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Droplet vaporization has a great impact on combustion of liquid fuels and might greatly affects the en-
gine performance. Physical understanding and theoretical interpretation of the droplet vaporization be-
havior are decisive to constitute appropriate models for spray combustion. In this work, we proposed a
fully transient formulation for the droplet vaporization at wide ranges of temperature and pressure. The
governing equations are solved analytically by means of suitable coordinate transformations. The droplet
surface temperature and mass fraction of fuel vapor are determined by the matching conditions at the
liquid-gas interface. Accordingly, a theoretical model, characterizing the time change of droplet size dur-
ing its vaporization, is proposed in terms of the unsteadiness factor and droplet vaporization lifetime. The
theoretical model successfully reveals the conventional recognition of droplet vaporization characteristics,
and its predicted droplet size history agrees well with experimental results reported in the literature. Be-
sides, based on the present theoretical analysis, the experimentally observed dual effect of pressure upon
droplet vaporization is analyzed with help of an explicit formula for enthalpy of vaporization indicating
its temperature-dependence.
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1. Introduction

Liquid fuels are widely used in various engines, e.g., diesel en-
gines, jet engines, and liquid rocket engines. To facilitate combus-
tion, the injected fuel is atomized into exceedingly small droplets
with diameters in micrometer scale [1-3]. In spray combustion
system, the gasified fuel vapor participates combustion in gas
phase, which releases a huge amount of heat and hence increases
environmental temperature. The elevated temperature would facil-
itate the evaporation process of the droplets in the spray. It has
been experimentally observed that only the larger droplets can
penetrate the flame zone and burn individually, while the majority
of the atomized droplets evaporates in the relatively cool interior
of the spray [4]. Therefore, droplet vaporization plays a crucial role
in engines and is of primary concern in a variety of multi-phase
combustion studies.

Experimental studies on droplet vaporization under micrograv-
ity conditions without natural convection indicate that the va-
porization lifetime decreases monotonically as ambient tempera-
ture increases [4,5]. Moreover, the droplet surface regresses more
rapidly at elevated pressures [5,6]. In experiments, it is very diffi-
cult to generate an isolated droplet in stagnant environment with-
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out external support, and usually a single droplet is suspended by
a thin fiber [5-7]. The suspension technique requires the droplet
diameter to be considerably larger than the fiber thickness. Be-
sides, the fiber attachment may cause droplet deformation, which
becomes progressively severe with droplet size reducing.

In numerical simulations, different factors that affect droplet
vaporization can be isolated and examined independently. More-
over, the evolutions of droplet temperature and diameter can be
studied in simulations in wide ranges of pressure and temperature
that resemble the engine operating conditions [8-21]. At elevated
pressures, various fluid dynamic and thermodynamic non-idealities
show profound impacts on the behavior of droplet vaporization
[7,8,18,19]. The enthalpy of vaporization decays with the growth
of droplet temperature, which results from the increment of ambi-
ent pressure [22]. The reduction of enthalpy of vaporization leads
to increment of vaporization rate due to the increasing of Spald-
ing transfer number as indicated in d?-law [8,23]. Meanwhile, with
the increase of pressure, the initial unsteady heating period in-
creases and so does the droplet lifetime [11,15,16,24]. Such a dual
effect of the ambient pressure is further affected by the ambient
temperature. When the droplet reaches its thermodynamic critical
state, the vanishing of liquid-gas interface, the enhanced solvability
of environment gas in droplet fluid, and the anomalies in various
thermal transport properties may lead to additional intricacy to the
vaporization process [8,16,18].
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Nomenclature

a coefficient in Peng-Robinson equation of state

b coefficient in Peng-Robinson equation of state

Cp heat capacity at constant pressure

Cy heat capacity at constant volume

d droplet diameter

D mass diffusivity

do initial droplet diameter

dn d/dgy

e R(T: — Tr)/Lg

k Boltzmann constant

Kw Watson characterization factor

L enthalpy of vaporization

Le Lewis number

Mg fuel vapor production rate

p pressure

De saturated vapor pressure

q coordination number

r radial coordinate

R universal gas constant

Ts droplet radius

Sg specific gravity of n-heptane

t time

T temperature

Ty n boiling temperature at p =1 atm

Ten 2T50/3 +Too/3

t (T-TR)/(Tc = Tg)

tn t/ttotal

10 droplet surface temperature during quasi-steady va-
porization

T kTeh/JEFEN

Vin molar volume

w molar mass

Win 2(1/Wr +1/Wy) !

X molar fraction

Y mass fraction

YFOS mass fraction of fuel vapor during quasi-steady va-
porization

Greek symbols

o critical exponent for heat capacity

B critical exponent for density discrepancy
width of transition region

characteristic Lennard-Jones energy
thermal conductivity

transformed radial coordinate

density

non-dimensional radial coordinate
non-dimensional time

[~
<

theating/ Lrotal
characteristic Lennard-Jones length

acentric factor
Qp dimensionless collision integral

EX g1 Qo>

Subscripts

critical state

fuel species

gas phase

liquid phase

nitrogen

reference state in evaluating enthalpy of vaporiza-
tion

quantities at droplet surface

environmental condition at far field

X =z —0 T o

8(’1
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In the simulation of spray combustion, simultaneous considera-
tion of a huge number of droplets is a formidable task, which de-
sires theoretical models for droplet vaporization [1,3,25]. The pri-
mary theory is the d2-law, i.e., the square of droplet diameter de-
creases linearly with time, which is considered as the leading order
solution for a variety of modified theories [19,26,27].

By assuming quasi-steady gas-phase process, Law and Sirig-
nano [28-31] conducted a series of theoretical studies on unsteadi-
ness of droplet vaporization and combustion with the emphasis on
transient heating effects. They proposed and analyzed two mod-
els for droplet heating, i.e., distillation limit and conduction limit.
The droplet surface regresses as the liquid fuel is converted into
fuel vapor during vaporization. The moving boundary effect plays
a crucial role in droplet vaporization problems and in the mean-
while causes mathematical difficulty in analytical solution of the
governing equations for droplet vaporization. In a series of theo-
retical studies conducted by Law and Sirignano [29,32], the radial
coordinate is scaled by the radius of the droplet, yielding a di-
mensionless spatial coordinate. Accordingly, the moving boundary
is formally replaced by a fixed boundary where the non-dimension
radial coordinate is equal to unity, and hence facilitates the analyt-
ical solution of the governing equations. Equivalent mathematical
treatments were widely in theoretical studies upon droplet vapor-
ization, considering the droplet vaporization lifetime at subcritical
and supercritical conditions [13] as well as the influence of ther-
mal expansion flow on droplet vaporization [33].

Assuming the density ratio between the gas and liquid, pg/p;,
as a small parameter, Crespo and Linan [26] conducted asymptotic
analysis for droplet vaporization in a stagnant atmosphere consid-
ering the unsteady effects in gas phase. They corrected the droplet
lifetime by a factor of ,/pg/p;. Zugasti et al. [13] extended the
preceding asymptotic analysis to supercritical conditions by dis-
carding the liquid-gas interface and treating the droplet and am-
bient gas respectively as cold and hot fluid packages. They derived
a transcendental equation, which interprets the evolution of the
cold package radius and reproduces the d%-law results for isother-
mal conditions in the cold region. Cossali and Tonini [34]. analyzed
the droplet evaporation and solved the governing equations char-
acterizing the steady-state mass, momentum and energy balance of
vapor and gas mixture surrounding the droplet. Based on steady-
state assumption, Cossali and Tonini [35] also proposed an analyt-
ical model of heat and mass transfer from liquid droplet, in which
the thermo-physical properties of gas phase, e.g., density, heat ca-
pacity, diffusion coefficient, and thermal conductivity, were consid-
ered as functions of temperature. Snegirev [36] analyzed the vapor-
ization of a single-component droplet with emphasis on the tran-
sient temperature gradient of the droplet. According to Snegirev,
the droplet temperature was either approximated by mathematical
models, e.g., parabolic, power-law, and polynomial functions of ra-
dial coordinate, or evaluated through heat balance integral method
in terms of volume-averaged temperature [36]. Sazhin et al. [37-
39| conducted a series of theoretical studies, considering the tran-
sient heating of a droplet immersed into a hot gas. According to
their conclusions, the inhomogeneous gas temperature distribution
may lead to slowing down of body heating, while the distribution
of body temperature did not depend on the initial gas temperature
inhomogeneity in the long-time limit.

Nevertheless, at elevated pressures, the prolonged droplet heat-
ing stage results in pronounced unsteadiness in the overall vapor-
ization process. This prevents the direct utilization of d2-law to in-
terpret the droplet size history. Moreover, the density ratio, pg/p,
may not be treated as a small parameter at high pressures [40],
which reduces the accuracy of the asymptotic analysis. To acquire
insightful understanding of droplet vaporization and to accurately
model the spray combustion, we need develop an accurate theo-
retical model which can quantitatively interpret the droplet vapor-
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ization at wide ranges of temperature and pressure conditions. The
model should explicitly reveal the impacts of various fluid dynamic
and thermodynamic properties on the vaporization process. There-
fore, it requires a comprehensive theoretical analysis, considering
the transient effects and in the meanwhile appropriately dealing
with the phase transition at the liquid-gas interface. Besides, it is
recognized that the boiling temperature of a liquid increase with
environmental pressure. Thereby, the droplet surface temperature
would be higher at elevated ambient pressures, and so is the av-
erage temperature of the droplet. On the one hand, it leads to
lengthening of droplet heating period, and on the other hand, low-
ers the enthalpy of vaporization and hence facilitates the vapor-
ization rate. Thereby, the pressure plays a dual effect towards the
droplet vaporization. Such analysis is still not in place, which mo-
tivates the present study.

The paper is organized as follows. In Section 2, the transient
formulation for droplet vaporization is solved analytically with the
help of appropriate coordinate transformations. The characteristic
times for droplet heating and vaporization are derived through the
matching conditions. The matching conditions and the Clausius-
Clapeyron relation on the droplet surface are solved with the help
of those analytical solutions and appropriate evaluation of various
thermodynamic and transport properties. In Section 3, a theoreti-
cal model is proposed, which interprets the time change of droplet
size during its vaporization under wide ranges of temperature and
pressure. Comparison with experimental results reported in the lit-
erature verifies the theoretical model. The duel effect of pressure
upon the droplet lifetime is analyzed. The concluding remarks are
given in Section 4.

2. Formulation

We consider a single-component, volatile droplet in a stagnant
environment of hot nitrogen with constant and uniform pressure.
Since the droplet heating and vaporization take place simultane-
ously, the formulation for the droplet vaporization process involves
mass and energy conservation for both droplet (the liquid phase)
and the ambience (the gaseous mixture of fuel vapor and nitro-
gen) as well as their balance relations across the liquid-gas inter-
face (droplet surface) [22]. The governing equations for gas phase
system consist of transport of volatile species, denoted by subscript
F and the conservation of energy (in terms of temperature distri-
bution). At the initial instant, no fuel is evaporated and thereby
the fuel mass fraction is Yz(t =0, r) =0 in the gaseous environ-
ment, and both the droplet and the ambience have uniform tem-
peratures, denoted by Ty and T, respectively. As vaporization pro-
ceeds, the thermodynamic equilibrium at the evaporating inter-
face is characterized by the Clausius-Clapeyron relation, which cor-
relates the droplet surface temperature, denoted by Ty = T(rs, t),
with the local mass fraction of the evaporated fluid, denoted by
Yrs = Yp (15, £).

2.1. Governing equations

For analytical convenience, we assume that the density-
weighted mass diffusion coefficients, pD, thermal conductivities,
A, and heat capacities at constant pressure of both gas and liquid
phases, cpg and ¢y, are constants. In gas phase, the mass conserva-
tion equations for the fuel vapor and inert gas are given by

O A 10 (L%
8t+v8r_Dgr28r<r Br) fy=1-% M

where v is the Stefan flow velocity relative to the droplet surface,
and Dy is the mass diffusion coefficient of the gaseous mixture. The
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energy conservation equation for gaseous mixture is given by

Ty | AT, 10 (,0T,
W + vai Lengrz & (r W (2)

where the Lewis number is defined as Leg = Ag/(0gCpgDg). Since
the droplet is placed in the quiescent environment, the internal
flow would be inconsiderable, thus, the energy equation for liquid
phase is given by

aTy 10 aT;

=LeDj— |’ =
B~ PE gy (r 8r> (3)
where D, is the mass diffusion coefficient of the liquid and Le; is
analogously defined as Le; = A;/(0,c,yD)).

The initial and boundary conditions for those governing equa-
tions are specified as

t=0: Ye=0, =T, T=T (Ie-1)
r=0: dT)/or=0 (Bc-1)
r=r(t):  Ye=VYe(), =T, T=T0 (Bc-2)
r—oo: Yr=0 T,=Ts (Bc-3)

where r(t) refers to the temporally varying droplet radius.

Nevertheless, the governing equations are not in closed form
because the surface-related quantities, i.e., Yg(t), Ts(t), and rg(t),
remain to be determined through the matching conditions at the
evaporating interface. The fuel vapor on the droplet surface is par-
tially transported by Stefan flow to downstream and the rest by
diffusion to far field. Thereby the mass balance relation is given by

aY;
mr = MpYps — 471pngr ( 8:) (4)
r=rs

where the loss of droplet mass is related to the reduction of radius,
ie., mp = —4m pjrdrs/dt. Meanwhile, energy is transferred from
the hot ambience to the droplet surface, partially contributing to
the droplet warm-up and the rest providing energy to sustain the
vaporization process. Consequently, the energy balance is given by

Ty aT,
4T M <8r>” _mFL+4nA,r <8r>” (5)

where L is the enthalpy of vaporization for the droplet fluid.

We assume that the vaporization occurs at thermodynamically
equilibrium state. Therefore, on the droplet surface, the relation-
ship between mass fraction of fuel vapor and temperature is de-
termined by the Clausius-Clapeyron relation, i.e.,

Vig/ Wi b LB 11
Yoo/ We + (1 - Yi) /Wy exp[ R (Tb,n T)] ©

where W is the molar mass of each species, Ty, the boiling point
temperature of the droplet fluid under the normal pressure p.
Supplementing the matching conditions and phase equilibrium re-
lation to the governing equations, the mathematical formulation of
the droplet vaporization problem is in closed form, and hence the
solution procedure could be initiated.

2.2. Solutions to the gas phase

The evaporation results in droplet radius shrinking. For math-
ematical convenience in dealing with the moving boundary prob-
lem, we introduce a scaled coordinate in analogy to that adopted
by Law and Sirignano [29], i.e.,

r /

RO " -1 r2(t/>

Writing Egs. (1) and (2) in the scaled coordinate (7), we have

(7)
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8YF 1 1 P 1 drsz BYF 1 0 28YF
af‘z(ang“’ D, dt 30 ~ o295 \° 9o (8)
o, 1(1 p 1 dr2 3T, 1 0 , 0Ty
ar_2<02,0g+0 D, dt g0~ 5235\ 90 ) O
Replacing radial coordinate r by the normalized coordinate o,
the moving boundary effect is transformed into an equivalent con-

vection term. The initial and boundary conditions for Eqgs. (8) and
(9) are specied as

T=0 V=0, Ty=T, (Ic-1")
o=1  Yr=Yu(), =T (Bc-2)
000  Yr=0 T=T, (Bc-3')

The first order derivatives impose substantial difficulties in de-
laing with Egs. (8) and (9) analytically. Whereas, such mathemat-
ical issue could be alleviated by introducing the following coordi-
nate transform

-1
£ = [? Fg(a/)da/i| [F(0")do’ (10)
where

T2 1/1p N\1dZ2o], .
Ifg(a):exp{—/[d—&-z(dzp;-i-d)Dg o i|do} (11)

1

By chain’s rule, the first and second order derivatives with re-
spect to o5 can be written in the terms of &4 as

9 _ 095 3
do, a0, 95

2 _ g 0 (dg) 8

002  do2 0§ dos ) 9&2
Applying the coordination transformation (10) to Egs. (8) and

(9), we have

oYk 9%Yr 0T,

——L = Deff=ra. =2 =LegD Ty
gt ~ Thgz’ ar ~ Mgz

where the effective diffusion coefficient is defined as

_1)?2
Deff={Fg(a)[?Fg(a/)dg/} } (13)

It is a function of o and thus varies with £z On the droplet
surface where evaporation occurs, the solutions for Yr and T are to
be substituted into the matching conditions. The matching condi-
tions refer to Egs. (4) - (6) that describe the mass conservation,
energy conservation and phase equilibrium relation between the
fuel vapor and its condensed phase at the droplet surface. This im-
plies that the accuracy of the solutions for Yr and T remote from
the droplet surface has insignificant impact upon determination
of the droplet vaporization rate, which relies upon the analysis at
evaporating interface. It allows us to choose a representative value
for Dgs that characterizes its contirbution to Yg and Ts evaluated
by their analytical solutions to Eqs. (8) and (9). Accordingly, we
may specify the characteristic effective diffusion coefficient on the
droplet surface where o = 1, giving

(12)

2
D, — [?F(U’)da’} (14)

The boundary conditions are revised as

&=0: Ye=Yis(7), Tz=Ti(r) (Bc-2")
& =1: Yr=0, Ty=Ty (B

P
@«
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With the help of DD, the Eq. (12) could be solved analyt-
cally subject to the initial condition (Ic-1") and boundary condi-
tions (Bc-2") and (Bc-3"), giving

Yr (€. T) = Yrs(T) — Eg¥rs(T) +2 ) sin (nrx)e D™ RY (1)
n=1

(15)

Tg(5g. ) = (1) + &gl Too — Ts(7)]

+2) sin (nrx)e LoD T TRY (1) (16)

n=1

where RY (7) and RI(7) are

Y -
RY (1) = ——

1 (ayl__s et _ 1 t DT _ 1 32YFsd >
T

c n2-2 C 1272 2
0t Dign’m o Dinim ot

(17)

1
R(0) = [[Tsin(uré)ds - -[1.0) - (-1)'T.]
0

y elesDign*m?t _ 82];
——d
Le,D¢n?m? 012 t
(18)

On the droplet surface, the fuel vapor is transported to the am-
bience by convection and diffusion (loss contribution) and mean-
while supplied by continuous evaporation from liquid droplet (gain
contribution). Therefore, we argue that dynamic equilibrium is
maintained on the droplet surface. It implies that except at a very
brief period, during which the phase equilibrium condition is es-
tablished, the time change of Y, tends to be inconsiderable than
the unsteadiness resulting from the droplet heating in vaporization
process [30, 31]. The same argument applies to the droplet surface
temperature T; according to the Clausius-Clapeyron relation, and
accordingly, we can neglect the terms containing the second order
derivatives of Yg and Ts in Eqs. (17) and (18). Substituting those
simplifications into Eqs. (15) and (16) yields the following solutions
for Yr and Tg

1 AT, elesDign* T _
“ x5t C 2772
nm \ 0t  LeDSn?mw

Ve, T) = Vis(r) — ¥ (1) — o o 32 ST

D¢, a7 - n3m3
2 Vg < sin (nrgg)e e 19
+Df 0T n3m3 (19)
eff n=1

o0

2 0Ty sin (né,
3 (nm&g)

T ) = L0+ Gl = R0 = 5 570 3 505
eff n=1

o sin (nﬂgg) —LegDC n272¢ 1 JT;
2 TR leglegy To—TO) + — 95
+ ~ nr ¢ @)+ n2m2Lle DS, 3T

(20)

On the droplet surface where o =1, the derivatives of Yr and
T, with respect to o shall be calculated through chain’s rule, i.e.,

().~ (i) ()

do (7:1_ 0&; tco do ) .

) (%) (d

(80)0_1 - (8.§g>s_0<da>a_] @

With the help of Eq. (10) and evaluating the derivatives of
Egs. (19) and (20), we have
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-1
BYF _ 11 8YF$ DSt 0
(%)(7:1 B 7|:YFS(T)+§D£ff ot (] e ) {I‘};(G)dU

(22)

aTg> { 1 1 9% lesDCn2t
%) 1 —7}(1)—77—(1—6 oDigr )
(80 ot °° 3 LegDS,; 8T

+ww—nmnP%@4ﬁ%w%)—1”[T@wmw}l
(23)

where 9 refers to the elliptic theta function. Since the quasi-steady
state in gas phase establishes swiftly during the droplet vaporiza-
tion, we make the subsequent approximation
X o-legDignm?t 0 1 1

—LegDS %t —LegD¢ 2T
—> @ TETef = —e e 24
~  n’m? ; n?g? 6 (24)

during derivation of Eqs. (22) and (23).

Known the integral of Fg(o) from 1 to o = oo, the character-
istic value of effective diffusion coefficient can be calculated, and
subsequently the determination of (0Yr/00)s-1 and (0Tz/00 )y—1
according to Eqs. (22) and (23). Analyzing Eq. (11), it is noted that
the linear term (o /Dg)(dr?/dt) actually results from the coordinate
transformation from the (r, t)- to (o, 7)-space. When approaching
to the end of the droplet vaporization, i.e., rs — 0, the coordinate
o, according to Eq. (7), becomes exceedingly large, even for mod-
erate radial distance r. Such pure mathematical effect leads to the
divergence of the Fy(o) at large values of o, and has no contribu-
tion to the physical interpretation of the droplet vaporization pro-
cess. Thereby, we remove this linear term in the estimation of the
integral of Fg(o0'), yielding

b ~F 2 1 rdiO] iy 21 e
{F(G)da~{exp{—{|:a,+20,2png o |do’pdo 7ag(e -1)

(25)

where ag is
g=—s——>—2>0 (26)

Substituting Eq. (25) into Eqs. (22) and (23), we obtain

BYF _ 11 8YFS DS 2t Qg
<ao_>al = —[YFS(T) + §@ e (1 — @ Teff )] e% — 1 (27)

o\ 1 1 9T,
(80) = {Tw“”uegocffaz(l
o=1 el

HTe = T(O)][95 (e tePem) - 1]

_ e—LengffnZ r)

ag
e% —1

(28)

Egs. (27) and (28) are to be substituted into the mass and en-
ergy balance relations on the droplet surface, respectively.

2.3. Solutions to the liquid phase

By defining T = rT}, Eq. (3) can be written in the form of one-
dimensional heat conduction in Cartesian coordinate, i.e.,

oT 0T
— =DiLej~ 2
ot = Dlega (29)

Applying the coordinate transform (7) to Eq. (29), we have
OT 10 dri(t) 0T _ LeD; 3*T

dt 2Dy dt do ~ D, do?

(30)
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In analogy to Eq. (10), we define a new coordinate &; as

_erfi(/ao)
&= W (31)

where “erfi” refers to the imaginary error function, and the factor
a; is defined as

1 1 dr?
- s 32
U= "2DLe dt (32)
Applying the coordinate transform (31) to Eq. (30), the first or-
der derivative no longer appears, giving

aT d’T
o= = Meftogy (33)
T d&p
where the effective heat conduction coefficient denotes for
1 Jrerfi(ya) | Dile
Meff = | == (34)
RN D
Following the same procedure as we derive DS, the charac-

teristic value for effective heat conduction coefficient, denoted by
A{ p can be specified by setting o = 1. The initial and boundary
conditions for Eq. (33) are

=0 T=0o@E)roly (Ic-i)
§=0 T=0 (Be-ii)
§=1 T=r(0)T(t) (Bc-iii)

where rq is the initial radius of the droplet.
The functional relationship between o and &, shall be obtained
by inversely solving Eq. (31), formally yielding

__ferffigerfi(yap)]
o o (35)

where erf-! denotes the inverse function of error function.
Eq. (32) shows that g; involves the surface regression rate of the
evaporating droplet, dr?/dt, which can be considered as a small
quantity during droplet vaporization. This implies that the right-
hand side of Eq. (35) can be approximated by power series in
terms of q;, giving

o =&+ 5 (6~ &)a+0(a) (36)

The initial condition (Ic-i) is accordingly modified to

=0 T=[§+%E - (i)

which we shall adopt in the subsequent solution of the liquid
phase system.

Equating the effective heat conduction coefficient to its char-
acteristic value, Eq. (33) can be solved analytically subject to the
initial condition (Ic-i’) and boundary conditions (Bc-ii) and (Bc-iii),
giving

T 7 = [&+ 3 (6 -8) [ROL©

+2) sin (NTTERy (T)e e (37)

n=1

where, considering the dynamic equilibrium on the droplet surface,
the quantity R, ; can be written as

Zal(_-l)nﬂ e)\lf_e“nzrrzr _1d
Roi(T) = —55—Toro + (*UHWE[R(T)R(T)]

(38)
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2.4. Analysis on the droplet surface

The mass balance relation on the interface in the scaled coordi-
nate (7, o) is given by

AL Ly (0
pg Dg dt (1 YFS) =2 80_ s (39)

After a swift induction period in the order of O(l/Dgffnz), the
gas phase unsteadiness decays to be negligible. Accordingly, we
can remove the exponentially decaying term in the coefficient of
dYg/dt in Eq. (27), giving,

an) ( 11 8YFS> ag
e I e L T (40)
(30 ot 3D 0T Je% —1

Substituting into Eq. (39), we obtain an ordinary differential
equation for the temporal variation of Y, i.e.,

ayFs
ot

The droplet size changes slightly during the initial build-up of
fuel vapor and the elevation of droplet surface temperature, which
implies that the quantity ag, given by Eq. (26), could be considered
as a constant. Solving Eq. (41) subject to the initial condition of
Yrs(0) = 0, it yields

Yes = (1—e7%) (1 — e 3*Parm) (42)
It is seen that after an induction period characterized by

1/3e%Dg, Eq. (42) asymptotes to

= —3D%(e%Yps + 1 — e%) (41)

Yo =1-¢% (43)

When the droplet is exposed in the hot environment, the fuel
vapor starts to accumulate at the droplet surface due to vaporiza-
tion. Then, YFOS represents final stage of fuel vapor accumulation,
subsequent to which, the mass fraction of fuel vapor at the droplet
surface almost remains unchanged. The rate of fuel vapor genera-
tion from vaporization tends to balance with the transport of fuel
vapor at the droplet surface through diffusion, i.e., the vaporiza-
tion could be regarded as in quasi-steady state. With the knowl-
edge of droplet surface regression rate, i.e., dr/dt, which we shall
discuss subsequently, the factor ag could be calculated and hence
the asymptotic mass fraction YFOS could be determined. Substitut-
ing YFOS into the Clausius-Clapeyron relation, given by Eq. (6), the
asymptotic temperature on the droplet surface can be obtained as

-1
RT, Dn Wk
=T |1+ n|14+——F 44
s bn( L(Ts"){ p Wae 1) )

For droplet evaporating at high temperature and pressure con-
ditions, the quasi-steady vaporization is preceded by a heating
stage. During the heating stage, vaporization rate tends to be in-
discernible compared with that in the subsequent stage of quasi-
steady vaporization. The time required to heat the droplet to a uni-
form temperature T? can be determined by

3 theatin
47?0 picu(T0 - Ty) = hj g4m§)\g<gr‘5) dt (45)
0 o o=1

Eq. (45) can be considered as a simplified model for droplet
heating time. The left-hand side is the energy required to increase
the droplet temperature uniformly from Ty to the final stage T2
subsequent to which the quasi-steady vaporization dominates over
the droplet heating. The integrand on right-hand side represents
the heating power at the droplet surface due to heat conduction
from the hot environment, and hence the upper limit of the inte-
gral refers to an estimate to the heating time. Solving Eq. (45), one
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obtains,

" oy T2 - Ty (46)
heating — 3)\-g Too _ Tso

However, it has been indicated that the temperature at the
droplet center tends to be considerably lower than T when con-
siderable evaporation initiates subsequent to the heating stage.

Therefore, the tt’leatmg tends to overestimate the duration of the

heating stage. The rigorous determination of the droplet temper-
ature gradient inside the droplet could be dealt with by analyz-
ing the temporal and spatial evolution of T; derived from Eq. (37).
Alternatively, Snegirev proposed a few models that interprets the
droplet temperature profiles as power-law or polynomial functions
of radial coordinates [36]. For simplicity and illustrative concern,
we assume that the droplet temperature can be approximated by a
linear function of radial coordinate, i.e., T°(r) ~ Tp + (T2 — Ty)r/ro,
when the droplet enters the quasi-steady vaporization stage. Ac-
cordingly, the energy required to heat the droplet with uniform
temperature Tp to the particular temperature profile given by T?

can be evaluated by
To

AQ = 47TCV1/7'2 [T() + (TSO - To)i]dr
To
0

4
- §nr§cvlT0 = mrgen(TY - To) (47)

Comparing with Eq. (45), the heating time can be approxi-
mately evaluated as
; B 3t/ _cuprd T — Ty
heating = 71 “heating — 4hg To—T0

In the quasi-steady vaporization stage, the heat transfer from
the hot ambience is mainly utilized to evaporate the droplet, thus
the energy balance relation can be revised from Eq. (5) by remov-
ing the heating effect, giving

0T, _ 1pdri)
(30> -5 A (49)

Substituting (0Tz/00 )s—1 from Eq. (28) into Eq. (49), we obtain
an ordinary differential equation for rZ, which is analogous to the
classic d?-law characterizing the droplet vaporization, i.e.,

(48)

2 LegCpg(Too — T?
dr; _ _2psDs In|1+ LS) (50)
dt o L(TSO)

Solving for time duration of quasi-steady vaporization,
Lyaporizations W€ obtain

1 oirg
2 pgDgIn [1+ LegCpg(Too — T2) /L(TO) ]

In terms of Eqgs. (48) and (51), the overall droplet lifetime can
be evaluated in the following explicit form:

(51)

tvaporization =

fiotal = theating + tvaporization

_oan) 1l w®P-T 1 1
~ PgDg | 4leg Cpe T =T 21In[1 + LegCpg(Toe — T2) /L(T0) ]

(52)

Acquiring the surface regression rate, given by Eq. (50), the
asymptotic droplet surface temperature, according to Eq. (44), can
be written in the subsequent form

WEL(TY)

-1
10 =g (14 Ko din P | g4
L(T?) p WiLegCpg(Too — T?)

(53)
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Therefore, T2 shall be determined iteratively through
Eq. (53) when the temperature dependence of enthalpy of
vaporization is known.

2.5. Thermodynamic and transport properties

The enthalpy of vaporization can be directly solved through

_V,ﬁ 8[) v 1
L__rp(aT>v_p}M%+p4wn—wJ (54)

Vin

where V), and V% denote the molar volumes of liquid and gas
phase, respectively, and pe is the equilibrium vapor pressure. Those
equilibrium states can be iteratively calculated by simultaneously
solving an equation of state that is accurate at both liquid and
gas phase, e.g., Soave-Redich-Kwong or Peng-Robinson equation
of states. It is acknowledged that Eq. (54) cannot interpret the
temperature-dependence of enthalpy of vaporization in a mathe-
matically explicit form.

Fortunately, the enthalpy of vaporization can also be evaluated
through an analytical formula [41], given by

=[] g

+(1 - %fE‘hR) (1- fL)ﬂ]tL (55)

where Ly is the enthalpy of vaporization at reference tempera-
ture Tg. The @ and B are the critical exponents characterizing
the heat capacity at constant volume and the density difference
when the fluid is close to its thermodynamic critical state, i.e.,
v~ (T—T)“ and p; — pc ~ (T — T)ﬁ. The literature on the crit-
ical phenomena suggests that the approximate values of « of 8
for various fluids are 0.1096 and 0.3265, respectively [42]. Accord-
ing to the X-ray scattering experimental studies on liquid config-
urations, the coordination number, denoted by ¢, changes in a re-
stricted range between 9 and 11 for most fluids [43]. Since the ref-
erence state is remote from the critical point, reference coordina-
tion number, q; g, tends to be greater in magnitude, which leads us
to specify q; g = 11 in the subsequent discussion. The energy factor
fe and normalized temperature t; are defined in terms of reference
and critical temperatures

f_R(TC—TR) T-Tx
e ey

Therefore, with the knowledge of both reference state and crit-
ical temperature, i.e., Lz and T, the enthalpy of vaporization can
be calculated through Eq. (55) at the surface temperature TC. Pre-
ceding to the solution of droplet vaporization system, the thermo-
dynamic and transport properties in both gas and liquid phases,
e.g., density, heat capacity, mass and thermal conductivities, must
be determined. The specification of those quantities is given in the
Appendix. Substituting those specified thermodynamic and trans-
port properties into Eqgs. (48), (51), and (52), the characteristic time
scales of droplet vaporization, i.e., theating: tvaporization and tiotal, €N
be readily calculated.

t (56)

3. Results and discussion

Assuming that the quasi-steady state vaporization occurs at
thermodynamic equilibrium condition, the asymptotic temperature
at the droplet surface, T2, would be close to the wet-bulb temper-
ature [28,30], which is usually considerably lower than the boiling
point at the current pressure. Due to lack of an accurate theoretical
means to calculate the wet-bulb temperature, Miller et al. [44] pro-
posed the following empirical correlation to the experimental re-
sults for a variety of fuels in terms of the boiling temperature of
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Fig. 1. Comparison of asymptotic droplet surface temperature T2 (solid lines) with
the wet-bulb temperature T,, estimated by the fitting formula Eq. (57) (dashed
lines). The hollow symbols represent the experimentally determined wet-bulb tem-
perature of heptane droplet at normal pressure from Ref. [45]

the specific liquid and the environmental temperature:

T, 0.68
T,p = 137(373.15) log (Ty) — 45 (57)

In the present model, T? could be determined by iteratively
solving Eq. (53), in which the thermodynamic and transport prop-
erties are evaluated by means of 1/3 rule and the enthalpy of va-
porization by Eq. (55). Fig. 1 indicates that the calculated droplet
surface temperature based on our theoretical model agrees well
with the wet-bulb temperatures estimated by Eq. (57) as well as
those measured in experiments for atmospheric pressure [45].

With the knowledge of T?, the heating and vaporization times
can be explicitly determined from Eq. (48) and Eq. (51), respec-
tively, and hence the droplet lifetime by Eq. (52). Nomura et al.
[6] defined an unsteadiness factor as the ratio of droplet heating
time to its lifetime, i.e.,

q)i _ theating (58)
ttotal

It is seen that the droplet surface temperature grows with in-
creasing either temperature or pressure of the environmental gas.
It implies that more heat is required to warm up the droplet before
its arrival at the quasi-steady vaporization state, and accordingly,
the unsteadiness in the droplet vaporization process becomes more
pronounced.

To verify the present theoretical analysis, we specify our condi-
tions identical to those in Nomura et al.’s experiments [6], which
considered an n-heptane droplet vaporizing at nitrogen environ-
ment under microgravity condition. In experiments, the droplet
was suspended by a thin fiber, thus the overall droplet vaporiza-
tion lifetime must be extrapolated from the droplet size history to
its vanishing point. In Fig. 2, the scaled vaporization lifetimes (di-
vided by the square of the initial droplet diameter), calculated by
Eq. (52) at various temperatures and pressures, are compared with
those extrapolated from experimental data. It shows that the the-
oretical model can accurately predict the droplet lifetime in wide
ranges of temperature and pressure.

Both theoretical model and experimental results indicate that
the droplet lifetime decreases with the ambient temperature. More
interestingly, the results in Fig. 2 show that the droplet lifetime de-
pends upon the ambient pressure in a non-monotonic manner. At
low to moderate temperatures with To, < 510K, the droplet life-
time becomes slightly longer when the ambient pressure is ele-
vated from 0.1MPa to 0.5MPa. As pressure increasing from 0.5MPa
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Fig. 2. Comparison of droplet lifetime calculated by theoretical model (solid lines)
and those extrapolated from experimental data (denoted by hollow symbols) in [6].

to 1.0MPa, the droplet lifetime undergoes discernible reduction.
By further increasing ambient pressure from 1.0MPa to 2.0MPa,
the droplet lifetime tends to be significantly prolonged. However,
at moderate to high temperatures with T,, > 510K, the droplet
lifetimes for p=2.0MPa are uniformly lower than those situa-
tions with lower ambient pressures. These results imply that the
ambient pressure has both facilitating and impeding effects upon
droplet vaporization. Moreover, the facilitating effect tends to dom-
inate over the impeding effect when the ambient pressure be-
comes sufficiently high. It can be attributed to the competition be-
tween fheating aNd tyaporization @S iNcreasing the ambient pressure.

According to Fig. 1 the droplet surface temperature gets higher
as pressures. It results in the lengthening of the heating time,
which partially contributes to the increase of droplet lifetime.
Meanwhile, at low to moderate temperatures, e.g., T, < 510K, the
discrepancy between T? and T, tends to be moderate, which al-
lows us to assume that cpg(To — T?) « L(T?). Consequently, the
vaporization time could be simplified to

1 12pL(T?)

tvaporization ~ i )»g (Too _ TSO) (59)

Besides, the surface temperature T must be remote from the
critical temperature, leading to that according to ref [41], the en-
thalpy of vaporization could be represented by

L(TSO) qir 0 — Ty
—— 1 = -1)2 60
Lo fE( 2 ) T —Tg (60)
where the energy factor fg, for the current n-heptane fuel is around
0.055. Taking derivative of tyaporization With respect to T from
Eq. (59) with simplified enthalpy of vaporization given by Eq. (60),
we have

2
dtvaporization 1 T P1 LR

ar0 2 A (To‘rTso)z[l—fh"(qlz'R— >]>O (61)

where the reference temperature is 300 K. It can be interpreted as
follows. At low to moderate temperatures, the heat transfer rate
from the ambience to the droplet surface decreases as the sur-
face temperature increasing, which lowers the temperature differ-
ence. Meanwhile, the decrement of vaporization enthalpy due to
the same cause tends to be immaterial so that the vaporization
rate is reduced. Thereby, the simultaneous increase of both heating
and vaporization times results in a noticeably prolonged droplet
lifetime at low to moderate temperatures, and it becomes more
pronounced as ambient pressure grows. The decay of droplet life-
time at intermediate pressure, e.g., p = 1.0MPa might be attributed
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to the increment of Az and pgDg, whose temperature dependence
is estimated by means of the 1/3 rule, given by Eq. (a4), in terms
of the droplet surface temperature. According to Egs. (48) and (51),
both heating and vaporization times are shortened under the en-
hancement of transport properties.

At moderate to high temperatures, the logarithmic function in
Eq. (51) cannot be estimated by its first order Taylor series. How-
ever, the dependence of vaporization time upon pressure, i.e., the
behavior of dtvaporization/dno, can still be interpreted by means of
Eq. (59) because the logarithmic function has the same monotonic-
ity as linear function. When the droplet surface temperature ap-
proaches to the critical temperature, according to Ref. [41], the en-
thalpy of vaporization can be evaluated through

1—
HI) g e (=T a+(1 - 2 fedi) -y
L 20—\ T -1 2 EdR )\ T,

(62)

Taking derivative of tyaporization With respect to T from
Eq. (59) with enthalpy of vaporization given by Eq. (62), we have

dtl/a porization

N Lo (2T Y1 Te-Te
dro 2 he (w10 | 270\ T T-a T.-19
B
1 T, - TP Too —TO
+(1—§fEQLR><TC_TR) (]—IS T-T0 (63)

When the environmental temperature is considerably higher than
the critical temperature, T2 becomes comparable with T.. At
conditions that (T, — T?)/(T. — T?) > 1/8, Eq. (63) indicates that
dtvaporization/deo is negative and thereby the vaporization rate in-
creases with the ambient pressure. This effect can be attributed
to that the enthalpy of vaporization becomes exceedingly due to
increasing of droplet surface temperature. The reduction of vapor-
ization enthalpy renders the phase transition to occur more readily
and hence accelerates the vaporization process.

At sufficiently high pressures, e.g., p = 2.0MPa, the reduction of
vaporization time tends to compensate or even dominate over the
lengthening of the heating time, leading to the uniform reduction
of droplet lifetime. Moreover, it is seen that at low to moderate
pressures, i.e., p=0.1MPa to p = 1.0MPa, the facilitating (due to
lowering the enthalpy of vaporization) and impeding (due to in-
creasing the heating period) effects of pressure on droplet lifetime
tends to balance. Consequently, it results in indiscernible change
of droplet lifetime as ambient pressure changes, which is indicated
by those results presented to the right side of the vertical dashed
line in Fig. 2.

In terms of the droplet lifetime and the unsteadiness factor,
we can constitute a theoretical model interpreting the history of
droplet surface during the vaporization process. For mathematical
convenience, we introduce the normalized droplet diameter and
lifetime, defined by

d .t
dO’ " ttotal

dn = (64)
The droplet size almost remains at the initial instant of the
heating stage, i.e.,

=1, tp <« ®; (65)

where the unsteadiness factor ®; can be equivalently regarded
as the normalized heating time. At the quasi-steady vaporization
stage, the droplet surface decays linearly with time, which is con-
sistent with the classic d?-law, i.e.,

1
2 =1- 1_7@(51 - D)), tp > D; (66)
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Fig. 3. Schematic of theoretical model for droplet vaporization.

Eqgs. (65) and (66) characterize the asymptotic behaviors of the
droplet vaporization process. Therefore, an appropriate vaporiza-
tion model shall satisfy the subsequent conditions, i.e.,

(I) It must spontaneously become Eqs. (65) and (66) respec-
tively at the initial instant of the heating stage and when the
droplet undergoes quasi-steady vaporization.

(I1) It must experience a smooth transition from Eq. (65) and
(66) at some intermediate instant, which depends upon the un-
steadiness factor ®;.

To constitute the desired vaporization model, capable to inter-
pret the droplet size history during the whole vaporization process,
we define a transition function as

_ tanh [ 5 (¢ —1)] + tanh 5
" tanh [ﬁ(%‘ —1)] +tanh 5

S(t) (67)

Eq. (67) indicates that S(t) is a normalized function that equals
to 0 and 1 at t; =0 and t; = 1, respectively. The factor §,, inter-
prets the width of the transition regime such that within an in-
terval, centered at ®; with width 8y, the value of the function S(t)
changes from 0.1 to 0.9. Thus, the transition function can character-
ize the smooth transition from heating stage to quasi-steady vapor-
ization stage. The vaporizations of various fuels at elevated tem-
peratures and pressures share the common feature that the quasi-
steady vaporization is preceded by a heating stage during which
the droplet size changes slightly. It implies that the transition func-
tion can be applied to a variety of fuels.

Using the transition function given by Eq. (67), we constitute
the theoretical model for droplet vaporization:

d? S(t)

- _1-
@ -0,

[ta — PiS(0)] (68)

Fig. 3 shows that the present model for droplet vaporization
satisfies both requirements (I) and (II), which verifies its mathe-
matical appropriateness and physical plausibility. Moreover, it in-
dicates that the theoretical model is insensitive to the variation
of transition function because the predicted droplet size history
changes negligibly as the transition width changes from 0.2 to 0.5.
Thereby, we shall adopt that §,, = 0.5 in the subsequent calculation
based on the vaporization model.

Fig. 4 compares the droplet size histories predicted by
Eq. (68) with experimental results reported by Nomura et al. [6].
For relatively high temperature situations at normal pressure, i.e.,
p = 0.1MPa, the theoretically predicted droplet vaporization rates
are slightly greater than those measured in experiments. As shown
in Fig. 1, the calculated T? from the present model tends to be

International Journal of Heat and Mass Transfer 164 (2021) 120542

uniformly lower than the wet-bulb temperature at normal pres-
sure condition, which may lead to underestimation of droplet heat-
ing time. Meanwhile, due to the same cause, the temperature dis-
crepancy between the droplet surface and the ambience becomes
larger, which further facilitates the vaporization process. Thereby,
the calculated droplet lifetimes appear to be shorter than those
measured in experiments.

It is seen that for droplet vaporizing at high pressures its di-
ameter undergoes discernible increment during the initial heating
stage. It can be understood that at elevated pressures, which leads
to increasing of droplet surface temperature as well as the average
temperature, the thermal expansion effect of the droplet becomes
more pronounced. The proportion of heating stage for droplet va-
porization at T = 656K appears to be discernible larger than the
other cases. We hypothesize that at some intermediate instant the
droplet diameter increasing due to thermal expansion tends to be
in balance with the droplet surface regression caused by vaporiza-
tion and thereby it yields a prolonged “heating stage” where the
droplet size change slightly. As environmental temperature increas-
ing, the vaporization effect starts to dominate over the thermal ex-
pansion effect, leading to reduction in the proportion of heating
stage, as indicated by droplet vaporization at T = 746K.

In this work, we obtained a simplified model for droplet vapor-
ization in which thermal expansion effect was not taken into ac-
count. Consequently, discrepancy between the theoretical predic-
tion and experimental results may appear. It merits future study
to improve the current theoretical model by considering more fac-
tors that have impacts upon the behavior of droplet vaporization,
for instance, thermal expansion, the convection in gas phase, and
multi-component droplets.

Overall, the theoretically predicted time change of the droplet
size during vaporization agrees well with the experimental results
both qualitatively and quantitively. The present model can describe
the characteristics of droplet vaporization under elevated temper-
ature and pressure conditions, and in particular, the unsteadiness
caused by droplet heating can be properly interpreted.

4. Conclusions

We analyze the droplet vaporization problem based on fun-
damental principles of fluid mechanics and thermodynamics. The
transient governing equations are analytically solved after appro-
priate coordinate transformations. In combination of the matching
conditions and the Clausius-Clapeyron relation, the mass fraction
of fuel vapor and temperature on the droplet surface can be iter-
atively determined by Eqs. (43) and (53). Then the characteristic
times for droplet heating and vaporization are respectively calcu-
lated through Egs. (48) and (51), whose sum yields the droplet life-
time for vaporization. The theoretically predicted lifetimes agree
well with those extrapolated from experiments by Nomura et al.
[6]. In terms of unsteadiness factor, defined by Eq. (58), and the
transition function, defined by Eq. (67), a theoretical model is con-
stituted, which illustrates the time change of droplet size in the
entire vaporization process, given by Eq. (68). It is verified through
comparison with the experimental results within wide ranges of
temperature (from 450 K to 750 K) and pressure (from 0.1 MPa to
2 MPa). Besides, the theoretical model successfully reveals the con-
ventional recognition that the droplet diameter approximately re-
mains constant at the heating stage, while during the quasi-steady
vaporization, the droplet surface shrinks linearly with time accord-
ing to the d2-law.

Both experimental observation and the theoretical prediction
indicates that the pressure has a dual effect upon droplet life-
time. This is pertinently elucidated based on our theoretical anal-
ysis with the help of explicit formula for enthalpy of vaporization,
given by Eq. (55). At low to moderate temperatures, the droplet
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Fig. 4. Comparison between the model prediction and experimental data from Nomura et al. [6]

lifetime increases with pressure due to the reduction of the heat
transfer from the hot ambience to the droplet surface. On the other
hand, at moderate to high temperatures, increasing the ambient
pressure tends to shorten the droplet lifetime. This is because the
enthalpy of vaporization decays as the droplet temperature is con-
siderably elevated, which facilitates the vaporization process. At
moderate pressures, the facilitating and impeding effects of ambi-
ent pressure on droplet lifetime tends to balance, leading to that
the droplet lifetime appears to be independent of the ambient
pressure.
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Appendix

The thermodynamic and transport properties in both gas and
liquid phases are evaluated as follows.

Al. Density

The gas phase is a mixture of fuel (n-heptane) vapor and nitro-
gen. The mixture density is calculated as
Pg = YRPgF + (1 - YFOs)Pg,N (a1)

The densities of fuel vapor pg, and nitrogen pyg are determined
by solving the Peng-Robinson equation of state, given by

2

Rkt a{1+fo[1- (/T 2]}
P = b V(Vm+b) + b(Vm —b)
for pure fuel vapor and nitrogen, respectively. The parameters in
Peng-Robinson equation of state are determined by the critical
properties and acentric factor w, i.e.,
fi» = 0.37464 + 1.54226w + 0.26992°
R?T?

Cc

b= 0.07780@

Dc

(a2)

a=0.45724

Since the pressure considered in this work is considerably less
than the critical pressure of either n-heptane or nitrogen, the sol-
ubility of nitrogen in the droplet appears to be negligible. Thereby
we can consider the droplet could as consisting of pure liquid n-
heptane. For situations with T < T, and p < pc, solving Eq. (a2)

10
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gives three values of molar densities (1/Vy;), which can be trans-
formed into mass-based densities.

A2. Heat capacity

The heat capacities at constant pressure in gas phase are calcu-
lated via the subsequent fitting formulas [46]

a a .
e+ 03 + Q4T + 0TS, + a6T3, + a7 T4, i=F. N

Cpoi =
pg.1
Tczh Tch

(a3)
where the characteristic temperature T, is estimated via the 1/3
rule [36,44] in terms of T? and T,
2 1
= §Ts0 + §Too

The coefficients a; to a; for n-heptane and nitrogen are listed
as follows

Ten (a4)

n-heptane nitrogen
a —6.1274 x 10° 2.2104 x 10*
a, 1.1841 x 104 -3.8185 x 102
as —7.4872 x 10 6.0827
ay 2.9185 x 10! -8.5309 x 103
as —3.4168 x 10 1.3846 x 10-°
ag 2.1593 x 1077 -9.6258 x 107
az —5.6559 x 10~1 2.5197 x 10~12

The heat capacity at constant pressure for the gas mixture is es-
timated by an average weighted by molar fraction of each species,
ie.,

Cpg = XRiCpg F + (1 - ng)cpg.N (a5)
The molar fraction XFOS is related to the mass fraction YFOS by
0 _ Y[-QS/WF
YO/ Wr + (1-YS)/Wy

Fs —
The heat capacity of liquid n-heptane is determined by via the
following fitting formula, which is derived based on Lee-Kesler
equation [47],

ey =a(b+cT)
where the coefficients q, b, and c are given by

a = 1.4651 + 0.2303k,,

b =0.306469 — 0.16734s,

¢ =0.001467 — 0.000551s,
where ky, is the Watson characterization factor defined by

kw = (1.8T,) ' /sg

(a6)

(a7)

where T, is the normal boiling point of n-heptane and sg =
01/ Pwater 1S the specific gravity.

A3. Thermal conductivity

The thermal conductivity of n-heptane is calculated through the
representative reference equation proposed by Assael et al [48],
which is of high accuracy over wide ranges of temperature and
pressure.

)‘gF (p’ Tch) = )‘O(Tch) + A)\(,O, Tch) + A)VC(/)’ Tch) (38)

On the right-hand side of Eq. (a8), the first term is the con-
tribution to the thermal conductivity in the dilute-gas limit, while
the last term represents the critical enhancement arising from the
long-range density fluctuations that occur when the fluid is near
its critical point, and the second term denotes the contribution of

1
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all other effects to the thermal conductivity of the fluid at elevated
pressures.
The mathematical forms for each term are given by

—1.8337 + 16.2572T; — 39.0996T2 + 47.8694T3 + 15.1925T* — 3.3912T5

Ao(Tr) = 0.2506 — 0.3209T; + T
(a9)
where T, = Ty, /T; is the reduced characteristic temperature.
The residual term is given by
5 .
AX(p,T) = (Bii+ BT (pr) (a10)

i=1
where the coefficients By ; and B, ; are listed as follows

i B Wm K1)
1 5.17785 x 102

2 -9.24052 x 10-2
3 5.11484 x 10-2
4
5

By; (W m™! K1)
—7.72433 x 103
2.18899 x 102
1.71725 x 1073
—7.91642 x 10-3
1.83379 x 103

—~7.76896 x 103
1.21637 x 104

The critical enhancement term is represented by the following
empirical expression
Ahe(p.T) =

exp [-G3(Apo)?] (al1)

G
G+ |AT|
where ATe =Ty /Tc —1 and Apc = pg/pc — 1. The coefficients (j,
C, and C3 are estimated by
=07 x10° Wm! K!

G =70 x107*
G=18 (a12)
The thermal conductivity for nitrogen is obtained from the fit-
ting formula [49]
C

B
— 4+ +D

InAy =AInT,
gN ch + Tch Tczh

(a13)

where the coefficients are given by

A B C D
0.85372829 105.18665 —12299.753 0.48299104

The thermal conductivity calculated via Eq. (al3) has unit
106 x Wcem™! K1,

Similarly, the thermal conductivity of the gas mixture is approx-
imated estimated by

hg = X2 hgr + (1 - xgs),\g,V (a14)

A4. Mass diffusivity

The mass diffusion coefficient is determined based on the Chap-
man and Enskog’s theory, and it is given by a semi-empirical for-
mula [50]

0.00266T;">
PWed? XS
where Wy is combined molecular weight of fuel and nitrogen, de-
fined by

1 1
WFsz(WF*WN)

and o gy is the interaction characteristic length defined as the aver-
age of characteristic Lennard-Jones lengths of fuel species and ni-
trogen, i.e.,

g = (a15)

-1
(a16)

1
XFN = j(O'F + UN) (817)
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The o and oy can be determined in terms of critical densities
pc of the fuel species and nitrogen, respectively. The dimensionless
collision integral Qp can be calculated from the following empiri-
cal formula

A C E G
78 exp (DT*) | exp (FT*) | exp (HT")

The T* is a dimensionless temperature defined by T* =
kT.//€F€n, where e and ey are characteristic Lennard-Jones en-
ergies of fuel species and nitrogen, respectively. The coefficients A
to G are given as follows

Qp = (a18)

A B C D E F G H
1.06036 0.15610 0.19300 0.47635 1.03587 1.52996 1.76474 3.89411
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