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a b s t r a c t 

As promising alternatives to fossil fuels, hydrogen (H 2 ) and syngas are playing important roles in the development 

and control of high-efficiency, low-emission engines. Achieving accurate prediction of H 2 -fueled combustion re- 

quires a reliable chemical mechanism which, however, still exists considerable uncertainty. The laminar flame 

speed (LFS) has been widely employed to validate and optimize chemical mechanisms and to model turbulent 

premixed combustion. While in the literature there are extensive LFS data measured using the outwardly prop- 

agating spherical flame (OPF) method for hydrogen/air and syngas/air mixtures at normal temperature and 

pressure (NTP), the accuracy of the LFS data is not fully explored. This work aims to (i) review the uncertainty in 

the LFSs measured by different groups for hydrogen/air and syngas/air mixtures at NTP using the OPF method, 

and (ii) identify underlying sources of the uncertainty. It is found that there are considerable discrepancies in 

the LFS measurements, leading to these experimental data being unreliable for restraining the uncertainty of 

chemical models. The underlying sources of uncertainty are discussed in different flame propagation regimes 

and their contributions to the discrepancies are assessed individually using 1-D simulations. The results show 

that the contribution of ignition effects to the uncertainty depends strongly on the equivalence ratio and that the 

ignition effects could be one of the main sources of uncertainty for the LFSs of fuel-rich mixtures. Furthermore, it 

is found that the accuracy of measured LFSs is strongly affected by the choice of extrapolation model and flame 

radius range for extrapolation. The nonlinear extrapolation is less sensitive to the flame radius range than lin- 

ear extrapolation, implying that using nonlinear extrapolation models can reduce the impact of the flame radius 

range selected on the uncertainty, especially for fuel-rich and/or fuel-lean mixtures. Nevertheless, strong nonlin- 

ear behavior between stretched flame speed and stretch rate still makes a major contribution to the very large 

discrepancies even when the nonlinear extrapolation models are used. To address the nonlinear stretch behavior, 

a new nonlinear extrapolation model NQH is proposed and it is shown to be more accurate than other models as 

pressure increases. Moreover, the recommendations on H 2 and syngas LFS measurements using the OPF method 

are provided. 
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. Introduction 

As renewable fuels, hydrogen (H 2 ) and syngas (H 2 /CO) are promis-

ng alternatives to traditional fossil fuels [1] and play an increasingly

mportant role in the development and control of high-efficiency, low-

mission power and propulsion systems. Owing to the recent significant

rogress in H 2 generation, storage and transportation, the two renew-

ble fuels are becoming cleaner to produce and hence more readily avail-

ble for use. For instance, the strategy of hydrogen addition has been

nvestigated and employed in internal combustion [2–7] and gas turbine

1,8,9] engines due to the rapid consumption of fossil fuels and increas-
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ngly stringent emission standards. Moreover, hydrogen-rich syngas can

e used in advanced gas turbine engines to achieve high efficiency and

ow emission [1,10] . In this sense, a fundamental understanding of hy-

rogen and syngas combustion would help to develop clean power and

ropulsion systems. Besides, the oxidation mechanisms for hydrogen

nd syngas are basic building blocks required in developing chemical

echanisms for large hydrocarbon fuels. Therefore, in the literature

here are extensive studies on the fundamental combustion properties

f hydrogen and syngas (e.g. [1,11–14] ). In this study we focus on the

 aminar F lame S peed (LFS) of hydrogen/air and syngas/air mixtures. 

LFS is one of the most important physicochemical properties of a

ombustible mixture, which is defined as an adiabatic, premixed, un-
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Fig. 1. Schematization of an Outwardly Propagating spherical Flame (OPF), in 

which the flame front (at 𝑟 = 𝑅 𝑓 ) and the profile of flow speed ( 𝑢 ) are indicated 

in red and blue lines, respectively. 
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tretched, and planar flame propagation speed relative to the unburned

ixture [15,16] . It is widely used to examine fuel burning rate and to

est and validate detailed and/or simplified mechanisms. Moreover, LFS,

s one of the most important parameters, is typically considered to de-

elop an understanding of complex combustion phenomena (e.g., flame

tabilization, flashback, and extinction) [15,17,18] and to model turbu-

ent premixed combustion [18–20] . In this context, achieving accurate

FS measurements is extremely desired in order to play its appropriate

ole in the above description. In the previous studies, different flame

onfigurations have been employed to measure the LFS [21] , such as

ounterflow/stagnation flame, Bunsen flame, burner-stablized planar

ame, and O utwardly P ropagating spherical F lame (OPF). Compared

o other configurations, the OPF method is one of the most promising

pproaches for LFS measurements because of its simple flame config-

ration and readily defined stretch rate, especially for measuring LFSs

nder high pressure conditions where the other methods are typically

ot accessible. In this work we discuss the LFS measured from the OPF

ethod only. 

As reviewed in [22–24] , many studies have been conducted to mea-

ure the LFSs for hydrogen and syngas. However, as shall be shown in

his study, there are large discrepancies in the LFSs measured for hy-

rogen/air and syngas/air mixtures even at N ormal T emperature and

 ressure (NTP, 𝑇 𝑢 = 298 K, 𝑃 = 1 atm ). It is expected that the substan-

ial discrepancies could bring a challenge with respect to employing the

FSs to validate/optimize chemical mechanisms and improve turbulent

remixed combustion models. Therefore, great effort needs to be made

o improve the accuracy of the LFSs measured by the OPF method. Fur-

hermore, it is necessary to identify the potential sources of uncertainty,

hich would help to reduce the discrepancies in LFS measurements.

oreover, these uncertainty factors should be considered when using

he LFSs data to validate and optimize kinetic models [25,26] . To the

uthors’ knowledge, this work is the first attempt to perform uncertainty

uantification and analysis for the LFSs of hydrogen/air and syngas/air

ixtures measured by the OPF method with the help of experimental

ata and simulation results obtained with detailed chemistry and trans-

ort models. 

With this background, the objective of the present work is twofold:

1) to review the discrepancies in LFSs measured by different groups for

ydrogen/air and syngas/air mixtures at NTP using the OPF method;

nd (2) to identify the underlying factors that could cause/affect the

ncertainty in the LFSs by one-dimensional OPF simulations because

he numerical OPF method can help to isolate and examine different

ources of uncertainty individually, in which a new LFS extrapolation

odel will be proposed and validated using simulation data at different

ressure levels. 

The current paper is organized in the following way. First, the OPF

ethod and numerical method are introduced in Section 2 ; then, the dis-

repancies in LFSs measured by different groups for hydrogen/air and

yngas/air are reviewed in Section 3 ; the source of uncertainty is dis-

ussed in Section 4 ; and finally, the conclusions and recommendations

re presented in Section 5 . 

. Experimental and numerical OPF methods 

.1. Experimental OPF method 

In the context of OPF measurement methods ( [21,27–29] and refer-

nces therein), a quiescent fuel/air mixture is contained inside a closed

hamber. The mixture is centrally ignited by a laser beam or an electrical

park which results in an OPF. The LFS can be measured from the OPF

ased on two methods i.e. constant-pressure method (e.g. [30–36] ) and

onstant-volume method (e.g. [37–43] ). In the constant-pressure OPF

ethod, a closed chamber with optical access is designed, and during the

easurement the OPF front history, 𝑅 𝑓 = 𝑅 𝑓 ( 𝑡 ) , can be captured using

he high speed Schlieren photograph, shadowgraphy or laser tomogra-

hy techniques. The LFS is then determined from the flame front history
y extrapolating the stretched flame speed ( 𝑑 𝑅 𝑓 ∕ 𝑑 𝑡 ) to zero stretch rate.

n the other hand, a closed thick-walled spherical chamber is used and

he chamber pressure history, 𝑃 = 𝑃 ( 𝑡 ) , is recorded by a fast-response

ressure transducer in the constant-volume OPF method. The LFS is then

etermined from the pressure history recorded after the flame has grown

o a sufficiently large size such that the pressure rise is evident. It is noted

hat only a range of the pressure trace can be used where stretch effects

nd heat losses to the wall are negligible [44] . Furthermore, it should be

entioned that the constant-volume OPF method has the advantage in

erms of measuring LFSs over a broad range of initial temperature and

ressure from a single test [27] . However, it is challenging to obtain

 one-dimensional OPF as cellular instability might develop over the

ame surface during its propagation in air, which can greatly affect the

ccuracy of LFS measurements. Compared to the constant-volume OPF

ethod, the constant-pressure OPF method has the advantage in obtain-

ng more accurate LFSs and thereby it is much more popularly used to

easure the LFS. In this context, this study investigates the constant-

ressure OPF method only and in this following the OPF method is de-

oted as the constant-pressure OPF method only. 

For an OPF, as shown in Fig. 1 , the stretched flame speeds relative

o the unburned and burned mixtures are respectively [45] : 

 𝑢 = 

𝑑𝑅 𝑓 

𝑑𝑡 
− 𝑢 𝑢 (1)

 𝑏 = 

𝑑𝑅 𝑓 

𝑑𝑡 
− 𝑢 𝑏 (2)

here 𝑑 𝑅 𝑓 ∕ 𝑑 𝑡 is the OPF front propagation speed; 𝑢 𝑢 and 𝑢 𝑏 are the flow

peeds of unburned and burned gases at the flame front, respectively.

ypically, it is difficult to measure the transient flow speed distribu-

ion during the spherical flame propagation though the PIV technique

as been used by a few groups [46–48] . Moreover, the flow speed of

nburned gas varies considerably near the flame front. Therefore, it is

hallenging to accurately determine 𝑆 𝑢 from 𝑢 𝑢 according to Eq. (1) [49] .

During the early stage of spherical flame propagation, the increase

n pressure is negligible and the burned gas is nearly static, i.e., 𝑢 𝑏 = 0 .
onsequently, according to Eq. (2) we have 𝑆 𝑏 = 𝑑 𝑅 𝑓 ∕ 𝑑 𝑡 . As a result, the

FS, 𝑆 

0 
𝑏 
, and the corresponding Markstein length, 𝐿 𝑏 , can be obtained

sing the following linear or nonlinear extrapolation models [50–52] : 

 𝑏 = 𝑆 

0 
𝑏 
− 𝐿 𝑏 ⋅𝐾 (3)

𝑆 𝑏 

𝑆 

0 
𝑏 

ln 

( 

𝑆 𝑏 

𝑆 

0 
𝑏 

) 

= − 𝐿 𝑏 ⋅ 𝜅 (4)

here 𝐾 = 

2 
𝑅𝑓 

𝑑𝑅 𝑓 

𝑑𝑡 
and 𝜅 = 

2 
𝑅𝑓 

are the stretch rate and curvature of the

PF front, respectively. The LFS, 𝑆 

0 
𝑢 
, can be computed by 𝑆 

0 
𝑢 
= 𝜎𝑆 

0 
𝑏 
, in

hich 𝜎 denotes the density ratio of the burned mixture to the unburned
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Fig. 2. Laminar flame speed of H 2 /air at NTP as a function of equivalence ratio (a) and normalized equivalence ratio (b). The symbols denote experimental results 

from [80–95] . The line denotes numerical results predicted by the mechanism of Li et al. [73] using CHEMKIN-PREMIX code [105] . 
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u  
ixture at equilibrium condition. Note that the assumption of 𝑢 𝑏 = 0 is
nly reasonable when radiation effects are negligible and that for slowly

ropagating flames 𝑢 𝑏 is not equal to zero, as discussed in Section 4.3 . 

.2. Numerical methods 

Since the OPF has a simple one-dimensional spherical geometry and

here is no complicated interaction between the OPF and the combustion

hamber when the pressure rise is negligible, one-dimensional simula-

ions of OPFs can be readily conducted to investigate the performance of

he above OPF method. Currently the OPF has been mainly simulated by

wo in-house codes: A-SURF ( A daptive S imulation of U nsteady R eactive

 low) [53–55] and TORC ( T ransient O ne-dimensional R eacting flow

 ode) [56,57] . In order to quantify the uncertainty in LFS measure-

ents, we perform a series of simulations using A-SURF for OPFs in

ydrogen/air and syngas/air mixtures over a wide range of equivalence

atios and pressures. More details about the numerical methods used in

-SURF are discussed in [53–55,58–72] . The detailed chemical mech-

nisms and transport models are included in the simulations of spher-

cal flame propagation in H 2 /air and H 2 /CO/air mixtures. The mech-

nisms of Li et al. [73] and Davis et al. [74] are used for H 2 /air and

 2 /CO/air, respectively. It is noted that the two mechanisms used are

ptimized for the conditions investigated in this paper. Since previous

tudies [75–79] showed that Soret diffusion could affect flame propa-

ation in H 2 /air and H 2 /CO/air mixtures, the Soret effect is included

n the A-SURF calculations. In this work, grid convergence is ensured,

nd a large chamber radius of 𝑅 𝑊 

= 100 cm is used in the simulations

o suppress confinement effect that will be discussed in Section 4.3 . 

. Discrepancies in LFSs measured for hydrogen and syngas 

In this section, the LFSs measured for hydrogen/air and syngas/air

ixtures at NTP reported in the literature are reviewed, and the dis-

repancies in the LFSs by different groups using the OPF method are in-

estigated and interpreted. Here we only consider a typical syngas with

n equivalent molar of H 2 and CO (i.e. H 2 :CO = 50%:50% in volume).

able 1 lists the information of initial temperature and pressure, range

f equivalence ratio, extrapolation model, range of data used in extrapo-

ation, and geometry of the chamber used by different groups [80–104] .

he experimental LFS data and the discrepancies among them will be

resented and discussed first in the following. Then, the potential source

f uncertainty will be identified and analyzed in Section 4 . 

Figure 2 shows the LFSs of H 2 /air measured by different groups [80–

5] . These data were measured at NTP using the OPF method during the

ast two decades. For comparison, the LFSs predicted by the chemical
echanism of Li et al. [73] are included. It is seen from Figure 2 (a) that

here is a very large discrepancy around 50 cm/s for the LFS of fuel-rich

 2 /air mixtures. Moreover, Fig. 2 (a) indicates that a low scatter appears

t the fuel-lean side while a high scatter occurs at the fuel-rich side. This

s because the definition of equivalence ratio is unevenly skewed for

uel-lean ( 0 < 𝜙 < 1 ) and fuel-rich ( 𝜙 > 1 ) cases [22] . To address this,

he normalized equivalence ratio, defined as 𝜙∕(1 + 𝜙) , was recommend

y Law et al. [22] . Figure 2 (b) shows that the scatter has similar mag-

itude for both fuel-lean and fuel-rich mixtures though the normalized

quivalence ratio is used. 

Figure 3 plots the LFSs of H 2 /CO/air (H 2 :CO = 50%:50%) at NTP

easured by different groups [90,92,96–104] using the OPF method,

n which the predictions from the mechanism of Davis et al. [74] are in-

luded for comparison. Similar to H 2 /air, Figure 3 shows that there are

onsiderable discrepancies in LFSs measured for H 2 /CO/air and that the

symmetry in the scatter can be reduced when the LFS is plotted against

he normalized equivalence ratio proposed in [22] . 

Furthermore, Fig. 4 demonstrates the Markstein lengths relative to

urned gas for H 2 /air and H 2 /CO/air mixtures at NTP. These data were

lso measured from the OPF method. Since the magnitude of Markstein

ength is relatively small, the observed discrepancy in Markstein length

n Fig. 4 is much larger than that in LFS shown in Figs 2 and 3 . This is

onsistent with the conclusion in the previous study [52] , which shows

hat the Markstein length measured in the OPF method is very sensitive

o extrapolation and has uncertainty about one-order larger than the

FS. Due to its large uncertainty, the Markstein length is not suggested

s a target for validating and improving chemical mechanisms. In order

o further examine the discrepancies in the LFSs measured by different

roups [80–104] , Figure 5 shows the normalized LFSs i.e. the ratio of re-

orted LFSs, 𝑆 

0 
𝑢 
, to the value predicted by simulation, 𝑆 

0 
𝑢, PREMIX , at the

ame equivalence ratio. It is seen that for both H 2 /air and H 2 /CO/air

ixtures with the equivalence ratio in the range of 1 < 𝜙 < 3 , the rel-

tive difference is within 10%. However, for very rich mixtures, the

elative difference can reach 20%. For fuel-lean H 2 /air mixtures with

< 0 . 8 , the deviation is enlarged and shown in Fig. 6 . It is observed

hat the relative difference is above 50% for 𝜙 < 0 . 5 . These results indi-

ate that the discrepancies in LFS measurement using the OPF method

re considerable even for H 2 /air and H 2 /CO/air mixtures at NTP. Simi-

ar results were reported for CH 4 /air mixtures at NTP in [29] . Therefore,

e still need to make great efforts to improve the accuracy of the LFS

f H 2 /air, H 2 /CO/air and CH 4 /air mixtures measured using the OPF

ethod. 

As mentioned before, it is infeasible to employ LFS data with large

ncertainties to restrain the uncertainty of chemical mechanisms for
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Table 1 

Experimental studies on laminar flame speed measurement of H 2 /air [80–95] and H 2 /CO/air [90,92,96–104] at NTP using the OPF method. 

Fuel No. 𝑇 𝑢 (K) 𝑃 𝜙 Extrapolation 

model 

Data used in 

extrapolation 𝑎 
Chamber 𝑏 Notes Ref. 

H 𝟐 

1 296 1 atm 0.3–5.0 Eq. (3) 𝑅 𝑓 ≤ 3 . 5 cm Spherical, 𝑅 𝑤 = 30 cm N2 Taylor, 1991 [80] 

2 298 1 atm 0.3–5.0 Eq. (3) 𝑅 𝑓 ≤ 3 . 0 cm Spherical, 𝑅 𝑤 = 18 cm N2 Aung, 1997 [81] 

3 298 1 atm 0.5–4.0 Eq. (3) 𝑅 𝑓 ≤ 2 . 5 cm Cylindrical, 𝑅 𝑤 = 4 . 13 cm, 

𝐿 = 12 . 7 cm 

N2 Tse, 2000 [82] 

4 298 1 atm 0.6–4.5 Eq. (3) 𝑅 𝑓 ≤ 3 . 0 cm Spherical, 𝑅 𝑤 = 18 cm N1 Kwon, 2001 [83] 

5 298 0.1 MPa 0.28–3.75 Eq. (3) 𝑅 𝑓 ≤ 1 . 15 cm Spherical, 𝑅 𝑤 = 12 . 5 cm N2 Lamoureux, 2003 [84] 

6 300 0.1 MPa 0.3–1.1 Eq. (3) 𝑅 𝑓 ≤ 1 . 0 cm Spherical, 𝑅 𝑤 = 19 cm N2 Verhelst, 2005 [85] 

7 300 0.1 MPa 0.6–1.4 Eq. (3) 0 . 6 ≤ 𝑅 𝑓 ≤ 2 . 5 cm Cylindrical, 𝑅 𝑤 = 4 . 13 cm, 

𝐿 = 12 . 7 cm 

N2 Huang, 2006 [86] 

8 365 0.1 MPa 0.3–1.0 Eq. (3) N.A. Spherical, 𝑅 𝑤 = 9 . 5 cm N2 Bradley, 2007 [87] 

9 298 1 atm 0.6–1.6 Eq. (3) 0 . 5 ≤ 𝑅 𝑓 ≤ 2 . 5 cm Cylindrical, 𝑅 𝑤 = 9 cm, 

𝐿 = 21 cm 

N2 Tang, 2008 [88] 

10 298 1 atm 0.5–4.5 Eq. (3) 0 . 5 ≤ 𝑅 𝑓 ≤ 2 . 5 cm Cylindrical, 𝑅 𝑤 = 9 cm, 

𝐿 = 21 cm 

N2 Hu, 2009 [89] 

11 298 1 atm 0.6–5.5 Eq. (3) 1 . 2 ≤ 𝑅 𝑓 ≤ 3 cm Cylindrical, 𝑅 𝑤 = 10 cm, 

𝐿 = 15 . 24 cm 

N3 Burke, 2009 [90] 

12 293 0.1 MPa 0.3–5.6 Eq. (3) N.A. Spherical, 𝑅 𝑤 = 25 cm N3 Kuznetsov, 2012 [91] 

13 298 1 atm 0.5–5.0 Eq. (3) N.A. Cylindrical, 𝑅 𝑤 = 15 . 9 cm, 

𝐿 = N.A. 

N1 Krejci, 2013 [92] 

14 303 0.1 MPa 0.5–4.0 Eq. (3) 0 . 8 ≤ 𝑅 𝑓 ≤ 2 . 5 cm Spherical, 𝑅 𝑤 = 10 cm N3 Dayma, 2014 [93] 

15 298 1 atm 0.5–2.0 Eq. (4) 0 . 7 ≤ 𝑅 𝑓 ≤ 2 . 1 cm Spherical, 𝑅 𝑤 = 10 cm N2 Beeckmann, 2017 [94] 

16 296 0.1 MPa 0.8–3.5 Eq. (4) 1 . 0 ≤ 𝑅 𝑓 ≤ 7 . 0 cm Spherical, 𝑅 𝑤 = 28 cm N2 Grosseuvre, 2019 [95] 

H 𝟐 / CO (1:1) 

1 298 1 atm 0.6–4.4 Eq. (3) 𝑅 𝑓 ≤ 3 . 5 cm Spherical, 𝑅 𝑤 = 30 cm N2 McLean, 1994 [96] 

2 298 1 atm 0.6–5.0 Eq. (3) 0 . 5 ≤ 𝑅 𝑓 ≤ 3 . 0 cm Spherical, 𝑅 𝑤 = 18 cm N1 Hassan, 1997 [97] 

3 298 1 atm 0.6–4.0 Eq. (3) 𝑅 𝑓 ≤ 2 . 5 cm Cylindrical, 𝑅 𝑤 = 4 . 13 cm, 

𝐿 = 12 . 7 cm 

N2 Sun, 2007 [98] 

4 302 ± 3 0.1 Mpa 0.6–3.5 Eq. 3) 0 . 5 ≤ 𝑅 𝑓 ≤ 6 . 2 cm Cylindrical, 𝑅 𝑤 = 19 . 1 cm, 

𝐿 = 38 . 1 cm 

N2 Prathap, 2008 [99] 

5 298 1 atm 0.6–4.0 Eq. (3) 1 . 2 ≤ 𝑅 𝑓 ≤ 3 cm Cylindrical, 𝑅 𝑤 = 10 cm, 

𝐿 = 15 . 24 cm 

N3 Burke, 2009 [90] 

6 295 ± 4 0.1 MPa 0.4–5.0 Eq. (4) 1 . 7 ≤ 𝑅 𝑓 ≤ 2 . 3 cm Cylindrical, 𝑅 𝑤 = 8 cm, 

𝐿 = 30 cm 

N2 Bouvet, 2011 [100] 

7 298 1 atm 0.6–3.0 Eq. (4) 0 . 8 ≤ 𝑅 𝑓 ≤ 3 . 0 cm Spherical, 𝑅 𝑤 = 18 cm N1 Singh, 2012 [101] 

8 298 1 atm 0.5–4.0 Eq. (3) N.A. Cylindrical, 𝑅 𝑤 = 15 . 9 cm, 

𝐿 = N.A. 

N2 Krejci, 2013 [92] 

9 298 0.1 MPa 0.6–4.0 Eq. (3) 1 . 0 ≤ 𝑅 𝑓 ≤ 2 . 0 cm Cylindrical, 𝑅 𝑤 = 5 cm, 

𝐿 = 30 . 5 cm 

N3 Ai, 2014 [102] 

10 298 0.1 MPa 0.4–1.0 Eq. (3) 0 . 6 ≤ 𝑅 𝑓 ≤ 2 . 0 cm Cylindrical, 𝑅 𝑤 = 5 cm, 

𝐿 = 14 cm 

N2 Li, 2014 [103] 

11 298 1 atm 0.5–0.9 Eq. (4) 1 . 0 ≤ 𝑅 𝑓 ≤ 4 . 0 cm Spherical, 𝑅 𝑤 = 12 . 5 cm N2 Gong, 2019 [104] 

Notes: N1: The LFS data were from a table in this paper. N2: The LFS data were extracted from the corresponding figure in this paper. N3: The LFS data 

were provided by the authors of this paper. 𝑎 The choice of flame radius range depends on the value of equivalence ratio. 𝑏 𝑅 𝑤 and 𝐿 are the inner radius of 

spherical/cylindrical chamber and the length of cylindrical chamber, respectively. 

Fig. 3. Laminar flame speed of H 2 /CO/air (H 2 :CO = 50%:50%) at NTP as a function of equivalence ratio (a) and normalized equivalence ratio (b). The symbols denote 

experimental results from [90,92,96–104] . The line denotes numerical results predicted by the mechanism of Davis et al. [74] using CHEMKIN-PREMIX code [105] . 
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Fig. 4. Markstein length relative to burned gas for (a) H 2 /air and (b) H 2 /CO/air (H 2 :CO = 50%:50%) at NTP measured from the OPF method. 

Fig. 5. Deviation of 𝑆 0 
𝑢 

measured by different groups [80–93,96–103] from that predicted by simulation, 𝑆 0 
𝑢, PREMIX based on the mechanism of Li et al. [73] for (a) 

H 2 /air and the mechanism of Davis et al. [74] for (b) H 2 /CO/air (H 2 :CO = 50%:50%) at NTP. 

Fig. 6. Deviation of 𝑆 0 
𝑢 

measured by different groups from that predicted by 

simulation, 𝑆 0 
𝑢, PREMIX based on the mechanism of Li et al. [73] for lean H 2 /air at 

NTP. 
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ydrogen and syngas. This is because the sensitivity of LFS to key el-

mentary reaction rates is relatively lower than ignition delay time.

igure 7 (a) shows the sensitivity of LFS to the 𝑘 th elementary reaction

ate, 𝑆 𝐾 , for H 2 /air. The sensitivity is defined as 𝑆 𝐾 = 

𝜕 ln ( 𝑆 0 𝑢 ) 
𝜕 ln ( 𝐴 𝐾 ) 

, where 𝐴 𝐾 

s the 𝐴 -factor in the formulation of 𝑆 𝐾 [105] . Relatively low sensitiv-

ty of LFS to key elementary reactions is observed in Fig. 7 (a). More-

ver, the most sensitive elementary reactions, R1 (H+O 2 ⇌O+OH)

nd R4 (H+O 2 +M ⇌HO 2 +M), both have low uncertainties. Besides

he sensitivity, the uncertainty in elementary reaction rate needs to be

onsidered. Furthermore, a sensitivity-weighted uncertainty momentum

106] is employed to include both sensitivity and uncertainty, which is

efined as 𝜎𝐾 = 𝑆 𝐾 × ( 𝑓 𝐾 − 1) where 𝑓 𝐾 is the uncertainty factor of the

 th elementary reaction. Figure 7 (b) shows that 𝜎𝐾 of key elementary

eactions is within 20%. Moreover, the magnitudes of 𝜎𝐾 are within 10%

or the most important elementary reactions, i.e., R1 (H+O 2 ⇌O+OH)

nd R4 (H+O 2 +M ⇌HO 2 +M). Note that similar results are also ob-

erved for H 2 /CO/air. Therefore, it is not accessible to reduce the un-

ertainty in the elementary reaction rates by using the existing LFS data

ith large discrepancies. This suggests that high-quality experimental

FS data are still required to achieve reliable validation and improve-

ent of chemical mechanisms. 
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Fig. 7. (a) Sensitivity coefficient, 𝑆 𝐾 , and (b) sensitivity-weighted uncertainty momentum, 𝜎𝐾 , as a function of equivalence ratio for laminar flame speed of H 2 /air 

at NTP. 𝜎𝐾 = 𝑆 𝐾 × ( 𝑓 𝐾 − 1) [106] and 𝑓 𝐾 is the uncertainty factor of 𝑘 th elementary reaction ( 𝑓 𝐾 = 1 . 2 for R1 and R4; 𝑓 𝐾 = 1 . 3 for R2; 𝑓 𝐾 = 2 . 0 for R3, R5, R6, and 

R7) [74] . 

4

 

i  

g  

i  

e  

b  

e  

p  

c  

fl  

c  

i  

c  

F

4

 

m  

o  

s  

F  

2  

p  

u  

i  

a

 

t  

s  

i  

t  

g  

c  

f  

c  

d  

f  

i  

t

Fig. 8. Effects of mixture preparation on the spherical flame propagation in 

H 2 /air. 
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. Sources of uncertainty in LFSs 

In this section, we aim to identify the possible sources of uncertainty

n the LFSs measured using the OPF method for hydrogen/air and syn-

as/air at NTP. As suggested by previous studies [16,29] , the underly-

ng sources could include (a) how mixtures are prepared, (b) ignition

ffects, (c) flame instability and radiation, chamber confinement, and

uoyancy, and (d) nonlinear stretch behavior and the performance of

xtrapolation models. It is noted that these sources are inherently cou-

led each other, especially at large flame radii. It remains a formidable

hallenge to obtain experiments data at large flame radius due to the

ame instability during its propagation in air and limitation of imaging

apability. Therefore, OPF simulations are conducted since the numer-

cal method can help to isolate and examine different sources of un-

ertainty individually. Unless otherwise specified, the data presented in

igs 8–19 in this section are provided by the OPF simulations. 

.1. Mixture preparation 

To obtain high-quality LFS data from the OPF method, we need to di-

inish the influence of different factors which could affect the accuracy

f LFS measurement. As indicated in Table 1 , the LFSs were not mea-

ured at exactly the same initial conditions of 𝑇 𝑢 = 298 K and 𝑃 = 1 atm.

or example, the initial temperature can be in the range of 298 ± 3 K or

98 ± 5 K, and the initial pressure can be 𝑃 = 0 . 1 MPa. Besides, a partial

ressure method is usually used to prepare combustible mixture. The

ncertainty in the mixture composition or equivalence ratio always ex-

sts and it is non-negligible especially when a pressure gauge with low

ccuracy is used in experiments [21,29,106,107] . 

Figure 8 shows the effects of mixture preparation on the propaga-

ion speed of a spherical H 2 /air flame. The results are obtained from

imulations using A-SURF and the mechanism of Li et al. [73] . The data

n Fig. 8 (a) show that the change in flame speed is around 1% when

he equivalence ratio is changed by 0.01. Since Fig. 2 (a) shows that the

radient, 𝑑 𝑆 

0 
𝑢 
∕ 𝑑 𝜙, reaches its maximum value for 𝜙 around 1.0, the un-

ertainty in LFS due to mixture composition is expected to be lower at

uel-leaner or fuel-richer conditions. Furthermore, compared to hydro-

arbon/air at the same equivalence ratio, the fuel/air molar ratio for hy-

rogen and syngas is much higher. This results in a lower uncertainty in

uel concentration for hydrogen and syngas. Therefore, the uncertainty

n the mixture composition or equivalence ratio has little contribution

o the uncertainty in LFSs measured for hydrogen and syngas. 
Figure 8 (b) shows that the change in flame speed is around 1%

hen the initial temperature is perturbed by ±5 K. On the other hand,

t is found from Fig. 8 (c) that for the perturbation in the initial pres-

ure, nearly identical flame propagation speeds (the relative difference is

ithin 0.1%) are obtained. Compared to the large discrepancies shown

n Fig. 5 , the uncertainty in LFS caused by the mixture preparation

slight perturbation in equivalence ratio, initial temperature or pres-
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Fig. 9. Change of stretched flame speed 𝑆 𝑏 with (a) flame radius 𝑅 𝑓 and (b) stretch rate 𝐾 for fuel-rich H2/air ( 𝜙 = 4 . 5 ) at NTP. These experimental data are from 

[53] . 
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ure) is almost negligible. It is noted that recently Zhang et al. [108] has

hown that the accuracy of LFS measurement can also be affected by the

on-uniform initial temperature distribution inside the closed chamber.

t NTP, there is no preheating and thereby the initial temperature is

niform. However, for LFS measurements at elevated temperatures, the

on-uniformity in initial temperature should be diminished. 

Figure 9 plots the stretched flame speed obtained from numerical

ifferentiation of the flame front history via 𝑆 𝑏 = 𝑑 𝑅 𝑓 ∕ 𝑑 𝑡 . For the spher-

cal flame with small radius in regime I, 𝑅 𝑓 < 𝑅 𝑓𝐿 , the stretched flame

peed changes non-monotonically with the flame radius and stretch rate.

n this regime, the spherical flame propagation is strongly affected by

gnition [53,86,109–113] . On the other hand, the spherical flame with

arge radius in regime III, 𝑅 𝑓 > 𝑅 𝑓𝑈 , could be affected by confinement

90,114–116] , flame instability [87,117–120] , radiation [56,115,121–

28] and/or buoyancy [129–133] . The LFS can only be obtained based

n experimental data in regime II, in which quasi-steady propagation of

pherical flame occurs. Therefore, 𝑅 𝑓𝐿 < 𝑅 𝑓 < 𝑅 𝑓𝑈 is the appropriate

ame radius range that should be used in the data processing to obtain

he LFS. However, it is difficult to choose the proper values for the lower

nd upper bounds, 𝑅 𝑓𝐿 and 𝑅 𝑓𝑈 , which are affected by ignition, con-

nement, flame instability, radiation and buoyancy. Furthermore, even

fter 𝑅 𝑓𝐿 and 𝑅 𝑓𝑈 , are properly determined, the accuracy of LFS is still

ffected by nonlinear stretch behavior [50–52,134–138] and extrapola-

ion based on data in regime II [139–141] . In the following, different

actors in regimes I, III, and II are discussed. 

.2. Ignition effects in regime I 

A large ignition energy is needed to successfully initiate a spheri-

al flame in a fuel-rich H 2 /air mixture due to its relative large effective

ewis number [142–145] . Consequently, rich H 2 /air mixtures have rel-

tively large critical flame radii above which the ignition effects can

e negligible. Figure 10 shows the change of stretched flame speed with

ame radius and stretch rate for a fuel-rich H 2 /air mixture with 𝜙 = 4 . 5 .
he spherical flame is initiated by three ignition energies. Both the ex-

erimental and numerical results show that the ignition energy has a

reat impact on the initial spherical flame propagation. The different

ame speed trajectories converge onto a single curve only when the

ame radius is above a critical value donated by 𝑅 𝐶 [53] . Therefore,

he lower radius bound, 𝑅 𝑓𝐿 , should be greater than the critical radius

 𝐶 . Otherwise the accuracy of LFS measurement would be affected by

gnition. Figure 11 shows the change of critical flame radius with the

quivalence ratio for H 2 /air at NTP. The critical flame radius depends

trongly on the equivalence ratio. For fuel-rich H 2 /air, the critical radii

re 7 mm and 12 mm for 𝜙 = 4 . 5 and 𝜙 = 5 . 5 , respectively. Therefore,
or fuel-rich H 2 /air the lower radius bound, 𝑅 𝑓𝐿 , should be larger than

0 mm, which is well above the value of 𝑅 𝑓𝐿 = 6 mm suggested by

radley and co-workers [109,146] . The critical flame radius for syn-

as/air is expected to be lower than that for hydrogen/air. Nevertheless,

he lower radius bound ( 𝑅 𝑓𝐿 ) should be properly chosen to avoid the

gnition effect, especially for hydrogen-rich syngas. 

.3. Confinement, instability, radiation and buoyancy effects in regime III 

For the LFSs measured for H 2 /air and H 2 /CO/air, all the groups [80–

04] listed in Table 1 assumed that the burned gas is static, i.e., 𝑢 𝑏 = 0 ,
nd thereby 𝑆 𝑏 = 𝑑 𝑅 𝑓 ∕ 𝑑 𝑡 . However, as indicated in Fig. 9 , confinement

ould affect spherical flame propagation in regime III with 𝑅 𝑓 > 𝑅 𝑓𝑈 

90,114–116] . This is due to the fact that an inward flow is caused by

he confinement effect when the flame radius is large than 𝑅 𝑓𝑈 [94] .

his inward flow is able to slow down the spherical flame propaga-

ion. This is demonstrated by Fig. 12 , which shows that the stretched

ame speed without flow correction changes non-monotonically with

he stretch rate. A lower LFS will be obtained from extrapolation based

n the data affected by confinement. To obtain accurate LFSs from

pherical flames with large radii, flow correction should be conducted

90] . Figure 12 shows that after flow correction, the stretched flame

peed changes almost linearly with the stretch rate. It was recommended

hat in order to reduce the influence of confinement, the upper radius

ound, 𝑅 𝑓𝑈 , should be within 30% of the (equivalent) chamber radius

29,90,114] . In most of the studies listed in Table 1 , the upper radius

ound, 𝑅 𝑓𝑈 , chosen in data processing is less than 30% of the (equiva-

ent) chamber radius. Therefore, the effects of confinement on the LFSs

easured for H 2 /air and H 2 /CO/air listed in Table 1 are negligible. It is

oted that confinements effects play a major role for cylindrical cham-

ers as described in [90] . 

Radiation from high-temperature burned gas always exists during

pherical flame propagation. The larger the spherical flame radius are,

he longer the radiating time of burned gas has. Therefore, as indicated

n Fig. 9 , radiation has the ability to affect spherical flame propagation

n regime III with 𝑅 𝑓 > 𝑅 𝑓𝑈 [56,115,121–128] . Radiation can not only

educe the flame temperature but also induce inward flow of burned

as, both of which slow down the spherical flame propagation [128] .

he radiation induced flame speed reduction strongly depends on the

ame speed itself since the radiating time is inversely proportional to

he flame propagation speed. The larger the flame propagation speed

s, the shorter the radiating time is and thus the weaker the radiation

ffect is. Therefore, radiation effect is expected to be small for H 2 /air

nd H 2 /CO/air mixtures which have larger LFSs than hydrocarbon fu-

ls. The radiation relative reduction in LFS for H /air and H /CO/air
2 2 
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Fig. 10. Change of stretched flame speed 𝑆 𝑏 with (a) flame radius 𝑅 𝑓 and (b) stretch rate 𝐾 for fuel-rich H 2 /air ( 𝜙 = 4 . 5 ) at NTP. The symbols denote experimental 

data in [53] and the lines represent simulation results. Three ignition energies were used in both experiments and simulations. 

Fig. 11. Change of critical flame radius ( 𝑅 𝑐 ) with the equivalence ratio ( 𝜙) for 

H 2 /air at NTP. Adapted from [53] . 

Fig. 12. The stretched flame speeds ( 𝑆 𝑏 ) with and without flow correction for 

fuel-rich H 2 /air ( 𝜙 = 3 ) as a function of stretch rate ( 𝐾) at NTP. Adapted from 

[90] . 

Fig. 13. Radiation induced relative reduction ( 𝑅 ) in LFS for H 2 /air and 

H 2 /CO/air (H 2 :CO = 50%:50%) as a function of equivalence ratio ( 𝜙) at NTP. 

Adapted from [123] . 
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H 2 :CO = 50%:50%) at NTP is shown in Fig. 13 . It is seen that the in-

uence of radiation is within 1% and 0.3% for H 2 /CO/air and H 2 /air,

espectively. Therefore, the discrepancies in LFSs shown in Section 2 is

ot caused by radiation effect. 

Ronney and Wachman [147] showed that the spherical flame prop-

gation speeds are almost identical at one-g and zero-g when 𝑆 

0 
𝑢 
>

5 cm/s. Since the LFSs of H 2 /CO/air and H 2 /air are much higher than

5 cm/s, the contribution of buoyancy to the discrepancies in LFSs

hown in Section 2 is negligible. Besides, the upper radius bound, 𝑅 𝑓𝑈 ,

s usually chosen so that the cellular instability does not develop over

he flame surface. This ensures that the accuracy of LFS measurement is

ot affected by flame instability when the OPF method is used [87] . 

.4. Extrapolation based on data in regime II 

In the previous two sub-sections, different factors including ignition,

onfinement, flame instability, radiation and buoyancy are discussed

ince they could affect the lower and upper bounds, 𝑅 𝑓𝐿 and 𝑅 𝑓𝑈 , of

egime II. In this sub-section, the extrapolation of LFS based on data in

egime II is discussed. 

As mentioned in Section 2 , the unstretched flame speed relative to

he burned gas, 𝑆 

0 
𝑏 
, can be obtained from linear or nonlinear models
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Table 2 

Different models used in extrapolation. 

Model Expression Notes Ref. 

LS 𝑆 𝑏 = 𝑆 0 𝑏 − 𝐿 𝑏 𝐾 L inear model based on S tretch [45] 

LC 𝑆 𝑏 = 𝑆 0 𝑏 (1 − 𝐿 𝑏 𝜅) L inear model based on C urvature [148] 

NQ 

(
𝑆 𝑏 

𝑆 0 
𝑏 

)2 
ln 
(

𝑆 𝑏 

𝑆 0 
𝑏 

)2 
= − 2 𝐿 𝑏 𝐾 

𝑆 0 
𝑏 

N onlinear Q uasi-steady model [50] 

N3P 
𝑆 𝑏 

𝑆 0 
𝑏 

= 1 − 𝐿 𝑏 𝜅 + 𝐶 

𝑅 2 
𝑓 

N onlinear model with 3 P arameters [135] 

NE 
𝑆 𝑏 

𝑆 0 
𝑏 

[
1 + 𝐿 𝑏 𝜅 + ( 𝐿 𝑏 𝜅) 2 + 

2 
3 
( 𝐿 𝑏 𝜅) 3 

]
= 1 N onlinear model in E xpansion form [134] 

FTE 
(

𝑆 𝑏 

𝑆 0 
𝑏 

+ 𝛿0 𝜅
)
ln 
(

𝑆 𝑏 

𝑆 0 
𝑏 

+ 𝛿0 𝜅
)
= −( 𝐿 𝑏 − 𝛿0 ) 𝜅 F inite flame T hickness E xpression [137] 

NL4 
𝑆 𝑏 

𝑆 0 
𝑏 

= 1 − 𝛿
0 𝜅𝑆 0 

𝑏 
𝐿 𝑏 

𝑆 𝑏 
+ 
(

𝛿0 𝜅𝑆 0 
𝑏 
𝐿 𝑏 

𝑆 𝑏 

)2 
− 
(

𝛿0 𝜅𝑆 0 
𝑏 
𝐿 𝑏 

𝑆 𝑏 

)3 
N on- L inear model [149] 

NQH 

(
𝑆 𝑏 

𝑆 0 
𝑏 

)2 
ln 
(

𝑆 𝑏 

𝑆 0 
𝑏 

)2 
= − 2 𝐿 𝑏 𝐾 

𝑆 0 
𝑏 

+ 𝐶 

𝑅 2 
𝑓 

NQ model with a H igh-order term This work 

g  

t  

e  

m  

T  

o  

a  

w  

l  

𝛿  

M  

m  

e  

g  

u  

f  

o  

o  

c  

o  

m  

t  

r

 

w  

s  

o  

2  

s  

d  

o  

t  

a  

p  

t  

𝑆  

o  

L  

r  

i

 

w  

r  

F  

s  

o  

e  

fl  

t  

i  

h  

t

Fig. 14. Extrapolation of the laminar flame speed 𝑆 0 
𝑏 

and Markstein length 𝐿 𝑏 
for H 2 /air mixture ( 𝜙 = 4 . 5 ,𝑇 𝑢 = 298 K, 𝑃 = 1 atm). The symbols denote experi- 

mental data. The solid and dashed lines denote linear extrapolations using flame 

radius range of [1 cm, 2 cm] (only closed symbols) and [0.5 cm, 2 cm] (all sym- 

bols), respectively. 
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c  
iven by Eqs. (3) and (4) , respectively. The LFS is then determined

hrough 𝑆 

0 
𝑢 
= 𝜎𝑆 

0 
𝑏 
, where 𝜎 is the density ratio. Besides these two mod-

ls, several models have been developed recently, including a new

odel- NQH – proposed in this work. These models are summarized in

able 2 . The first three models, LS, LC and NQ are accurate to the first-

rder in terms of the inverse of flame radius [52] . Models N3P and NQH

re accurate to the second-order in terms of the inverse of flame radius,

hile models NE and NL4 have the accuracy to the third-order. Un-

ike other models, the models NL4 and FTE include the flame thickness
0 as a fitting parameter. Model LS is popularly used by different groups.

odels LC and NQ were proposed for mixtures with 𝐿𝑒 > 1 while other

odels were for mixtures with 𝐿𝑒 < 1 , for both of which strong nonlin-

ar stretch behavior may occur. For hydrogen and hydrogen-rich syn-

as, the effective Lewis number becomes apparently larger/smaller than

nity at fuel-rich/fuel-lean conditions. In the following we first consider

uel-rich case with 𝐿𝑒 > 1 . In this context, the advantage and deficiency

f the NQH model are summarized as follows. Compared to the first-

rder LS, LC and NQ models, NQH is accurate to the second-order and

an be implemented more easily than the NL4 and FTE models. More-

ver, it is found that as pressure increases the NQH model could be

ore accurate than the second-order N3P model (see Fig. 18 ). While

he NQH model has significant advantages over other models, it is a

elatively lower order model than the third-order NE and NL4 models. 

Figure 14 shows the results for a fuel-rich H2/air mixture ( 𝜙 = 4 . 5 ),
hose effective Lewis number is around 2.1 [15] . The laminar flame

peeds, 𝑆 

0 
𝑏 
, and Markstein lengths, 𝐿 𝑏 , from linear extrapolations based

n three models, LS, LC, and NQ, and two flame radius ranges, 1 < 𝑅 𝑓 <

 cm and 0 . 5 < 𝑅 𝑓 < 2 cm, are presented. It is observed that when the

ame flame radius range is used, 𝑆 

0 
𝑏 

and 𝐿 𝑏 extracted by different models

ecrease in the order of LS, LC, and NQ. When the flame radius range

f 0 . 5 < 𝑅 𝑓 < 2 cm is used in extrapolation (dashed lines in Fig. 14 ,

he maximum relative difference for 𝑆 

0 
𝑏 

and 𝐿 𝑏 is 727 . 7∕616 . 9 − 1 = 18%
nd 2 . 59∕0 . 88 − 1 = 194% , respectively. Thus, the extracted results, es-

ecially the Markstein length, strongly depend on the model used in ex-

rapolation. Regarding the effects of flame radius range on the extracted

 

0 
𝑏 

and 𝐿 𝑏 , Fig. 14 indicates that the nonlinear extrapolation based on LC

r NQ is much less sensitive to the flame radius range than that based on

S. Therefore, use of LC or NQ instead of LS in linear extrapolation can

educe the influence of flame radius and thereby reduce the uncertainty

n LFS measurement for fuel-rich H 2 /air mixtures. 

The above observation is further demonstrated by Fig. 15 (a), in

hich the extracted results from different models using different flame

adius ranges, 𝑅 𝑓𝐿 < 𝑅 𝑓 < 𝑅 𝑓𝑈 , are plotted for H 2 /air at 𝜙 = 4 . 5 .
igure 15 (a) shows that the extracted laminar flame speed and Mark-

tein length strongly depend on the flame radius range and the extrap-

lation model. Moreover, the results show that use of LC or NQ yields

xtracted flame properties that are more consistent and less sensitive to

ame radius range than use of LS. Unlike the fuel-rich hydrogen/air mix-

ure, the results for the stoichiometric case ( 𝜙 = 1 . 0 ) shown in Fig. 15 (b)

ndicate that neither the extrapolation model nor the flame radius range

as obvious influence on the extracted results. This is because the effec-

ive Lewis number for stoichiometric H /air is close to unity. 
2 
The above results indicate that for fuel-rich H 2 /air and H 2 /CO/air

ixtures with 𝐿𝑒 > 1 , large uncertainty can be caused by extrapolation,

specially when the LS model is used. As shown in the following, this

ecomes even worse for fuel-lean case with 𝐿𝑒 < 1 . Figure 16 shows sim-

lation results for a fuel-lean H 2 /air mixture ( 𝜙 = 0 . 4 ), whose effective

ewis number is around 0.5 [15] . It is noted that in fuel-lean H 2 /air ex-

eriments, cellular instability appears and usually data with 𝑅 𝑓 > 1 . 5 cm

annot be used to obtain the LFS [87] . However, in simulation the OPF
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Fig. 15. Laminar flame speeds and Markstein lengths extrapolated using different models and flame radius ranges [ 𝑅 𝑓𝐿 ,𝑅 𝑓𝑈 ] for H 2 /air mixtures. 

Fig. 16. Stretched flame speed 𝑆 𝑏 as a function of stretch rate 𝐾 for fuel-lean 

H 2 /air ( 𝜙 = 0 . 4 ) at NTP. The cross symbol denotes the unstretched LFS. 
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Fig. 17. Stretched flame speed as a function of stretch rate for fuel-lean H 2 /air 

( 𝜙 = 0 . 42 ) at different pressures of 𝑃 = 0 . 2 , 0.3, 0.5, 0.75 and 1.0 bar. The sym- 

bols denote experimental results measured from OPF by Kuznetsov et al. [91] . 

The thin straight lines detonate linear fitting of the experimental data. The thick 

curves denote numerical results from ASURF. The cross symbols denote the un- 

stretched LFSs. 
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m  
s one-dimensional and there is no cellular instability. Very strong non-

inear behavior between 𝑆 𝑏 and 𝐾 is observed in Fig. 16 . Extrapolation

ased on data in the range of 0 . 8 ≤ 𝑅 𝑓 ≤ 1 . 5 cm yields 𝑆 

0 
𝑏 
≈ 150 cm/s.

owever, a much smaller value of 𝑆 

0 
𝑏 
≈ 100 cm/s can be obtained for

xtrapolation based on flames with 5 ≤ 𝑅 𝑓 ≤ 8 cm. Consequently, the

FSs measured from OPF experiments for lean hydrogen and syngas

re much larger than the correct values since the small flame radius

ange of 0 . 8 ≤ 𝑅 𝑓 ≤ 1 . 5 cm should be used to avoid cellular instability

135,136] . Even the nonlinear extrapolation is used, large discrepancies

etween experiments and model predictions still exists for lean H 2 /air

135,136] . This explains the large discrepancies for lean both H 2 /air

nd H 2 /CO/air shown in Figs. 5 and 6 . 

Recently, Liang et al. [137] has proposed to consider the flame thick-

ess in the extrapolation based on the nonlinear model in [142,144] .

owever, the discrepancy cannot be diminished, especially for low pres-

ures. Kuznetsov et al. [91] and Dayma et al. [93] measured the LFS

f lean H 2 /air at 𝑃 = 0 . 2 bar. Comparison between the experimental

ata from [91] and simulation results is shown in Fig. 17 . It is seen that

onlinear behavior between 𝑆 𝑏 and 𝐾 becomes stronger at lower pres-

ures. Consequently, the LFS is greatly over-predicted by extrapolation

ased on limited experimental points and it strongly depends on the

inear/nonlinear model and flame radius range used in extrapolation. 
To further investigate the nonlinear behavior effect at lower pres-

ures, the simulation results obtained by A-SURF are used to examine

he performance of different extrapolation models for determining the

nstretched flame speed 𝑆 

0 
𝑏 
, which is shown in Fig. 18 . In the simula-

ions, a large chamber radius is considered for avoiding the confinement

ffect, and data used for fitting is for flame radius from 1 cm to 2 cm. It is

oted that previous investigation by Wu et al. [135] demonstrated that

he N3P model is better than the NE/NQ models for H 2 /air considered

ere. Therefore, the performance of the NQH model is directly compared

ith the N3P in Fig. 18 . It is seen that for room pressure (i.e. 1 bar) both

he N3P and NQH models have the potential to reproduce the simula-

ion results, performing better than the LS and LC models, as expected.

owever, for lower pressures (i.e., 0.2 bar and 0.5 bar), significant dif-

erence between model predictions and simulation results is observed,

hich means none of the models are valid for lower pressure cases con-

idered here. Furthermore, it is found that as pressure increases the NQH

odel proposed in this work could be more accurate than the other three

odels. The LFSs predicted by NQH/N3P are 35%/36%, 23%/29%, and
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Fig. 18. Stretched flame speed as a function of stretch rate for fuel-lean H 2 /air 

( 𝜙 = 0 . 42 ) at different pressures of 𝑃 = 0 . 2 , 0.5 and 1.0 bar. The cross symbols 

denote the unstretched LFSs 
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%/18% larger than PREMIX results at 𝑃 = 0 . 2 bar, 0.5 bar, and 1 bar,

espectively. The results from Figs. 17 and 18 suggest that further ex-

rapolation model development is required for achieving accurate pre-

icting laminar flame speeds at reduced pressure conditions. 

Hydrogen/air and syngas/air mixtures have effective Lewis num-

ers apparently below and above unity respectively for fuel-lean and

uel-rich cases. The above analysis indicates that the uncertainty in LFS

easured for H 2 /air and H 2 /CO/air from the OPF method is mainly due

o nonlinear stretch behavior and extrapolation. In order to reduce the

ncertainty associated with extrapolation, we should directly compare

he measured stretched flame speeds with 1-D simulation results pre-

icted by kinetics [29,56,136,139] . Figure 19 shows such comparison

or stoichiometric H 2 /air at NTP. It is observed in that the discrepancy

n 𝑆 𝑏 at certain value of stretch rate can be larger than the discrepancy

n 𝑆 

0 
𝑏 

at zero stretch rate obtained from linear extrapolation. Therefore,

xtrapolation might hide the discrepancy in raw experimental data. As

uggested in [29,56,136,139] , not only the extracted results ( 𝑆 

0 
𝑏 

or 𝑆 

0 
𝑢 
)

ut also the original data used for extrapolation ( 𝑆 𝑏 versus 𝐾or 𝑅 𝑓 )

hould be provided in future investigation. 
ig. 19. Stretched flame speed as a function of flame radius (a) and stretch rate (b)

quare) or experimental data in the literature from OPF [80,85,86,89,90,150] . The 

ontours (they are straight lines since 𝑅 𝑓 = 2 𝑆 𝑏 ∕ 𝐾). 
. Concluding remarks 

In this work, the uncertainty of laminar flame speeds (LFSs) mea-

ured for hydrogen/air and syngas/air mixtures using outwardly prop-

gating spherical flame (OPF) methods are reviewed. The experimental

ata reported in the literature are collected and compared simulation

esults considering with detailed chemistry and transport models. The

ources of uncertainty in the LFSs are discussed in three flame regimes,

, II and III, in terms of flame radius and the main factors are identified

hrough analysis of the experimental and numerical data. A new LFS

xtrapolation model – NQH – is proposed and compared with existing

odels. The following conclusions can be drawn based on this study: 

• Due to the unevenly skewed definition of equivalence ratio, there is

a low scatter at the fuel-lean side while a high scatter at the fuel-rich

side. For fuel-lean case with equivalence ratio below 0.5, the rela-

tive discrepancy can reach 50%. The results shows that the Mark-

stein length measured using the OPF method is very sensitive to

extrapolation and has uncertainty about one-order larger than the

LFS. Furthermore, the sensitivity-weighted uncertainty momentum

is evaluated and it is found that the LFS data with large discrepan-

cies cannot help to reduce the uncertainty in the rates of elementary

reactions for hydrogen and syngas. 
• The results suggest that the mixture preparation (i.e., slight pertur-

bation in equivalence ratio, initial temperature or pressure) has a

negligible impact on the uncertainty of the LFS. It is critical to choose

an appropriate flame radius range ( 𝑅 𝑓𝐿 < 𝑅 𝑓 < 𝑅 𝑓𝑈 ) that would be

used in the data processing to obtain the LFS. Based on the lower

and upper bounds, 𝑅 𝑓𝐿 and 𝑅 𝑓𝑈 , the underlying sources of uncer-

tainty are investigated in three regimes, regime I: 𝑅 𝑓 < 𝑅 𝑓𝐿 ; regime

II: 𝑅 𝑓𝐿 < 𝑅 𝑓 < 𝑅 𝑓𝑈 ; and regime III: 𝑅 𝑓 > 𝑅 𝑓𝑈 . 
• The contribution of ignition effects occurred in regime I to the un-

certainty depends strongly on the equivalence ratio of hydrogen/air

and syngas/air mixtures. Simulation results indicate that for fuel-

rich H 2 /air, the lower radius bound ( 𝑅 𝑓𝐿 ) should be larger than

10 mm, which is well above the value of 𝑅 𝑓𝐿 used in the litera-

ture listed in Table 1 and 𝑅 𝑓𝐿 = 6 mm suggested by Bradley and co-

workers [109,146] . In this context, the ignition effects in regime I

could be one of the main sources of uncertainty in the LFSs measured

for hydrogen/air and syngas/air mixtures using the OPF method. 
• The impact of confinement, instability, radiation and buoyancy in

regime III on the uncertainty in the LFSs is found to be negligibly

small for hydrogen/air and syngas/air mixtures. This is due to the
 for stoichiometric H 2 /air at NTP. The symbols denote simulation results (pink 

solid lines stand for linear fitting and the dashed lines denote the flame radii 
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proper choice of the upper radius bound 𝑅 𝑓𝑈 in the LFS measure-

ments and a relatively larger the flame propagation speed. 
• It is found that the accuracy of extracted LFS and Markstein length

based on data in regime II is strongly affected by the choice of ex-

trapolation model and the flame radius range for extrapolation. The

nonlinear extrapolation based on LC or NQ models is much less sen-

sitive to the flame radius range than that based on linear model – LS.

Therefore, use of LC or NQ instead of LS in extrapolation can reduce

the influence of flame radius and thereby reduce the uncertainty in

LFS measurement, especially for fuel-rich ( 𝐿𝑒 > 1 ) and/or fuel-lean

( 𝐿𝑒 < 1 ) H 2 /air and syngas/air mixtures. Nevertheless, strong non-

linear behavior between stretched flame speed and stretch rate still

makes a major contribution to the very large discrepancies observed

for fuel-lean/fuel-rich mixtures even when the nonlinear extrapola-

tion models are used. 
• A nonlinear extrapolation model NQH (including a high-order term

in the NQ model) is considered to address the nonlinear stretch be-

havior. It is found that as pressure increases the NQH model could

be more accurate than other models. 

The current work focuses on the accuracy of LFSs measured from the

PF method for hydrogen/air and syngas/air at the normal temperature

nd pressure. The results indicate that great effort still needs to be de-

oted to reducing the uncertainty in the LFSs. Some recommendations

re summarized below. 

• When selecting the flame radius range for extrapolation, the lower

radius bound ( 𝑅 𝑓𝐿 ) should be properly chosen to avoid the ignition

effect, especially for fuel-rich hydrogen/air and syngas/air mixtures

which have relatively large critical flame radii above which the igni-

tion effects are negligible. To determine the value of 𝑅 𝑓𝐿 , multiple

experiments can be conducted for the same mixture conditions at

different ignition energies. The critical flame radius where the cor-

responding multiple flame speed trajectories converge onto a single

curve could be used as 𝑅 𝑓𝐿 . 
• For very fuel-lean or fuel-rich hydrogen/air and syngas/air mixtures,

the nonlinear extrapolation models (e.g., LC, NQ, and NQH) are rec-

ommended since they are much less sensitive to the flame radius

range than the linear model LS. Furthermore, in order to reduce the

uncertainty of chemical mechanism caused by extrapolation mod-

els, we should directly compare the measured stretched flame speeds

with simulation results predicted by kinetics. 
• Given the major contribution of extrapolation models to the uncer-

tainty in the LFSs, the development of more advanced extrapola-

tion models is indispensable for achieving accurate predictions of

the LFSs of fuel-lean or fuel-rich hydrogen/air and syngas/air mix-

tures. 
• Experimental databases at sub-atmospheric and elevated pressure

conditions are needed to improve the predictability of the hydro-

gen or syngas chemical mechanisms over extensive ranges of pres-

sure, which would bring a challenge with respect to extrapolation

model development because the nonlinear nonlinear behavior be-

tween stretched flame speed and stretch rate is further augmented

under reduced pressure conditions. 
• Despite large uncertainty, LFS data from OPF experiments is still

useful to validate and optimize chemical mechanisms when the un-

certainty in LFS measured from experiments is lower than that of

chemical models, e.g., under high pressure and/or temperature con-

ditions. 
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