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a b s t r a c t 

Droplet vaporization has a great impact on combustion of liquid fuels and might greatly affects the en- 

gine performance. Physical understanding and theoretical interpretation of the droplet vaporization be- 

havior are decisive to constitute appropriate models for spray combustion. In this work, we proposed a 

fully transient formulation for the droplet vaporization at wide ranges of temperature and pressure. The 

governing equations are solved analytically by means of suitable coordinate transformations. The droplet 

surface temperature and mass fraction of fuel vapor are determined by the matching conditions at the 

liquid-gas interface. Accordingly, a theoretical model, characterizing the time change of droplet size dur- 

ing its vaporization, is proposed in terms of the unsteadiness factor and droplet vaporization lifetime. The 

theoretical model successfully reveals the conventional recognition of droplet vaporization characteristics, 

and its predicted droplet size history agrees well with experimental results reported in the literature. Be- 

sides, based on the present theoretical analysis, the experimentally observed dual effect of pressure upon 

droplet vaporization is analyzed with help of an explicit formula for enthalpy of vaporization indicating 

its temperature-dependence. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Liquid fuels are widely used in various engines, e.g., diesel en- 

ines, jet engines, and liquid rocket engines. To facilitate combus- 

ion, the injected fuel is atomized into exceedingly small droplets 

ith diameters in micrometer scale [1–3] . In spray combustion 

ystem, the gasified fuel vapor participates combustion in gas 

hase, which releases a huge amount of heat and hence increases 

nvironmental temperature. The elevated temperature would facil- 

tate the evaporation process of the droplets in the spray. It has 

een experimentally observed that only the larger droplets can 

enetrate the flame zone and burn individually, while the majority 

f the atomized droplets evaporates in the relatively cool interior 

f the spray [4] . Therefore, droplet vaporization plays a crucial role 

n engines and is of primary concern in a variety of multi-phase 

ombustion studies. 

Experimental studies on droplet vaporization under micrograv- 

ty conditions without natural convection indicate that the va- 

orization lifetime decreases monotonically as ambient tempera- 

ure increases [ 4 , 5 ]. Moreover, the droplet surface regresses more 

apidly at elevated pressures [ 5 , 6 ]. In experiments, it is very diffi-

ult to generate an isolated droplet in stagnant environment with- 
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ut external support, and usually a single droplet is suspended by 

 thin fiber [5–7] . The suspension technique requires the droplet 

iameter to be considerably larger than the fiber thickness. Be- 

ides, the fiber attachment may cause droplet deformation, which 

ecomes progressively severe with droplet size reducing. 

In numerical simulations, different factors that affect droplet 

aporization can be isolated and examined independently. More- 

ver, the evolutions of droplet temperature and diameter can be 

tudied in simulations in wide ranges of pressure and temperature 

hat resemble the engine operating conditions [8–21] . At elevated 

ressures, various fluid dynamic and thermodynamic non-idealities 

how profound impacts on the behavior of droplet vaporization 

 7 , 8 , 18 , 19 ]. The enthalpy of vaporization decays with the growth

f droplet temperature, which results from the increment of ambi- 

nt pressure [22] . The reduction of enthalpy of vaporization leads 

o increment of vaporization rate due to the increasing of Spald- 

ng transfer number as indicated in d 2 -law [ 8 , 23 ]. Meanwhile, with

he increase of pressure, the initial unsteady heating period in- 

reases and so does the droplet lifetime [ 11 , 15 , 16 , 24 ]. Such a dual

ffect of the ambient pressure is further affected by the ambient 

emperature. When the droplet reaches its thermodynamic critical 

tate, the vanishing of liquid-gas interface, the enhanced solvability 

f environment gas in droplet fluid, and the anomalies in various 

hermal transport properties may lead to additional intricacy to the 

aporization process [ 8 , 16 , 18 ]. 

https://doi.org/10.1016/j.ijheatmasstransfer.2020.120542
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
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Nomenclature 

a coefficient in Peng-Robinson equation of state 

b coefficient in Peng-Robinson equation of state 

c p heat capacity at constant pressure 

c v heat capacity at constant volume 

d droplet diameter 

D mass diffusivity 

d 0 initial droplet diameter 

d n d / d 0 
f E R ( T c − T R ) / L R 
k Boltzmann constant 

k w 

Watson characterization factor 

L enthalpy of vaporization 

Le Lewis number 

˙ m F fuel vapor production rate 

p pressure 

p e saturated vapor pressure 

q l coordination number 

r radial coordinate 

R universal gas constant 

r s droplet radius 

s g specific gravity of n-heptane 

t time 

T temperature 

T b, n boiling temperature at p = 1 atm 

T ch 2 T 0 s / 3 + T ∞ 

/ 3 

t L ( T − T R ) / ( T c − T R ) 

t n t / t total 

T 0 s droplet surface temperature during quasi-steady va- 

porization 

T ∗ k T ch / 
√ 

ε F ε N 
V m 

molar volume 

W molar mass 

W FN 2 ( 1 / W F + 1 / W N ) 
−1 

X molar fraction 

Y mass fraction 

Y 0 
F s 

mass fraction of fuel vapor during quasi-steady va- 

porization 

Greek symbols 

α critical exponent for heat capacity 

β critical exponent for density discrepancy 

δw 

width of transition region 

ɛ characteristic Lennard-Jones energy 

λ thermal conductivity 

ξ transformed radial coordinate 

ρ density 

σ non-dimensional radial coordinate 

τ non-dimensional time 

�i t heating / t total 

χ characteristic Lennard-Jones length 

ω acentric factor 

�D dimensionless collision integral 

Subscripts 

c critical state 

F fuel species 

g gas phase 

l liquid phase 

N nitrogen 

R reference state in evaluating enthalpy of vaporiza- 

tion 

s quantities at droplet surface 

∞ environmental condition at far field 
2 
In the simulation of spray combustion, simultaneous considera- 

ion of a huge number of droplets is a formidable task, which de- 

ires theoretical models for droplet vaporization [ 1 , 3 , 25 ]. The pri-

ary theory is the d 2 -law, i.e., the square of droplet diameter de- 

reases linearly with time, which is considered as the leading order 

olution for a variety of modified theories [ 19 , 26 , 27 ]. 

By assuming quasi-steady gas-phase process, Law and Sirig- 

ano [28–31] conducted a series of theoretical studies on unsteadi- 

ess of droplet vaporization and combustion with the emphasis on 

ransient heating effects. They proposed and analyzed two mod- 

ls for droplet heating, i.e., distillation limit and conduction limit. 

he droplet surface regresses as the liquid fuel is converted into 

uel vapor during vaporization. The moving boundary effect plays 

 crucial role in droplet vaporization problems and in the mean- 

hile causes mathematical difficulty in analytical solution of the 

overning equations for droplet vaporization. In a series of theo- 

etical studies conducted by Law and Sirignano [ 29 , 32 ], the radial

oordinate is scaled by the radius of the droplet, yielding a di- 

ensionless spatial coordinate. Accordingly, the moving boundary 

s formally replaced by a fixed boundary where the non-dimension 

adial coordinate is equal to unity, and hence facilitates the analyt- 

cal solution of the governing equations. Equivalent mathematical 

reatments were widely in theoretical studies upon droplet vapor- 

zation, considering the droplet vaporization lifetime at subcritical 

nd supercritical conditions [13] as well as the influence of ther- 

al expansion flow on droplet vaporization [33] . 

Assuming the density ratio between the gas and liquid, ρg / ρ l , 

s a small parameter, Crespo and Linan [26] conducted asymptotic 

nalysis for droplet vaporization in a stagnant atmosphere consid- 

ring the unsteady effects in gas phase. They corrected the droplet 

ifetime by a factor of 
√ 

ρg / ρl . Zugasti et al. [13] extended the 

receding asymptotic analysis to supercritical conditions by dis- 

arding the liquid-gas interface and treating the droplet and am- 

ient gas respectively as cold and hot fluid packages. They derived 

 transcendental equation, which interprets the evolution of the 

old package radius and reproduces the d 2 -law results for isother- 

al conditions in the cold region. Cossali and Tonini [34] . analyzed 

he droplet evaporation and solved the governing equations char- 

cterizing the steady-state mass, momentum and energy balance of 

apor and gas mixture surrounding the droplet. Based on steady- 

tate assumption, Cossali and Tonini [35] also proposed an analyt- 

cal model of heat and mass transfer from liquid droplet, in which 

he thermo-physical properties of gas phase, e.g., density, heat ca- 

acity, diffusion coefficient, and thermal conductivity, were consid- 

red as functions of temperature. Snegirev [36] analyzed the vapor- 

zation of a single-component droplet with emphasis on the tran- 

ient temperature gradient of the droplet. According to Snegirev, 

he droplet temperature was either approximated by mathematical 

odels, e.g., parabolic, power-law, and polynomial functions of ra- 

ial coordinate, or evaluated through heat balance integral method 

n terms of volume-averaged temperature [36] . Sazhin et al . [37–

9] conducted a series of theoretical studies, considering the tran- 

ient heating of a droplet immersed into a hot gas. According to 

heir conclusions, the inhomogeneous gas temperature distribution 

ay lead to slowing down of body heating, while the distribution 

f body temperature did not depend on the initial gas temperature 

nhomogeneity in the long-time limit. 

Nevertheless, at elevated pressures, the prolonged droplet heat- 

ng stage results in pronounced unsteadiness in the overall vapor- 

zation process. This prevents the direct utilization of d 2 -law to in- 

erpret the droplet size history. Moreover, the density ratio, ρg / ρ l , 

ay not be treated as a small parameter at high pressures [40] , 

hich reduces the accuracy of the asymptotic analysis. To acquire 

nsightful understanding of droplet vaporization and to accurately 

odel the spray combustion, we need develop an accurate theo- 

etical model which can quantitatively interpret the droplet vapor- 
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zation at wide ranges of temperature and pressure conditions. The 

odel should explicitly reveal the impacts of various fluid dynamic 

nd thermodynamic properties on the vaporization process. There- 

ore, it requires a comprehensive theoretical analysis, considering 

he transient effects and in the meanwhile appropriately dealing 

ith the phase transition at the liquid-gas interface. Besides, it is 

ecognized that the boiling temperature of a liquid increase with 

nvironmental pressure. Thereby, the droplet surface temperature 

ould be higher at elevated ambient pressures, and so is the av- 

rage temperature of the droplet. On the one hand, it leads to 

engthening of droplet heating period, and on the other hand, low- 

rs the enthalpy of vaporization and hence facilitates the vapor- 

zation rate. Thereby, the pressure plays a dual effect towards the 

roplet vaporization. Such analysis is still not in place, which mo- 

ivates the present study. 

The paper is organized as follows. In Section 2 , the transient 

ormulation for droplet vaporization is solved analytically with the 

elp of appropriate coordinate transformations. The characteristic 

imes for droplet heating and vaporization are derived through the 

atching conditions. The matching conditions and the Clausius- 

lapeyron relation on the droplet surface are solved with the help 

f those analytical solutions and appropriate evaluation of various 

hermodynamic and transport properties. In Section 3 , a theoreti- 

al model is proposed, which interprets the time change of droplet 

ize during its vaporization under wide ranges of temperature and 

ressure. Comparison with experimental results reported in the lit- 

rature verifies the theoretical model. The duel effect of pressure 

pon the droplet lifetime is analyzed. The concluding remarks are 

iven in Section 4 . 

. Formulation 

We consider a single-component, volatile droplet in a stagnant 

nvironment of hot nitrogen with constant and uniform pressure. 

ince the droplet heating and vaporization take place simultane- 

usly, the formulation for the droplet vaporization process involves 

ass and energy conservation for both droplet (the liquid phase) 

nd the ambience (the gaseous mixture of fuel vapor and nitro- 

en) as well as their balance relations across the liquid-gas inter- 

ace (droplet surface) [22] . The governing equations for gas phase 

ystem consist of transport of volatile species, denoted by subscript 

 and the conservation of energy (in terms of temperature distri- 

ution). At the initial instant, no fuel is evaporated and thereby 

he fuel mass fraction is Y F ( t = 0 , r ) = 0 in the gaseous environ- 

ent, and both the droplet and the ambience have uniform tem- 

eratures, denoted by T 0 and T ∞ 

, respectively. As vaporization pro- 

eeds, the thermodynamic equilibrium at the evaporating inter- 

ace is characterized by the Clausius-Clapeyron relation, which cor- 

elates the droplet surface temperature, denoted by T s = T ( r s , t ) , 

ith the local mass fraction of the evaporated fluid, denoted by 

 F s = Y F ( r s , t ) . 

.1. Governing equations 

For analytical convenience, we assume that the density- 

eighted mass diffusion coefficients, ρD , thermal conductivities, 

, and heat capacities at constant pressure of both gas and liquid 

hases, c pg and c pl , are constants. In gas phase, the mass conserva- 

ion equations for the fuel vapor and inert gas are given by 

∂ Y F 
∂t 

+ v 
∂ Y F 
∂r 

= D g 
1 

r 2 
∂ 

∂r 

(
r 2 

∂ Y F 
∂r 

)
, Y N = 1 − Y F (1) 

here v is the Stefan flow velocity relative to the droplet surface, 

nd D g is the mass diffusion coefficient of the gaseous mixture. The 
3 
nergy conservation equation for gaseous mixture is given by 

∂ T g 
∂t 

+ v 
∂ T g 
∂r 

= L e g D g 
1 

r 2 
∂ 

∂r 

(
r 2 

∂ T g 
∂r 

)
(2) 

here the Lewis number is defined as L e g = λg / ( ρg c pg D g ) . Since

he droplet is placed in the quiescent environment, the internal 

ow would be inconsiderable, thus, the energy equation for liquid 

hase is given by 

∂ T l 
∂t 

= L e l D l 

1 

r 2 
∂ 

∂r 

(
r 2 

∂ T l 
∂r 

)
(3) 

here D l is the mass diffusion coefficient of the liquid and Le l is 

nalogously defined as L e l = λl / ( ρl c v l D l ) . 

The initial and boundary conditions for those governing equa- 

ions are specified as 

t = 0 : Y F = 0 , T g = T ∞ , T l = T 0 (Ic-1) 

r = 0 : ∂ T l /∂r = 0 (Bc-1) 

r = r s (t) : Y F = Y Fs (t) , T g = T s (t) , T l = T s (t) (Bc-2) 

r → ∞ : Y F = 0 , T g = T ∞ (Bc-3) 

where r s ( t ) refers to the temporally varying droplet radius. 

Nevertheless, the governing equations are not in closed form 

ecause the surface-related quantities, i.e., Y Fs ( t ), T s ( t ), and r s ( t ),

emain to be determined through the matching conditions at the 

vaporating interface. The fuel vapor on the droplet surface is par- 

ially transported by Stefan flow to downstream and the rest by 

iffusion to far field. Thereby the mass balance relation is given by 

˙ 
 F = 

˙ m F Y F s − 4 πρg D g r 
2 
s 

(
∂ Y F 
∂r 

)
r= r s 

(4) 

here the loss of droplet mass is related to the reduction of radius, 

.e., ˙ m F = −4 πρl r 
2 
s d r s /dt . Meanwhile, energy is transferred from 

he hot ambience to the droplet surface, partially contributing to 

he droplet warm-up and the rest providing energy to sustain the 

aporization process. Consequently, the energy balance is given by 

 πλr 2 s 

(
∂ T g 
∂r 

)
r= r s 

= 

˙ m F L + 4 πλl r 
2 
s 

(
∂ T l 
∂r 

)
r= r s 

(5) 

here L is the enthalpy of vaporization for the droplet fluid. 

We assume that the vaporization occurs at thermodynamically 

quilibrium state. Therefore, on the droplet surface, the relation- 

hip between mass fraction of fuel vapor and temperature is de- 

ermined by the Clausius-Clapeyron relation, i.e., 

Y F s / W F 

Y F s / W F + ( 1 − Y F s ) / W N 

= 

p n 

p 
exp 

[
L ( T s ) 

R 

(
1 

T b,n 

− 1 

T s 

)]
(6) 

here W is the molar mass of each species, T bn the boiling point 

emperature of the droplet fluid under the normal pressure p n . 

upplementing the matching conditions and phase equilibrium re- 

ation to the governing equations, the mathematical formulation of 

he droplet vaporization problem is in closed form, and hence the 

olution procedure could be initiated. 

.2. Solutions to the gas phase 

The evaporation results in droplet radius shrinking. For math- 

matical convenience in dealing with the moving boundary prob- 

em, we introduce a scaled coordinate in analogy to that adopted 

y Law and Sirignano [29] , i.e., 

= 

r 

r s ( t ) 
, τ = 

t 

∫ 
0 

D g 

r 2 s ( t 
′ ) 

dt ′ (7) 

Writing Eqs. (1) and (2) in the scaled coordinate (7), we have 
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∂ Y F 
∂τ

− 1 

2 

(
1 

σ 2 

ρl 

ρg 
+ σ

)
1 

D g 

dr 2 s 

dt 

∂ Y F 
∂σ

= 

1 

σ 2 

∂ 

∂σ

(
σ 2 ∂ Y F 

∂σ

)
(8) 

∂ T g 
∂τ

− 1 

2 

(
1 

σ 2 

ρl 

ρg 
+ σ

)
1 

D g 

dr 2 s 

dt 

∂ T g 
∂σ

= L e g 
1 

σ 2 

∂ 

∂σ

(
σ 2 ∂ T g 

∂σ

)
(9) 

Replacing radial coordinate r by the normalized coordinate σ , 

he moving boundary effect is transformed into an equivalent con- 

ection term. The initial and boundary conditions for Eqs. (8) and 

9) are specied as 

τ = 0 Y F = 0 , T g = T ∞ (Ic-1’) 

σ = 1 Y F = Y Fs (τ ) , T g = T s (τ ) (Bc-2’) 

σ → ∞ Y F = 0 , T g = T ∞ (Bc-3’) 

The first order derivatives impose substantial difficulties in de- 

aing with Eqs. (8) and (9) analytically. Whereas, such mathemat- 

cal issue could be alleviated by introducing the following coordi- 

ate transform 

g = 

[
∞ 

∫ 
1 

F g 
(
σ ′ )dσ ′ 

]−1 
σ
∫ 
1 

F g 
(
σ ′ )dσ ′ (10) 

here 

 g ( σ ) = exp 

{ 

−
σ∫ 
1 

[
2 

σ ’ 
+ 

1 

2 

(
1 

σ ’ 2 

ρl 

ρg 
+ σ ’ 

)
1 

D g 

dr 2 s ( t ) 

dt 

]
dσ ’ 

} 

(11) 

By chain’s rule, the first and second order derivatives with re- 

pect to σ s can be written in the terms of ξ g as 

∂ 

∂σs 
= 

∂ξg 

∂σs 

∂ 

∂ξg 

∂ 2 

∂σ 2 
s 

= 

d 2 ξg 

dσ 2 
s 

∂ 

∂ξg 
+ 

(
dξg 

dσs 

)2 
∂ 2 

∂ξ 2 
g 

Applying the coordination transformation (10) to Eqs. (8) and 

9) , we have 

∂ Y F 
∂τ

= D eff 

∂ 2 Y F 
∂ξ 2 

g 

, 
∂ T g 
∂τ

= L e g D eff 

∂ 2 T g 
∂ξ 2 

g 

(12) 

here the effective diffusion coefficient is defined as 

 eff = 

{ 

F g ( σ ) 

[
∞ 

∫ 
1 

F g 
(
σ ′ )dσ ′ 

]−1 
} 2 

(13) 

It is a function of σ and thus varies with ξ g . On the droplet 

urface where evaporation occurs, the solutions for Y F and T are to 

e substituted into the matching conditions. The matching condi- 

ions refer to Eqs. (4) – (6) that describe the mass conservation, 

nergy conservation and phase equilibrium relation between the 

uel vapor and its condensed phase at the droplet surface. This im- 

lies that the accuracy of the solutions for Y F and T remote from 

he droplet surface has insignificant impact upon determination 

f the droplet vaporization rate, which relies upon the analysis at 

vaporating interface. It allows us to choose a representative value 

or D eff that characterizes its contirbution to Y Fs and T s evaluated 

y their analytical solutions to Eqs. (8) and (9) . Accordingly, we 

ay specify the characteristic effective diffusion coefficient on the 

roplet surface where σ = 1 , giving 

 

c 
eff = 

[
∞ 

∫ 
1 

F 
(
σ ′ )dσ ′ 

]−2 

(14) 

The boundary conditions are revised as 

ξg = 0 : Y F = Y Fs (τ ) , T g = T s (τ ) (Bc-2’’) 

ξg = 1 : Y F = 0 , T g = T ∞ (Bc-3’’) 

E

4 
With the help of D 

c 
eff 

D eff, the Eq. (12) could be solved analyt- 

ally subject to the initial condition (Ic-1’) and boundary condi- 

ions (Bc-2’’) and (Bc-3’’), giving 

 F ( ξg , τ ) = Y F s ( τ ) − ξg Y F s ( τ ) + 2 

∞ ∑ 

n =1 

sin ( nπx ) e −D c 
eff 

n 2 π2 τ R 

Y 
n ( τ ) 

(15) 

 g ( ξg , τ ) = T s ( τ ) + ξg [ T ∞ 

− T s ( τ ) ] 

+ 2 

∞ ∑ 

n =1 

sin ( nπx ) e −L e g D 
c 
eff 

n 2 π2 τ R 

T 
n ( τ ) (16) 

here R Y n (τ ) and R T n (τ ) are 

 

Y 
n ( τ ) = − 1 

nπ

(
∂ Y F s 
∂τ

e D 
c 
eff 

n 2 π2 τ − 1 

D 

c 
eff 

n 

2 π2 
−

t 

∫ 
0 

e D 
c 
eff 

n 2 π2 τ − 1 

D 

c 
eff 

n 

2 π2 

∂ 2 Y F s 
∂ τ 2 

dτ

)
(17) 

 

T 
n ( τ ) = 

1 ∫ 
0 

T ∞ 

sin ( nπξg ) dξg − 1 

nπ

[
T s ( 0 ) − ( −1 ) 

n T ∞ 

]

− 1 

nπ

( 

∂T s 

∂τ

e Le g D 
c 
eff 

n 2 π2 τ − 1 

Le g D 

c 
eff 

n 2 π2 
−

t ∫ 
0 

e Le g D 
c 
eff 

n 2 π2 τ − 1 

Le g D 

c 
eff 

n 2 π2 

∂ 2 T s 
∂τ 2 

dτ

) 

(18) 

On the droplet surface, the fuel vapor is transported to the am- 

ience by convection and diffusion (loss contribution) and mean- 

hile supplied by continuous evaporation from liquid droplet (gain 

ontribution). Therefore, we argue that dynamic equilibrium is 

aintained on the droplet surface. It implies that except at a very 

rief period, during which the phase equilibrium condition is es- 

ablished, the time change of Y Fs tends to be inconsiderable than 

he unsteadiness resulting from the droplet heating in vaporization 

rocess [ 30 , 31 ]. The same argument applies to the droplet surface 

emperature T s according to the Clausius-Clapeyron relation, and 

ccordingly, we can neglect the terms containing the second order 

erivatives of Y Fs and T s in Eqs. (17) and (18) . Substituting those 

implifications into Eqs. (15) and (16) yields the following solutions 

or Y F and T g 

 F ( ξg , τ ) = Y Fs ( τ ) − ξg Y Fs ( τ ) − 2 

D 

c 
eff

∂Y Fs 

∂τ

∞ ∑ 

n =1 

sin ( nπξg ) 

n 

3 π3 

+ 

2 

D 

c 
eff

∂Y Fs 

∂τ

∞ ∑ 

n =1 

sin ( nπξg ) e 
−D c 

eff
n 2 π2 τ

n 

3 π3 
(19) 

 g ( ξg , τ ) = T s ( τ ) + ξg [ T ∞ 

− T s ( τ ) ] − 2 

Le g D 

c 
eff 

∂T s 

∂τ

∞ ∑ 

n =1 

sin ( nπξg ) 

n 3 π3 

+ 2 

∞ ∑ 

n =1 

sin ( nπξg ) 

nπ
e 

−Le g D 
c 
eff 

n 2 π2 τ

[
T ∞ 

− T s ( 0 ) + 

1 

n 2 π2 Le g D 

c 
eff 

∂T s 

∂τ

]

(20) 

On the droplet surface where σ = 1 , the derivatives of Y F and 

 g with respect to σ shall be calculated through chain’s rule, i.e., 

∂Y F 
∂σ

)
σ=1 

= 

(
∂Y F 
∂ξg 

)
ξ=0 

(
dξg 

dσ

)
σ=1 (

∂T g 

∂σ

)
σ=1 

= 

(
∂T g 

∂ξg 

)
ξ=0 

(
dξg 

dσ

)
σ=1 

(21) 

With the help of Eq. (10) and evaluating the derivatives of 

qs. (19) and (20) , we have 
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(38) 
∂ Y F 
∂σ

)
σ=1 

= −
[

Y F s ( τ ) + 

1 

3 

1 

D 

c 
eff 

∂ Y F s 
∂τ

(
1 − e −D c 

eff 
π2 τ

)][
∞ 

∫ 
1 

F g ( σ ) dσ

]−1 

(22) 

∂ T g 
∂σ

)
σ=1 

= 

{
T ∞ 

− T s ( τ ) − 1 

3 

1 

L e g D 

c 
eff 

∂ T s 
∂τ

(
1 − e −L e g D 

c 
eff 

π2 τ
)

+ [ T ∞ 

− T s ( 0 ) ] 

[ 
ϑ 3 

(
e −L e g D 

c 
eff 

π2 τ
)

− 1 

] }[
∞ 

∫ 
1 

F g ( σ ) dσ

]−1

(23)

here ϑ refers to the elliptic theta function. Since the quasi-steady 

tate in gas phase establishes swiftly during the droplet vaporiza- 

ion, we make the subsequent approximation 

∞ 

 

 =1 

e −L e g D 
c 
eff 

n 2 π2 τ

n 

2 π2 
→ e −L e g D 

c 
eff 

π2 τ
∞ ∑ 

n =1 

1 

n 

2 π2 
= 

1 

6 

e −L e g D 
c 
eff 

π2 τ (24) 

uring derivation of Eqs. (22) and (23) . 

Known the integral of F g ( σ ) from 1 to σ = ∞ , the character-

stic value of effective diffusion coefficient can be calculated, and 

ubsequently the determination of ( ∂ Y F /∂σ ) σ=1 and ( ∂ T g /∂σ ) σ=1 

ccording to Eqs. (22) and (23) . Analyzing Eq. (11) , it is noted that

he linear term ( σ/ D g )( d r 2 s /d t ) actually results from the coordinate 

ransformation from the ( r, t )- to ( σ , τ )-space. When approaching 

o the end of the droplet vaporization, i.e., r s → 0, the coordinate 

, according to Eq. (7) , becomes exceedingly large, even for mod- 

rate radial distance r . Such pure mathematical effect leads to the 

ivergence of the F g ( σ ) at large values of σ , and has no contribu-

ion to the physical interpretation of the droplet vaporization pro- 

ess. Thereby, we remove this linear term in the estimation of the 

ntegral of F g ( σ ), yielding 

 

∫ 
1 

F ( σ ) d σ ≈
∞ 

∫ 
1 

exp 

{
−

σ
∫ 
1 

[
2 

σ ′ + 

1 

2 

1 

σ ′ 2 
ρl 

ρg 

1 

D g 

d r 2 s ( t ) 

d t 

]
d σ ′ 

}
d σ = 

1 

a g 

(
e a g − 1 

)
(25) 

here a g is 

 g = −1 

2 

1 

D g 

dr 2 s 

dt 

ρl 

ρg 
> 0 (26) 

Substituting Eq. (25) into Eqs. (22) and (23) , we obtain 

∂ Y F 
∂σ

)
σ=1 

= −
[

Y F s ( τ ) + 

1 

3 

1 

D 

c 
eff 

∂ Y F s 
∂τ

(
1 − e −D c 

eff 
π2 τ

)] a g 

e a g − 1 

(27) 

∂ T g 
∂σ

)
σ=1 

= 

{
T ∞ 

− T s ( τ ) − 1 

3 

1 

L e g D 

c 
eff 

∂ T s 
∂τ

(
1 − e −L e g D 

c 
eff 

π2 τ
)

+ [ T ∞ 

− T s ( 0 ) ] 
[
ϑ 3 

(
e −L e g D 

c 
eff 

π2 τ
)

− 1 

]} 

a g 

e a g − 1 

(28) 

Eqs. (27) and (28) are to be substituted into the mass and en- 

rgy balance relations on the droplet surface, respectively. 

.3. Solutions to the liquid phase 

By defining T = r T l , Eq. (3) can be written in the form of one-

imensional heat conduction in Cartesian coordinate, i.e., 

∂T 

∂t 
= D l L e l 

∂ 2 T 

∂ r 2 
(29) 

Applying the coordinate transform (7) to Eq. (29) , we have 

∂T 

∂τ
− 1 

2 

σ

D g 

dr 2 s ( t ) 

dt 

∂T 

∂σ
= 

L e l D l 

D g 

∂ 2 T 

∂ σ 2 
(30) 
5 
In analogy to Eq. (10) , we define a new coordinate ξ l as 

l = 

erfi( 
√ 

a l σ ) 

erfi( 
√ 

a l ) 
(31) 

here “erfi” refers to the imaginary error function, and the factor 

 l is defined as 

 l = −1 

4 

1 

D l L e l 

dr 2 s 

dt 
(32) 

Applying the coordinate transform (31) to Eq. (30) , the first or- 

er derivative no longer appears, giving 

∂T 

∂τ
= λl, eff 

d 2 T 

dξ 2 
l 

(33) 

here the effective heat conduction coefficient denotes for 

l, eff = 

[
1 

e −a l σ 2 

√ 

πerfi( 
√ 

a l ) 

2 

√ 

a l 

]−2 
D l L e l 

D g 
(34) 

Following the same procedure as we derive D 

c 
eff 

, the charac- 

eristic value for effective heat conduction coefficient, denoted by 
c 
l, eff 

, can be specified by setting σ = 1 . The initial and boundary 

onditions for Eq. (33) are 

τ = 0 T = σ ( ξl ) r 0 T 0 (Ic-i) 

ξl = 0 T = 0 (Bc-ii) 

ξl = 1 T = r s (τ ) T s (t) (Bc-iii) 

where r 0 is the initial radius of the droplet. 

The functional relationship between σ and ξ l shall be obtained 

y inversely solving Eq. (31) , formally yielding 

= − i er f −1 [ i ξl erfi( 
√ 

a l ) ] √ 

a l 
(35) 

here er f −1 denotes the inverse function of error function. 

q. (32) shows that a l involves the surface regression rate of the 

vaporating droplet, d r 2 s /d t , which can be considered as a small 

uantity during droplet vaporization. This implies that the right- 

and side of Eq. (35) can be approximated by power series in 

erms of a l , giving 

= ξl + 

1 

3 

(
ξl − ξ 3 

l 

)
a l + O 

(
a 2 l 

)
(36) 

The initial condition (Ic-i) is accordingly modified to 

τ = 0 T = [ ξl + 

a l 
3 
( ξl − ξ 3 

l 
) ] r 0 T 0 (Ic-i’) 

which we shall adopt in the subsequent solution of the liquid 

hase system. 

Equating the effective heat conduction coefficient to its char- 

cteristic value, Eq. (33) can be solved analytically subject to the 

nitial condition (Ic-i’) and boundary conditions (Bc-ii) and (Bc-iii), 

iving 

 ( ξl , τ ) = 

[ 
ξl + 

a l 
3 

(
ξl − ξ 3 

l 

)] 
r s ( τ ) T s ( τ ) 

+ 2 

∞ ∑ 

n =1 

sin ( nπξl ) R n,l ( τ ) e −λc 
l, eff 

n 2 π2 τ (37) 

here, considering the dynamic equilibrium on the droplet surface, 

he quantity R n, l can be written as 

 n,l ( τ ) = 

2 a l ( −1 ) 
n +1 

n 

3 π3 
T 0 r 0 + ( −1 ) 

n e 
λc 

l, eff 
n 2 π2 τ − 1 

λc 
l, eff 

n 

3 π3 

d 

dτ
[ r s ( τ ) T s ( τ ) ] 
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.4. Analysis on the droplet surface 

The mass balance relation on the interface in the scaled coordi- 

ate ( τ , σ ) is given by 

ρl 

ρg 

1 

D g 

dr 2 s 

dt 
( 1 − Y F s ) = 2 

(
∂ Y F 
∂σ

)
σ=1 

(39) 

After a swift induction period in the order of O ( 1 /D 

c 
eff 

π2 ) , the

as phase unsteadiness decays to be negligible. Accordingly, we 

an remove the exponentially decaying term in the coefficient of 

Y Fs / dt in Eq. (27) , giving, 

∂ Y F 
∂σ

)
σ=1 

= −
(

Y F s + 

1 

3 

1 

D 

c 
eff 

∂ Y F s 
∂τ

)
a g 

e a g − 1 

(40) 

Substituting into Eq. (39) , we obtain an ordinary differential 

quation for the temporal variation of Y Fs , i.e., 

∂ Y F s 
∂τ

= −3 D 

c 
eff ( e 

a g Y F s + 1 − e a g ) (41) 

The droplet size changes slightly during the initial build-up of 

uel vapor and the elevation of droplet surface temperature, which 

mplies that the quantity a g , given by Eq. (26) , could be considered

s a constant. Solving Eq. (41) subject to the initial condition of 

 F s (0) = 0 , it yields 

 Fs = 

(
1 − e −a g 

)(
1 − e −3 e a g D c 

eff
τ
)

(42) 

It is seen that after an induction period characterized by 

 / 3 e a g D 

c 
eff

, Eq. (42) asymptotes to 

 

0 
F s = 1 − e −a g (43) 

When the droplet is exposed in the hot environment, the fuel 

apor starts to accumulate at the droplet surface due to vaporiza- 

ion. Then, Y 0 
F s 

represents final stage of fuel vapor accumulation, 

ubsequent to which, the mass fraction of fuel vapor at the droplet 

urface almost remains unchanged. The rate of fuel vapor genera- 

ion from vaporization tends to balance with the transport of fuel 

apor at the droplet surface through diffusion, i.e., the vaporiza- 

ion could be regarded as in quasi-steady state. With the knowl- 

dge of droplet surface regression rate, i.e., d r 2 s /d t , which we shall

iscuss subsequently, the factor a g could be calculated and hence 

he asymptotic mass fraction Y 0 
F s 

could be determined. Substitut- 

ng Y 0 
F s 

into the Clausius-Clapeyron relation, given by Eq. (6) , the 

symptotic temperature on the droplet surface can be obtained as 

 

0 
s = T bn 

( 

1 + 

R T bn 

L 
(
T 0 s 

){
ln 

p n 

p 
+ ln 

[
1 + 

W F 

W N ( e a g − 1 ) 

]}) −1 

(44) 

For droplet evaporating at high temperature and pressure con- 

itions, the quasi-steady vaporization is preceded by a heating 

tage. During the heating stage, vaporization rate tends to be in- 

iscernible compared with that in the subsequent stage of quasi- 

teady vaporization. The time required to heat the droplet to a uni- 

orm temperature T 0 s can be determined by 

4 π r 3 0 

3 

ρl c v l 
(
T 0 s − T 0 

)
= 

t ′ 
heating 

∫ 
0 

4 π r 2 0 λg 

(
∂ T g 
∂σ

)
σ=1 

dt (45) 

Eq. (45) can be considered as a simplified model for droplet 

eating time. The left-hand side is the energy required to increase 

he droplet temperature uniformly from T 0 to the final stage T 0 s 

ubsequent to which the quasi-steady vaporization dominates over 

he droplet heating. The integrand on right-hand side represents 

he heating power at the droplet surface due to heat conduction 

rom the hot environment, and hence the upper limit of the inte- 

ral refers to an estimate to the heating time. Solving Eq. (45) , one
6 
btains, 

 

′ 
heating = 

c v l ρl r 
2 
0 

3 λg 

T 0 s − T 0 

T ∞ 

− T 0 s 

(46) 

However, it has been indicated that the temperature at the 

roplet center tends to be considerably lower than T 0 s when con- 

iderable evaporation initiates subsequent to the heating stage. 

herefore, the t ′ 
heating 

tends to overestimate the duration of the 

eating stage. The rigorous determination of the droplet temper- 

ture gradient inside the droplet could be dealt with by analyz- 

ng the temporal and spatial evolution of T l derived from Eq. (37) . 

lternatively, Snegirev proposed a few models that interprets the 

roplet temperature profiles as power-law or polynomial functions 

f radial coordinates [36] . For simplicity and illustrative concern, 

e assume that the droplet temperature can be approximated by a 

inear function of radial coordinate, i.e., T o 
l 
(r) ≈ T 0 + ( T 0 s − T 0 ) r/ r 0 , 

hen the droplet enters the quasi-steady vaporization stage. Ac- 

ordingly, the energy required to heat the droplet with uniform 

emperature T 0 to the particular temperature profile given by T o 
l 

an be evaluated by 

Q = 4 πc vl 

r 0 ∫ 
0 

r 2 
[ 

T 0 + 

(
T 0 s − T 0 

) r 

r 0 

] 
dr 

− 4 

3 

π r 3 0 c vl T 0 = π r 3 0 c vl 

(
T 0 s − T 0 

)
(47) 

Comparing with Eq. (45) , the heating time can be approxi- 

ately evaluated as 

 heating = 

3 

4 

t ′ heating = 

c v l ρl r 
2 
0 

4 λg 

T 0 s − T 0 

T ∞ 

− T 0 s 

(48) 

In the quasi-steady vaporization stage, the heat transfer from 

he hot ambience is mainly utilized to evaporate the droplet, thus 

he energy balance relation can be revised from Eq. (5) by remov- 

ng the heating effect, giving 

∂ T g 
∂σ

)
σ=1 

= −1 

2 

ρl 

λg 

dr 2 s ( t ) 

dt 
L ( T s ) (49) 

Substituting ( ∂ T g /∂σ ) σ=1 from Eq. (28) into Eq. (49) , we obtain 

n ordinary differential equation for r 2 s , which is analogous to the 

lassic d 2 -law characterizing the droplet vaporization, i.e., 

dr 2 s 

dt 
= −2 ρg D g 

ρl 

ln 

[ 

1 + 

L e g c pg 

(
T ∞ 

− T 0 s 

)
L 
(
T 0 s 

)
] 

(50) 

Solving for time duration of quasi-steady vaporization, 

 vaporization , we obtain 

 vaporization = 

1 

2 

ρl r 
2 
0 

ρg D g ln 

[
1 + L e g c pg 

(
T ∞ 

− T 0 s 

)
/L 

(
T 0 s 

)] (51) 

In terms of Eqs. (48) and (51) , the overall droplet lifetime can 

e evaluated in the following explicit form: 

 total = t heating + t vaporization 

= 

ρl 

ρg 

r 2 0 

D g 

{ 

1 

4 L e g 

c v l 
c pg 

T 0 s − T 0 

T ∞ 

− T 0 s 

+ 

1 

2 

1 

ln 
[
1 + L e g c pg 

(
T ∞ 

− T 0 s 

)
/L 

(
T 0 s 

)]
} 

(52) 

Acquiring the surface regression rate, given by Eq. (50) , the 

symptotic droplet surface temperature, according to Eq. (44) , can 

e written in the subsequent form 

 

0 
s = T bn 

( 

1 + 

R T bn 

L 
(
T 0 s 

)
{ 

ln 

p n 

p 
+ ln 

[ 

1 + 

W F L 
(
T 0 s 

)
W N L e g c pg 

(
T ∞ 

− T 0 s 

)
] } ) −1 

(53) 
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Fig. 1. Comparison of asymptotic droplet surface temperature T 0 s (solid lines) with 

the wet-bulb temperature T wb estimated by the fitting formula Eq. (57) (dashed 

lines). The hollow symbols represent the experimentally determined wet-bulb tem- 

perature of heptane droplet at normal pressure from Ref. [45] 
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Therefore, T 0 s shall be determined iteratively through 

q. (53) when the temperature dependence of enthalpy of 

aporization is known. 

.5. Thermodynamic and transport properties 

The enthalpy of vaporization can be directly solved through 

 = 

V v m ∫ 
V l m 

[
T 

(
∂ p 

∂T 

)
V m 

− p 

]
d V m 

+ p e 
(
V 

v 
m 

− V 

l 
m 

)
(54) 

here V l m 

and V v m 

denote the molar volumes of liquid and gas 

hase, respectively, and p e is the equilibrium vapor pressure. Those 

quilibrium states can be iteratively calculated by simultaneously 

olving an equation of state that is accurate at both liquid and 

as phase, e.g., Soave-Redich-Kwong or Peng-Robinson equation 

f states. It is acknowledged that Eq. (54) cannot interpret the 

emperature-dependence of enthalpy of vaporization in a mathe- 

atically explicit form. 

Fortunately, the enthalpy of vaporization can also be evaluated 

hrough an analytical formula [41] , given by 

L 

L R 
= 

[ 
1 − f E 

(
q l,R 
2 

− 1 

)
t L 

] 1 −t L 
[

f E 
q l,R 

2 ( 1 − α) 
( 1 − t L ) 

1 −α

+ 

(
1 − 1 

2 

f E q l,R 

)
( 1 − t L ) 

β
] t L 

(55) 

here L R is the enthalpy of vaporization at reference tempera- 

ure T R . The α and β are the critical exponents characterizing 

he heat capacity at constant volume and the density difference 

hen the fluid is close to its thermodynamic critical state, i.e., 

 v ∼ ( T c − T ) −α and ρl − ρc ∼ ( T c − T ) β . The literature on the crit- 

cal phenomena suggests that the approximate values of α of β
or various fluids are 0.1096 and 0.3265, respectively [42] . Accord- 

ng to the X-ray scattering experimental studies on liquid config- 

rations, the coordination number, denoted by q , changes in a re- 

tricted range between 9 and 11 for most fluids [43] . Since the ref-

rence state is remote from the critical point, reference coordina- 

ion number, q l, R , tends to be greater in magnitude, which leads us 

o specify q l,R = 11 in the subsequent discussion. The energy factor 

 E and normalized temperature t L are defined in terms of reference 

nd critical temperatures 

f E = 

R ( T c − T R ) 

L R 
, t L = 

T − T R 
T c − T R 

(56) 

Therefore, with the knowledge of both reference state and crit- 

cal temperature, i.e., L R and T c , the enthalpy of vaporization can 

e calculated through Eq. (55) at the surface temperature T 0 s . Pre- 

eding to the solution of droplet vaporization system, the thermo- 

ynamic and transport properties in both gas and liquid phases, 

.g., density, heat capacity, mass and thermal conductivities, must 

e determined. The specification of those quantities is given in the 

ppendix. Substituting those specified thermodynamic and trans- 

ort properties into Eqs. (48) , (51) , and (52) , the characteristic time

cales of droplet vaporization, i.e., t heating , t vaporization and t total , can 

e readily calculated. 

. Results and discussion 

Assuming that the quasi-steady state vaporization occurs at 

hermodynamic equilibrium condition, the asymptotic temperature 

t the droplet surface, T 0 s , would be close to the wet-bulb temper- 

ture [ 28 , 30 ], which is usually considerably lower than the boiling

oint at the current pressure. Due to lack of an accurate theoretical 

eans to calculate the wet-bulb temperature, Miller et al. [44] pro- 

osed the following empirical correlation to the experimental re- 

ults for a variety of fuels in terms of the boiling temperature of 
7 
he specific liquid and the environmental temperature: 

 wb = 137 

(
T b 

373 . 15 

)0 . 68 

log ( T g ) − 45 (57) 

In the present model, T 0 s could be determined by iteratively 

olving Eq. (53) , in which the thermodynamic and transport prop- 

rties are evaluated by means of 1/3 rule and the enthalpy of va- 

orization by Eq. (55) . Fig. 1 indicates that the calculated droplet 

urface temperature based on our theoretical model agrees well 

ith the wet-bulb temperatures estimated by Eq. (57) as well as 

hose measured in experiments for atmospheric pressure [45] . 

With the knowledge of T 0 s , the heating and vaporization times 

an be explicitly determined from Eq. (48) and Eq. (51) , respec- 

ively, and hence the droplet lifetime by Eq. (52) . Nomura et al. 

6] defined an unsteadiness factor as the ratio of droplet heating 

ime to its lifetime, i.e., 

i = 

t heating 

t total 

(58) 

It is seen that the droplet surface temperature grows with in- 

reasing either temperature or pressure of the environmental gas. 

t implies that more heat is required to warm up the droplet before 

ts arrival at the quasi-steady vaporization state, and accordingly, 

he unsteadiness in the droplet vaporization process becomes more 

ronounced. 

To verify the present theoretical analysis, we specify our condi- 

ions identical to those in Nomura et al.’s experiments [6] , which 

onsidered an n-heptane droplet vaporizing at nitrogen environ- 

ent under microgravity condition. In experiments, the droplet 

as suspended by a thin fiber, thus the overall droplet vaporiza- 

ion lifetime must be extrapolated from the droplet size history to 

ts vanishing point. In Fig. 2 , the scaled vaporization lifetimes (di- 

ided by the square of the initial droplet diameter), calculated by 

q. (52) at various temperatures and pressures, are compared with 

hose extrapolated from experimental data. It shows that the the- 

retical model can accurately predict the droplet lifetime in wide 

anges of temperature and pressure. 

Both theoretical model and experimental results indicate that 

he droplet lifetime decreases with the ambient temperature. More 

nterestingly, the results in Fig. 2 show that the droplet lifetime de- 

ends upon the ambient pressure in a non-monotonic manner. At 

ow to moderate temperatures with T ∞ 

< 510K, the droplet life- 

ime becomes slightly longer when the ambient pressure is ele- 

ated from 0.1MPa to 0.5MPa. As pressure increasing from 0.5MPa 
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Fig. 2. Comparison of droplet lifetime calculated by theoretical model (solid lines) 

and those extrapolated from experimental data (denoted by hollow symbols) in [6]. 
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o 1.0MPa, the droplet lifetime undergoes discernible reduction. 

y further increasing ambient pressure from 1.0MPa to 2.0MPa, 

he droplet lifetime tends to be significantly prolonged. However, 

t moderate to high temperatures with T ∞ 

> 510K, the droplet 

ifetimes for p = 2 . 0 MPa are uniformly lower than those situa- 

ions with lower ambient pressures. These results imply that the 

mbient pressure has both facilitating and impeding effects upon 

roplet vaporization. Moreover, the facilitating effect tends to dom- 

nate over the impeding effect when the ambient pressure be- 

omes sufficiently high. It can be attributed to the competition be- 

ween t heating and t vaporization as increasing the ambient pressure. 

According to Fig. 1 the droplet surface temperature gets higher 

s pressures. It results in the lengthening of the heating time, 

hich partially contributes to the increase of droplet lifetime. 

eanwhile, at low to moderate temperatures, e.g., T ∞ 

< 510 K, the 

iscrepancy between T 0 s and T ∞ 

tends to be moderate, which al- 

ows us to assume that c pg ( T ∞ 

− T 0 s ) 
 L ( T 0 s ) . Consequently, the 

aporization time could be simplified to 

 vaporization ≈
1 

2 

r 2 0 ρl L 
(
T 0 s 

)
λg 

(
T ∞ 

− T 0 s 

) (59) 

Besides, the surface temperature T 0 s must be remote from the 

ritical temperature, leading to that according to ref [41] , the en- 

halpy of vaporization could be represented by 

L 
(
T 0 s 

)
L 0 

≈ 1 − f E 

(
q l,R 
2 

− 1 

)
T 0 s − T R 
T c − T R 

(60) 

here the energy factor f E , for the current n-heptane fuel is around 

.055. Taking derivative of t vaporization with respect to T 0 s from 

q. (59) with simplified enthalpy of vaporization given by Eq. (60) , 

e have 

d t vaporization 

dT 0 s 

≈ 1 

2 

r 2 0 ρl 

λg 

L R (
T ∞ 

− T 0 s 

)2 

[ 
1 − f E 

(
q l,R 
2 

− 1 

)] 
> 0 (61) 

here the reference temperature is 300 K. It can be interpreted as 

ollows. At low to moderate temperatures, the heat transfer rate 

rom the ambience to the droplet surface decreases as the sur- 

ace temperature increasing, which lowers the temperature differ- 

nce. Meanwhile, the decrement of vaporization enthalpy due to 

he same cause tends to be immaterial so that the vaporization 

ate is reduced. Thereby, the simultaneous increase of both heating 

nd vaporization times results in a noticeably prolonged droplet 

ifetime at low to moderate temperatures, and it becomes more 

ronounced as ambient pressure grows. The decay of droplet life- 

ime at intermediate pressure, e.g., p = 1 . 0 MPa might be attributed 
8 
o the increment of λg and ρg D g , whose temperature dependence 

s estimated by means of the 1/3 rule, given by Eq. (a4), in terms 

f the droplet surface temperature. According to Eqs. (48) and (51) , 

oth heating and vaporization times are shortened under the en- 

ancement of transport properties. 

At moderate to high temperatures, the logarithmic function in 

q. (51) cannot be estimated by its first order Taylor series. How- 

ver, the dependence of vaporization time upon pressure, i.e., the 

ehavior of d t vaporization /dT 0 s , can still be interpreted by means of 

q. (59) because the logarithmic function has the same monotonic- 

ty as linear function. When the droplet surface temperature ap- 

roaches to the critical temperature, according to Ref. [41] , the en- 

halpy of vaporization can be evaluated through 

L 
(
T 0 s 

)
L R 

≈ f E 
q l,R 

2 ( 1 − α) 

(
T c − T 0 s 

T c − T R 

)1 −α

+ 

(
1 − 1 

2 

f E q l,R 

)(
T c − T 0 s 

T c − T R 

)β

(62) 

Taking derivative of t vaporization with respect to T 0 s from 

q. (59) with enthalpy of vaporization given by Eq. (62) , we have 

d t v aporization 

dT 0 s 

≈ 1 

2 

r 2 0 ρl 

λg 

L 0 

( T ∞ 

− T o s ) 
2 

[ 

1 

2 
f E q l,R 

(
T c − T o s 

T c − T R 

)1 −α(
1 

1 − α
− T ∞ 

− T o s 

T c − T o s 

)

+ 

(
1 − 1 

2 
f E q l,R 

)(
T c − T o s 

T c − T R 

)β(
1 − β

T ∞ 

− T o s 

T c − T o s 

)] 

(63) 

hen the environmental temperature is considerably higher than 

he critical temperature, T 0 s becomes comparable with T c . At 

onditions that ( T ∞ 

− T 0 s ) / ( T c − T 0 s ) > 1 /β , Eq. (63) indicates that

 t vaporization /dT 0 s is negative and thereby the vaporization rate in- 

reases with the ambient pressure. This effect can be attributed 

o that the enthalpy of vaporization becomes exceedingly due to 

ncreasing of droplet surface temperature. The reduction of vapor- 

zation enthalpy renders the phase transition to occur more readily 

nd hence accelerates the vaporization process. 

At sufficiently high pressures, e.g., p = 2 . 0 MPa, the reduction of 

aporization time tends to compensate or even dominate over the 

engthening of the heating time, leading to the uniform reduction 

f droplet lifetime. Moreover, it is seen that at low to moderate 

ressures, i.e., p = 0 . 1 MPa to p = 1 . 0 MPa, the facilitating (due to

owering the enthalpy of vaporization) and impeding (due to in- 

reasing the heating period) effects of pressure on droplet lifetime 

ends to balance. Consequently, it results in indiscernible change 

f droplet lifetime as ambient pressure changes, which is indicated 

y those results presented to the right side of the vertical dashed 

ine in Fig. 2 . 

In terms of the droplet lifetime and the unsteadiness factor, 

e can constitute a theoretical model interpreting the history of 

roplet surface during the vaporization process. For mathematical 

onvenience, we introduce the normalized droplet diameter and 

ifetime, defined by 

 n = 

d 

d 0 
, t n = 

t 

t total 

(64) 

The droplet size almost remains at the initial instant of the 

eating stage, i.e., 

 

2 
n = 1 , t n 
 �i (65) 

here the unsteadiness factor �i can be equivalently regarded 

s the normalized heating time. At the quasi-steady vaporization 

tage, the droplet surface decays linearly with time, which is con- 

istent with the classic d 2 -law, i.e., 

 

2 
n = 1 − 1 

1 − �
( t n − �i ) , t n > �i (66) 
i 
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Fig. 3. Schematic of theoretical model for droplet vaporization. 
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Eqs. (65) and (66) characterize the asymptotic behaviors of the 

roplet vaporization process. Therefore, an appropriate vaporiza- 

ion model shall satisfy the subsequent conditions, i.e., 

(I) It must spontaneously become Eqs. (65) and (66) respec- 

ively at the initial instant of the heating stage and when the 

roplet undergoes quasi-steady vaporization. 

(II) It must experience a smooth transition from Eq. (65) and 

66) at some intermediate instant, which depends upon the un- 

teadiness factor �i . 

To constitute the desired vaporization model, capable to inter- 

ret the droplet size history during the whole vaporization process, 

e define a transition function as 

 ( t ) = 

tanh 

[
1 

2 δw 

(
t n 
�i 

− 1 

)]
+ tanh 

1 
2 δw 

tanh 

[
1 

2 δw 

(
1 
�i 

− 1 

)]
+ tanh 

1 
2 δw 

(67) 

Eq. (67) indicates that S ( t ) is a normalized function that equals

o 0 and 1 at t n = 0 and t n = 1 , respectively. The factor δw 

inter-

rets the width of the transition regime such that within an in- 

erval, centered at �i with width δw 

, the value of the function S ( t )

hanges from 0.1 to 0.9. Thus, the transition function can character- 

ze the smooth transition from heating stage to quasi-steady vapor- 

zation stage. The vaporizations of various fuels at elevated tem- 

eratures and pressures share the common feature that the quasi- 

teady vaporization is preceded by a heating stage during which 

he droplet size changes slightly. It implies that the transition func- 

ion can be applied to a variety of fuels. 

Using the transition function given by Eq. (67) , we constitute 

he theoretical model for droplet vaporization: 

d 2 

d 2 
0 

= 1 − S ( t ) 

1 − �i 
[ t n − �i S ( t ) ] (68) 

Fig. 3 shows that the present model for droplet vaporization 

atisfies both requirements (I) and (II), which verifies its mathe- 

atical appropriateness and physical plausibility. Moreover, it in- 

icates that the theoretical model is insensitive to the variation 

f transition function because the predicted droplet size history 

hanges negligibly as the transition width changes from 0.2 to 0.5. 

hereby, we shall adopt that δw 

= 0 . 5 in the subsequent calculation 

ased on the vaporization model. 

Fig. 4 compares the droplet size histories predicted by 

q. (68) with experimental results reported by Nomura et al. [6] . 

or relatively high temperature situations at normal pressure, i.e., 

p = 0 . 1 MPa, the theoretically predicted droplet vaporization rates 

re slightly greater than those measured in experiments. As shown 

n Fig. 1 , the calculated T 0 s from the present model tends to be
9 
niformly lower than the wet-bulb temperature at normal pres- 

ure condition, which may lead to underestimation of droplet heat- 

ng time. Meanwhile, due to the same cause, the temperature dis- 

repancy between the droplet surface and the ambience becomes 

arger, which further facilitates the vaporization process. Thereby, 

he calculated droplet lifetimes appear to be shorter than those 

easured in experiments. 

It is seen that for droplet vaporizing at high pressures its di- 

meter undergoes discernible increment during the initial heating 

tage. It can be understood that at elevated pressures, which leads 

o increasing of droplet surface temperature as well as the average 

emperature, the thermal expansion effect of the droplet becomes 

ore pronounced. The proportion of heating stage for droplet va- 

orization at T = 656 K appears to be discernible larger than the 

ther cases. We hypothesize that at some intermediate instant the 

roplet diameter increasing due to thermal expansion tends to be 

n balance with the droplet surface regression caused by vaporiza- 

ion and thereby it yields a prolonged “heating stage” where the 

roplet size change slightly. As environmental temperature increas- 

ng, the vaporization effect starts to dominate over the thermal ex- 

ansion effect, leading to reduction in the proportion of heating 

tage, as indicated by droplet vaporization at T = 746 K. 

In this work, we obtained a simplified model for droplet vapor- 

zation in which thermal expansion effect was not taken into ac- 

ount. Consequently, discrepancy between the theoretical predic- 

ion and experimental results may appear. It merits future study 

o improve the current theoretical model by considering more fac- 

ors that have impacts upon the behavior of droplet vaporization, 

or instance, thermal expansion, the convection in gas phase, and 

ulti-component droplets. 

Overall, the theoretically predicted time change of the droplet 

ize during vaporization agrees well with the experimental results 

oth qualitatively and quantitively. The present model can describe 

he characteristics of droplet vaporization under elevated temper- 

ture and pressure conditions, and in particular, the unsteadiness 

aused by droplet heating can be properly interpreted. 

. Conclusions 

We analyze the droplet vaporization problem based on fun- 

amental principles of fluid mechanics and thermodynamics. The 

ransient governing equations are analytically solved after appro- 

riate coordinate transformations. In combination of the matching 

onditions and the Clausius-Clapeyron relation, the mass fraction 

f fuel vapor and temperature on the droplet surface can be iter- 

tively determined by Eqs. (43) and (53) . Then the characteristic 

imes for droplet heating and vaporization are respectively calcu- 

ated through Eqs. (48) and (51) , whose sum yields the droplet life- 

ime for vaporization. The theoretically predicted lifetimes agree 

ell with those extrapolated from experiments by Nomura et al. 

6] . In terms of unsteadiness factor, defined by Eq. (58) , and the

ransition function, defined by Eq. (67) , a theoretical model is con- 

tituted, which illustrates the time change of droplet size in the 

ntire vaporization process, given by Eq. (68) . It is verified through 

omparison with the experimental results within wide ranges of 

emperature (from 450 K to 750 K) and pressure (from 0.1 MPa to 

 MPa). Besides, the theoretical model successfully reveals the con- 

entional recognition that the droplet diameter approximately re- 

ains constant at the heating stage, while during the quasi-steady 

aporization, the droplet surface shrinks linearly with time accord- 

ng to the d 2 -law. 

Both experimental observation and the theoretical prediction 

ndicates that the pressure has a dual effect upon droplet life- 

ime. This is pertinently elucidated based on our theoretical anal- 

sis with the help of explicit formula for enthalpy of vaporization, 

iven by Eq. (55) . At low to moderate temperatures, the droplet 
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Fig. 4. Comparison between the model prediction and experimental data from Nomura et al. [6] 
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ifetime increases with pressure due to the reduction of the heat 

ransfer from the hot ambience to the droplet surface. On the other 

and, at moderate to high temperatures, increasing the ambient 

ressure tends to shorten the droplet lifetime. This is because the 

nthalpy of vaporization decays as the droplet temperature is con- 

iderably elevated, which facilitates the vaporization process. At 

oderate pressures, the facilitating and impeding effects of ambi- 

nt pressure on droplet lifetime tends to balance, leading to that 

he droplet lifetime appears to be independent of the ambient 

ressure. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Dehai Yu: Conceptualization, Methodology, Validation, Writing 

 original draft. Zheng Chen: Conceptualization, Supervision, Writ- 

ng - review & editing. 

cknowledgement 

This work was supported by National Natural Science Founda- 

ion of China (nos. 91841302 and 91741126 ). 
10 
ppendix 

The thermodynamic and transport properties in both gas and 

iquid phases are evaluated as follows. 

1. Density 

The gas phase is a mixture of fuel (n-heptane) vapor and nitro- 

en. The mixture density is calculated as 

g = Y 0 F s ρg,F + 

(
1 − Y 0 F s 

)
ρg,N (a1) 

The densities of fuel vapor ρFg and nitrogen ρNg are determined 

y solving the Peng-Robinson equation of state, given by 

p = 

RT 

V m 

− b 
−

a 
{

1 + f ω 
[
1 − ( T / T c ) 

1 / 2 
]}2 

V m 

( V m 

+ b ) + b ( V m 

− b ) 
(a2) 

or pure fuel vapor and nitrogen, respectively. The parameters in 

eng-Robinson equation of state are determined by the critical 

roperties and acentric factor ω, i.e., 

f ω = 0 . 37464 + 1 . 54226 ω + 0 . 26992 ω 

2 

a = 0 . 45724 

R 

2 T 2 c 

p c 

b = 0 . 07780 

RT c 

p c 

Since the pressure considered in this work is considerably less 

han the critical pressure of either n-heptane or nitrogen, the sol- 

bility of nitrogen in the droplet appears to be negligible. Thereby 

e can consider the droplet could as consisting of pure liquid n- 

eptane. For situations with T < T c and p < p c , solving Eq. (a2)

https://doi.org/10.13039/501100001809
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χ

ives three values of molar densities (1/ V m 

), which can be trans- 

ormed into mass-based densities. 

2. Heat capacity 

The heat capacities at constant pressure in gas phase are calcu- 

ated via the subsequent fitting formulas [46] 

 pg,i = 

a 1 

T 2 
ch 

+ 

a 2 
T ch 

+ a 3 + a 4 T ch + a 5 T 
2 

ch + a 6 T 
3 

ch + a 7 T 
4 

ch , i = F , N 

(a3) 

here the characteristic temperature T ch is estimated via the 1/3 

ule [ 36 , 44 ] in terms of T 0 s and T ∞ 

, 

 ch = 

2 

3 

T 0 s + 

1 

3 

T ∞ 

(a4) 

The coefficients a 1 to a 7 for n-heptane and nitrogen are listed 

s follows 

n-heptane nitrogen 

a 1 −6 . 1274 × 10 5 2 . 2104 × 10 4 

a 2 1 . 1841 × 10 4 −3 . 8185 × 10 2 

a 3 −7 . 4872 × 10 6 . 0827 

a 4 2 . 9185 × 10 −1 −8 . 5309 × 10 −3 

a 5 −3 . 4168 × 10 −4 1 . 3846 × 10 −5 

a 6 2 . 1593 × 10 −7 −9 . 6258 × 10 −9 

a 7 −5 . 6559 × 10 −11 2 . 5197 × 10 −12 

The heat capacity at constant pressure for the gas mixture is es- 

imated by an average weighted by molar fraction of each species, 

.e., 

 pg = X 

0 
F s c pg,F + 

(
1 − X 

0 
F s 

)
c pg,N (a5) 

The molar fraction X 0 
F s 

is related to the mass fraction Y 0 
F s 

by 

 

0 
F s = 

Y 0 F s / W F 

Y 0 
F s 

/ W F + 

(
1 − Y 0 

F s 

)
/ W N 

The heat capacity of liquid n-heptane is determined by via the 

ollowing fitting formula, which is derived based on Lee-Kesler 

quation [47] , 

 v l = a 
(
b + cT 0 s 

)
(a6) 

here the coefficients a, b , and c are given by 

a = 1 . 4651 + 0 . 2303 k w 

b = 0 . 306469 − 0 . 16734 s g 

 = 0 . 001467 − 0 . 000551 s g 

here k w 

is the Watson characterization factor defined by 

 w 

= ( 1 . 8 T nb ) 
1 / 3 

/ s g (a7) 

here T nb is the normal boiling point of n-heptane and s g = 

l / ρwater is the specific gravity. 

3. Thermal conductivity 

The thermal conductivity of n-heptane is calculated through the 

epresentative reference equation proposed by Assael et al [48] , 

hich is of high accuracy over wide ranges of temperature and 

ressure. 

gF ( ρ, T ch ) = λo ( T ch ) + �λ( ρ, T ch ) + �λc ( ρ, T ch ) (a8) 

On the right-hand side of Eq. (a8) , the first term is the con-

ribution to the thermal conductivity in the dilute-gas limit, while 

he last term represents the critical enhancement arising from the 

ong-range density fluctuations that occur when the fluid is near 

ts critical point, and the second term denotes the contribution of 
11 
ll other effects to the thermal conductivity of the fluid at elevated 

ressures. 

The mathematical forms for each term are given by 

o ( T r ) = 

−1 . 8337 + 16 . 2572 T r − 39 . 0996 T 2 r + 47 . 8694 T 3 r + 15 . 1925 T 4 r − 3 . 3912 T 5 r 

0 . 2506 − 0 . 3209 T r + T 2 r 

(a9) 

here T r = T ch / T c is the reduced characteristic temperature. 

The residual term is given by 

λ( ρ, T ) = 

5 ∑ 

i =1 

( B 1 ,i + B 2 ,i T r ) ( ρr ) 
i (a10) 

here the coefficients B 1, i and B 2, i are listed as follows 

i B 1 ,i ( W m 

−1 K −1 ) B 2 ,i ( W m 

−1 K −1 ) 

1 5 . 17785 × 10 −2 −7 . 72433 × 10 −3 

2 −9 . 24052 × 10 −2 2 . 18899 × 10 −2 

3 5 . 11484 × 10 −2 1 . 71725 × 10 −3 

4 −7 . 76896 × 10 −3 −7 . 91642 × 10 −3 

5 1 . 21637 × 10 −4 1 . 83379 × 10 −3 

The critical enhancement term is represented by the following 

mpirical expression 

λc ( ρ, T ) = 

C 1 
C 2 + | �T c | exp 

[
−C 3 ( �ρc ) 

2 
]

(a11) 

here �T c = T ch / T c − 1 and �ρc = ρg /ρc − 1 . The coefficients C 1 , 

 2 and C 3 are estimated by 

 1 = 0 . 7 × 10 

−3 W m 

−1 K 

−1 

C 2 = 7 . 0 × 10 

−2 

C 3 = 1 . 8 (a12) 

The thermal conductivity for nitrogen is obtained from the fit- 

ing formula [49] 

n λgN = A ln T ch + 

B 

T ch 

+ 

C 

T 2 
ch 

+ D (a13) 

here the coefficients are given by 

A B C D 

0 . 85372829 105 . 18665 −12299 . 753 0 . 48299104 

The thermal conductivity calculated via Eq. (a13) has unit 

0 −6 × W c m 

−1 K 

−1 . 

Similarly, the thermal conductivity of the gas mixture is approx- 

mated estimated by 

g = X 

0 
F s λgF + 

(
1 − X 

0 
F s 

)
λgN (a14) 

4. Mass diffusivity 

The mass diffusion coefficient is determined based on the Chap- 

an and Enskog’s theory, and it is given by a semi-empirical for- 

ula [50] 

 g = 

0 . 00266 T 3 / 2 
ch 

pW 

1 / 2 
F N 

χ2 
F N 

�D 

(a15) 

here W FN is combined molecular weight of fuel and nitrogen, de- 

ned by 

 F N = 2 

(
1 

W F 

+ 

1 

W N 

)−1 

(a16) 

nd σ FN is the interaction characteristic length defined as the aver- 

ge of characteristic Lennard-Jones lengths of fuel species and ni- 

rogen, i.e., 

F N = 

1 

( σF + σN ) (a17) 

2 
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The σ F and σ N can be determined in terms of critical densities 

c of the fuel species and nitrogen, respectively. The dimensionless 

ollision integral �D can be calculated from the following empiri- 

al formula 

D = 

A 

T ∗B 
+ 

C 

exp ( D T ∗) 
+ 

E 

exp ( F T ∗) 
+ 

G 

exp ( H T ∗) 
(a18) 

The T ∗ is a dimensionless temperature defined by T ∗ = 

 T ch / 
√ 

ε F ε N , where ɛ F and ɛ N are characteristic Lennard-Jones en- 

rgies of fuel species and nitrogen, respectively. The coefficients A 

o G are given as follows 

A B C D E F G H

1.06036 0.15610 0.19300 0.47635 1.03587 1.52996 1.76474 3.89411 
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