atomic configuration. The lattice thermal conductivity of Orth-SiO is 80.45 and 33.79 W/mK
along the x and y directions at room temperature, respectively, much higher than that of many Si-based ma-
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terials due to its weak anharmonicity. In addition, the carrier mobility is 8.5 x 10> cm*V ™~

1.5~ much greater

than that of many other oxides. These results add new features to silicon oxides family.

1. Introduction

Silicon monoxide (SiO), which possesses high interstellar abun-
dance, is the most common oxide of silicon in the universe [1]. The
widely used method of synthesizing SiO is heating silicon dioxide with
silicon [2], although many other methods for preparing high-purity SiO
have also been proposed [3,4]. Due to its mature preparation techni-
ques, wide band gap and low refractive index, the commercial SiO is
widely used as the protective film of optical fibers and dielectric ma-
terial of capacitors [5-7]. However, most of the commercial SiO are in
amorphous phase where the conventional diffraction methods, such as
X-ray diffraction, X-ray Raman scattering, small-angle X-ray scattering,
cannot provide detailed information on their structures [8]. Therefore,
there is no assured conclusion about the structure of SiO [9,10].
Moreover, the amorphous SiO is metastable and will decompose to Si
and SiO, under certain conditions [6,11,12]. So, it is highly desirable to
identify the possible crystalline structures of 3D and 2D SiO [10,13,14].
Mankefors et al. predicted the probable structures of 3D SiO by element
substitution in known crystal structures, including rock salt, zinc ble-
nede, wurtzite and SnO [13]. Subsequently, AlKaabi et al. explored the
ground state structures of 3D SiO at 1 atm and high pressures up to 200
GPa through the evolutionary and random structure searches [10], and
found that the ground state structure of 3D SiO is a semiconductor
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while the high pressure SiO phases are metallic.

However, when going from 3D to 2D, to the best of our knowledge,
the ground state structure of 2D SiO has not yet been identified. To
date, only three possible structures of 2D SiO, namely ep-sSiO, a-sSiO
and z-sSiO have been reported [14]. This motivates us to explore the
ground state structure of 2D SiO and study its properties by using the
particle swarm optimization (PSO) algorithm combined with first
principles calculations. Parallel to the expansion from 3D SiO, to 3D
SiO, our study expands the low-dimensional silicon oxide family from
2D SiO, to 2D SiO, providing new understandings on how the geometry
and properties of silicon oxides change with the dimensionality and
oxygen concentration, which are helpful for experimentalists to tune
the structure and properties by changing oxygen concentration.

2. Computational methods

The ground state of 2D SiO sheet is predicted by using the particle
swarm optimization (PSO) algorithm implemented in the Crystal
structure AnalYsis by Particle Swarm Optimization (CALYPSO)
package [15,16]. The population size and the number of generations
are set to thirty and fifty, respectively, to ensure the convergence.
Considering the fact that silicon atom prefers to form a tetrahedral
configuration and the experimental thickness of 2D hexagonal silica is

Received 11 March 2020; Received in revised form 3 May 2020; Accepted 21 May 2020

Available online 25 May 2020
0169-4332/ © 2020 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/01694332
https://www.elsevier.com/locate/apsusc
https://doi.org/10.1016/j.apsusc.2020.146759
https://doi.org/10.1016/j.apsusc.2020.146759
mailto:qianwang2@pku.edu.cn
https://doi.org/10.1016/j.apsusc.2020.146759
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apsusc.2020.146759&domain=pdf

Y. Chen, et al.

434 A1 7,18], the buffering thickness is set as 4.5 A to accommodate
the buckling of structure. The vacuum space of 16 A is included to avoid
the interaction from its periodic images.

The geometric optimization and calculations of electronic structure
are performed using density functional theory (DFT) as included in the
Vienna ab initio Simulation Package (VASP) [19]. The interactions be-
tween ion cores and valence electrons are described within the pro-
jector augmented wave (PAW) method [20,21] with the kinetic energy
cutoff of 500 eV. The electron exchange-correlation interaction is
treated by the Perdew-Burke-Ernzerhof (PBE) functional [22] within
the generalized gradient approximation (GGA) [23]. To obtain the ac-
curate electronic band structure, we recalculate the band structure with
the hybrid functional of Heyd-Scuseria-Ernzerhof (HSE06) [24,25]. The
first Brillouin zone is represented by using the Monkhorst-Pack scheme
[26] with a grid density of 2t x 0.02 A~ The convergence criteria for
total energy and atomic force components are set to 10~ % eV and
107% eV/A, respectively. The thermal stability is examined by using ab
initio molecular dynamics (AIMD) simulation.

The calculation of lattice thermal conductivity is based on the semi-
classical phonon Boltzmann transport equation (BTE) [27] as im-
plemented in ShengBTE code [28], where the required harmonic
second-order interatomic force constants (IFCs) and the anharmonic
third-order IFCs are calculated using the Phonopy package [29]. To
balance both the calculation accuracy and computational cost, the 7th
nearest neighbors are considered. The phonon dispersion is obtained
with the finite displacement method [30] and the specific heat capacity
is further calculated using the second-order IFCs.

3. Results and discussion
3.1. Geometric structure and stability

By performing the global structure search for 2D SiO, we obtain the
energetically most stable configuration, namely, the ground state
structure of 2D SiO, as displayed in Fig. 1. This structure belongs to
Cmma space group (No. 67) and has an orthogonal unit cell with eight
Si atoms and eight O atoms, so we name it Orth-SiO. The optimized
lattice constants are a = 5.50 A and b = 6.91 [o\, and the side view
shows that Orth-SiO possesses a finite thickness of 3.60 A. The Si atoms
occupy the Wyckoff position of 8 m (0.5000, 0.0749, 0.4450) and the O
atoms occupy the Wyckoff position of 8 1 (0.2500, 0.0000, 0.4053).
Each Si atom is connected with two Si atoms and two O atoms, forming
a tetrahedral configuration, and all oxygen atoms are bonded to two Si

(b)

(c)
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Table 1

Relative energy AE (in eV/atom) with respect to the lowest energy structure,
lattice parameters (in 10\), Si-Si and Si-O bond lengths (in ;\) of Orth-SiO, z-sSiO,
a-sSiO and ep-sSiO.

2D SiO allotropes AE a b ds; si dsio
Orth-SiO 0.000 5.50 6.91 2.41 1.67
z-sSi0 0.047 4.04 2.81 2.41 1.68
(4.04) (2.71) (2.41) (1.68)
a-sSi0 0.061 7.06 2.80 2.40, 2.43 1.68
(7.08) (2.81) (2.40,2.43) (1.68)
ep-sSi0 0.212 7.42 4.02 2.40 1.70
(7.40) (4.06) (2.41) (1.70)

*The numbers in parentheses are from Ref. [14].

atoms.

It is worth mentioning that the previously proposed z-sSiO, a-sSiO
and ep-sSiO [14] are also obtained as the metastable SiO phases during
the structure search process. This verifies the accuracy and effectiveness
of the structure search method. We list their relative energies with re-
spect to the lowest energy structure (Orth-SiO), the lattice parameters,
and the Si-O and Si-Si bond lengths in Table 1 for comparison. On can
see that the average Si-Si bond length of Orth-SiO is comparable to that
of other three SiO allotropes, while the average Si-O bond length is
slightly shorter, leading to the lower energy of Orth-SiO. We also note
that the Si-Si bond length of 2.41 A in Orth-SiO is larger than that of
low-buckled silicene (2.28 A) [31] and diamond-Si (2.37 A) [10],
showing a single bond character. While the Si-O bond length of 1.67 A
is larger than the value of 1.63 A in the ground state structure of 2D
SiO, (a-2D silica) [32].

We then examine the dynamic stability of Orth-SiO by calculating
its phonon spectra. Fig. 2(a) displays the phonon dispersion along the
high-symmetry paths of the first Brillouin zone. One can see that all the
frequencies of vibrational modes are positive, confirming that Orth-SiO
is dynamically stable. In addition, we notice that the highest frequency
of Orth-SiO at the I' point reaches 28 THz, which is higher than that of
z-sSi0, a-sSiO and ep-sSiO (about 25 THz) [14], implying the stronger
bonding and better energetics [33].

The thermal stability of Orth-SiO is studied by performing AIMD
simulation using a 4 X 3 x 1 supercell and the canonical (NVT) en-
semble at different temperatures from 300 to 1000 K. The simulation
time is 10 picoseconds (ps) with a time step of 2 femtoseconds (fs) for
the each simulation. The results at 1000 K are plotted in Fig. 2(b). One
can see that during the entire simulation, Orth-SiO does not suffer from

Fig. 1. Different views of the geometric structure of Orth-SiO along the (a) 2, (b) x and (c) y directions, and (d) perspective view. Blue and red spheres stand for Si and
O atoms, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. (a) Phonon dispersion of Orth-SiO. (b) Potential energy fluctuation of Orth-SiO during AIMD simulation at 1000 K. The insets show the snapshot at the end of

simulation.

drastic structural distortion or transformation, and the total potential
energy only fluctuates around a constant value, which demonstrates
that Orth-SiO is thermally stable and can tolerate temperature up to
1000 K. The snapshot of structure at the end of the simulation is illu-
strated in Fig. 2(b).

Next we examine the mechanical stability of Orth-SiO. In the linear
elastic range, the elastic constant tensors form a 6 X 6 matrix with 21
independent components. For a 2D orthorhombic phase, only Cy1, C;2,
Cao, Cy44 are independent [34]. According to Born-Huang criteria [35],
if a 2D orthorhombic structure is mechanically stable, the corre-
sponding elastic constants have to satisfy C;; > 0,Csy > 0, Csq > O,
C11C22-C2, > 0. For Orth-SiO, the four independent elastic constant
components are C;; = 136.84 N/m, Co5 = 80.41 N/m, C44 = 20.48 N/
m and C;» = 26.69 N/m, confirming the mechanical stability.

After verifying the stability of Orth-SiO, we explore the possible
synthesizing method. Here, we propose a possible procedure for syn-
thesizing Orth-SiO, as shown in Fig. 3. We first use the low-buckled
honeycomb silicene to construct a two-layered silicon structure by AA-
stacking, then we introduce oxygen atoms on the bridges sites forming
Si-O-Si bonds as observed in silicene oxides [36-38]. After full opti-
mization, this configuration changes to Orth-SiO, suggesting that it is

(a)

possible to synthesize Orth-SiO by partially oxidizing bilayer silicene in
experiment.

3.2. Mechanical properties

The in-plane Young’s moduli E, and Ej, along the (1 0 0) and (0 1 0)
directions are calculated by using equations of E, = (C%-C%)/Cy;, and
Ep = (C3,-C%,)/Cy,, which are found to be 131.63 and 75.11 N/m, re-
spectively. The Poisson’s ratios of v, =C;3/C;p =020 and
vp = C12/Cy = 0.33 are obtained accordingly. It is interesting to note
that the in-plane Young’s modulus E, (131.63 N/m) is comparable to
that of a-2D silica (131.78 N/m) [32], while E;, (75.11 N/m) is close to
that of experimentally synthesized silicene (62 N/m) [39]. This can be
explained by the structure characteristics of Orth-SiO: the Si-O bonds
only exist in the x direction, while the Si-Si bonds are mainly along the
y direction. Through the electron localization function (ELF) of two
representative slices of Orth-SiO (see Fig. S1 in the Support Information
(SI)), we find that the Si-Si bonds are covalent bonds, while the Si-O
bonds exhibit ionic bond characteristics. Compared to the Si-Si bond,
the Si-O bond is stronger, leading to the larger in-plane Young’s mod-
ulus along the x direction. Moreover, with the decreased Si/O ratio, the

(b)

Fig. 3. (a) Top and side views of the initial structure. (b) Optimized structure with Orth-SiO configuration. The upper layer silicon atoms are in green. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Polar diagram for (a) Young’s modulus and (b) Poisson’s ratio of Orth-SiO.

number of Si-O bonds in a unit cell increases and the structures become
stiffer, which is in consistent with the increased in-plane Young’s
modulus.

We further compute the Young’s modulus (E) and Poisson’s ratio (v)
along an arbitrary direction 6 (6 is the angle relative to the x direction)
using the following formulas:

E@©) = CuCi — Ch
4 4 Cucn-ch 202
CHS + szc + T - 2012 ces (l)
—c2
(CH + sz - 76‘“6‘61,‘2‘4 CIZ)CZS2 - Clz(C4 + S4)
V(6 = 4 4 CuCi-Ch 202
Cp18* + Cpc* + T Cm 2C1, Jess @

where ¢ = cosf and s = sin 6 [40]. The calculated results are plotted
in Fig. 4. One can see that the in-plane Young’s modulus of Orth-SiO
reaches its maximum in the (1 0 0) direction (0°) and minimum near the
(11 0) direction (~55°), while the Poisson’s ratio achieves its maximum
near the (1 1 0) direction (~52°) and minimum in the (1 0 0) direction.
As compared to the conventional 2D nanomaterials such as graphene,
BN, especially the isotropic a-2D silica and planar silicene with hex-
agonal crystal structures, these results show the significant mechanical
anisotropy in Orth-SiO, which attributes to its orthorhombic lattice, and
the exhibited in-plane anisotropy may have potential applications in
devices [41].

3.3. Electronic properties

To investigate the electronic properties of Orth-SiO, we calculate its
electronic band structure at the PBE level and plot the result in
Fig. 5(a). The band structure shows that Orth-SiO is semiconducting
with a direct band gap of 0.76 eV since both the valence band max-
imum (VBM) and the conduction band minimum (CBM) are located at
the I' point. Considering the fact that most of the silicon and silicon
dioxide materials are indirect band gap semiconductors or insulators,
such direct band gap semiconductor may have potential applications in
optical devices. To obtain a more accurate band gap, we recalculate the
band structure by using the HSEO6 functional. The results are also
plotted in Fig. 5(a). The band structure calculated at the HSE06 level
shows a similar band dispersion to that obtained at the PBE level.
However, at the HSE06 level, the CBM is up-shifted, while the VBM
makes almost no change, resulting in a wider band gap of 1.52 eV.

We also calculate the corresponding partial density of states (DOS)
at the HSEO6 level as displayed in Fig. 5(a), which shows that the VBM

is mainly contributed from the p, orbitals of Si and O atoms, while the
CBM is dominate by the p, orbitals of O atoms. This is consistent with
the partial charge densities of VBM and CBM shown in Fig. 5(b) and (c).
The VBM mainly comes from the Si-Si bonding states along the y di-
rection and in-plane O p,, orbitals parallel to them, while the CBM is
contributed by the out-of-plane O p, orbitals. This suggests that Orth-
SiO possesses anisotropic electronic structure and may have a sig-
nificant impact on the transport properties.

It is interesting to note that the ground state structure of 2D silicon
dioxide, a-2D silica, is an insulator with a band gap of 7.31 eV [32],
while the low buckled (LB) silicene shows metallic behavior [42]. To
better understand the electronic properties of these silicon-based ma-
terials, we summarize the silicon bonding modes and show their elec-
tronic band structures and orbital-weighted electronic band structures
in Fig. S2 for comparison. The three-fold coordinated Si atoms adopt
mix sp%sp® hybridization in LB-silicene [42], and the Si atoms are
bonded to two Si and two O atoms with four-fold coordination in Orth-
SiO while the all Si atoms are bonded to four O atoms with prefect sp®
hybridization in a-2D silica [32]. Different hybridizations lead to dif-
ferent band gaps in these silicon-based structures. As shown Fig. S2, the
valence and conduction bands near the Fermi level in LB-silicene are
mainly contributed from the p, orbitals of Si atoms, namely, 5(Si-Si)
bonds; The VBM of a-2D silica is contributed by the 2p orbitals of O
atoms, and the CBM is mainly contributed from the 2 s orbitals of O
atoms. These results reveal that the involvement of the more electro-
negative O atoms broaden the band gap and the band gap of silicon-
based materials is related to the Si/O ratio and the hybridization form
of Si atoms.

We next investigate the carrier mobility of electrons and holes by
using the Boltzmann transport equation with the deformation potential
(DP) [43]. In 2D materials, the formula of carrier mobility along a given
transport direction d can be written as

_ 26h3C2D
Ha = S Tmym B2 3)

where Cyp is the in-plane elastic constant and E; is the deformation
potential constant under uniaxial strain along d direction [44]. Ac-
cording to the symmetry of Orth-SiO, the transport directions along the
(1 00) and (0 1 0) are considered, and the C,p is set as C;; and Cs,,
respectively. m; is the effective mass of carriers in the direction d, and
can be calculated by using the formula: mj = h[6*E/0k*]l. We can get
m; by a quadratic polynomial fitting of the conduction and valence
bands and m} = +/ (m?m;) is the mean effective mass. The calculated
results of Orth-SiO are summarized in Table 2. One can see that both
the effective mass and deformation potential constant exhibit strong
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Fig. 5. (a) Electronic band structures of Orth-SiO at the PBE (orange lines) and HSEO6 level (blue lines), and partial DOS of Orth-SiO at the HSE06 level. The Fermi
level is shifted to 0 eV. Partial charge density for (b) the VBM and (c) CBM of Orth-SiO. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Table 2

In-plane elastic constant C,p (in N/m), deformation potential constant E; (in
eV), effective mass mj (in m.), and carrier mobility g (in cm®V~1s~1) along
the (1 0 0) and (0 1 0) directions for electrons and holes of Orth-SiO at 300 K.

Transport direction carrier type Cap E; m; Ua
(100 hole 136.84 0.62 1.03 8502.92
(100) electron 136.84 11.20 0.70 23.03
010 hole 80.41 4.48 0.27 401.24
010 electron 80.41 1.15 1.33 675.63

anisotropies. The effective mass of holes in the x direction is much
heavier than that in the y direction, while the effective mass of electrons
exhibits opposite results. The low deformation potential of VBM under
the strain along the x direction E;, together with the high in-plane
elastic constant C;;, result in a high hole mobility of 8.5 x 10°
em®V~1s™! at 300 K, which is much higher than than the values re-
ported for other 2D semiconductors at the same temperature, such as
690 cm? V™! 57! for WS, [45], 410 cm?® V™! s~ for MoS, [46] and
180 cm? V™' s~ for MoSe, [45], indicating the potential applications
of Orth-SiO in electronic devices.

3.4. Optical properties

The optical properties are determined by the complex dielectric
function ¢(w) = g(w) + ie,(w), and all frequency dependent optical
constants can be deduced from the real part g (w) and imaginary part
& (w) of dielectric function. Specifically, the absorption coefficient I(w),
the reflectivity R(w) and the refraction index n(w) are expressed as:

(@) = V2[Ja (@) + &@? - a@)]:

Je(w) — 1
Je(w) +1

C)

2
R(w) = ‘

)

and n(w) = £[ a (@) + 5(@)? + 8]z
2 ©

Considering the anisotropy of Orth-SiO, we separately calculate
these parameters along the xx and yy directions. all the results are
plotted in Fig. 6. We only consider frequencies lower than 5 eV because
they approximately cover the visible spectra. We divide this part into
three regions: infrared region (0-1.63 eV), visible region (VIS)
(1.63-3.27 eV) and ultraviolet region (UV) (3.27-5.00 eV). The

imaginary part of dielectric function e»(w) is shown in Fig. 6(a), which
describes absorption derived by the optical transitions between occu-
pied and unoccupied bands. Since the band gap of Orth-SiO is 1.52 eV,
Orth-SiO can only absorb phonons with energy > 1.52 eV. As we can
see from Fig. 6(a), ex(w) has a negligible value for photons with less
than ~ 3 eV, indicating that little transition can occur under such sti-
mulation. For the xx direction, the curve shows a sharp increase at
about 4.3 eV and two peaks in ¢;(w) at around 4.3 eV and 4.8 eV be well
explained by the onsets of DOS. The two peaks in the range of
4.30-5.00 eV are mainly attributed to the transitions between Si-
3p + O-2p valence bands to O-2p conduction bands. The absorption
coefficient I(w) is somehow similar to the imaginary part ex(w). As
shown in Fig. 6(b), the absorption coefficient I(w) has a negligible value
in the infrared and visible region, indicating that little transition can
occur under such stimulation and Orth-SiO is an ideal transparent
material. When the stimulation energy exceeds 4 eV, I(w) increases
quickly. However, I(w) shows a significant anisotropy, especially in the
UV region. Along the yy direction, strong absorption coefficient is ob-
served in the UV region and reaches a maximum value of ~ 4 x 10°
cm ™!, while along the xx direction, only little light is absorbed. This
significant anisotropy of the absorption coefficient along the xx and yy
directions indicates that Orth-SiO is a promising polarization filter in
the UV region. Fig. 6(c) shows that the reflectivity spectra of Orth-SiO
have a similar trend with the absorption spectra and also displays high
anisotropy. In the range of 0.00-4.87 eV, the reflectivity in the xx di-
rection is larger than that of the yy direction. As shown in Fig. 6(d), the
refraction index reaches a high peak in the yy direction within the UV
region, indicating the significant dispersion. From the above analyses,
we find that Orth-SiO possesses anisotropic optical properties, which is
suitable for wave plate, polarization microscope, and other polariza-
tion-sensitive devices.

3.5. Thermal properties

The specific heat capacity C, at constant volume of Orth-SiO versus
temperature is plotted in Fig. 7(a), from which one can see that the C,
increases rapidly with temperature when T < 300 K, following the
Debye temperature rule as C, « T° [47], while C, approaches the
classical Dulong-Petit limit (3Nkp) [48,49] at high temperature.The
specific heat capacity of Orth-SiO is larger than that of many other 2D
materials at room temperature (300 K), including black phosphorus
(31.79 JK~'mol™1) [48], ¥-graphene (24.76 JK *mol~!) [50] and
graphene (8.75 J'-K " ''mol ~!) [51]. Such a high specific heat capacity is
benefical for thermal thermal energy storage [52,53].
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Since Orth-SiO is a semiconductor, phonons are the major heat
carriers, then we focus on the lattice thermal conductivity (k;q.) of Orth-
SiO, which can be calculated using ShengBTE code. The temperature
dependence of k;, is presented in Fig. 7(b). At room temperature k;, is
found to be 80.45 and 33.79 W/mK along the x and y directions, re-
spectively, and ki, decreases rapidly in 1/T when the temperature in-
creases, indicating that anharmonic phonon-phonon interactions are
dominant in the phonon scattering mechanism. Besides, the intrinsic
lattice thermal conductivity is not only anisotropic but also much
higher than that of many silicon-based materials including bulk crystal
a-quartz (3.52 and 5.15 W/mK) [54], amorphous silica (1.7 W/mK)
[54], large honeycomb dumbbell (LHD) silicene (5.9 W/mK) [55],
dumbbel (DB) silicene (2.86 W/mK) [56] and LB-silicene (27.72 W/
mK) [56], indicating that Orth-SiO is able to dissipate heat more effi-
ciently in electronic devices. To further understand the origin of the
large lattice thermal conductivity of the Orth-SiO sheet, the group ve-
locity (V,) and mode Griineisen parameter (y) are calculated, and their
variations with frequency are plotted in Fig. 7(c) and (d), respectively.
We note that the group velocity is higher than that of LB-silicene and
DB-silicene [56], indicating faster energy propagation in the wave
packets in Orth-SiO. Moreover, the optical branches show non-zero
group velocities, comparable to those of the acoustic branches and in
agreement with the phonon spectrum, while the Griineisen parameter is
smaller than that of LB-silicene and DB-silicene [56], indicating weaker
anharmonicity in Orth-SiO. These factors together result in the large
lattice thermal conductivity of the sheet.

4. Conclusions

In summary, on the basis of first principles calculations combined
with the global structure search method, for the first time we have
identified the ground state structure of 2D SiO sheet, Orth-SiO, which is
not only energetically most stable among all the 2D SiO allotropes, but
also dynamically, thermally, and mechanically stable. Band structure
calculations reveal that Orth-SiO is semiconducting with a direct band
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Fig. 6. (a) Optical absorption e»(w), (b) absorption coefficient I(w), (c) refraction index n(w), and (d) reflectivity R(w) of Orth-SiO.

gap of 1.52 eV, which is very different from the semi-metallic silicene
and insulating a-2D silica that has a wide band gap of 7.31 eV. By
solving the Boltzmann transport equation, we have found that Orth-SiO
possesses a high hole mobility of 8.5 x 10° em®*V~'s™! along
the x direction due to the low deformation potential of the VBM and
high in-plane elastic constant. The calculation of optical properties
shows that Orth-SiO is transparent to visible light while showing strong
absorption in UV region. Moreover, the lattice thermal conductivity of
Orth-SiO at room temperature along the x and y direction is 80.45 and
33.79 W/mK, respectively, which is larger than that of bulk crystal a-
quartz, amorphous silica, LHD-silicene, DB-silicene and LB-silicene
because of its higher group velocity and smaller Griineisen parameter
resulting from the strong bonding in the geometry. These findings
suggest that the silicon monoxide Orth-SiO sheet deserves experimental
effort in synthesis for device applications.
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