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5–8-defects are well-known in graphene and other 2D carbon structures, but not well-studied in one

dimensional (1D) carbon materials. Here, we design a peanut-shaped carbon nanotube by assembling

the 5–8-cage composed of carbon 5- and 8-membered rings, named 5–8-PSNT. Using first-principles

calculations and molecular dynamics simulations, we find that 5–8-PSNT is not only thermally and

dynamically stable, but also metallic. Moreover, its lattice thermal conductivity is only 95.87 W m�1 K�1,

which is less than one tenth of the value of (6, 6) carbon nanotube that has a radius similar to that of

5–8-PSNT. A further analysis of the phonon properties reveals that the low lattice thermal conductivity

of 5–8-PSNT arises from its low phonon group velocity, short relaxation time, large lattice vibrational

mismatch and strong anharmonicity. These findings further suggest that a pentagon and an octagon as

structural units can effectively modulate the properties of carbon materials.

1. Introduction

Since the experimental observation of a 1D topological defect
composed of pentagonal and octagonal sp2-hybridized carbon rings
in graphene,1 carbon materials containing such 5–8 defects have
attracted much attention. For example, it was found that zigzag
graphene nanoribbons (GNRs) are antiferromagnetic in cross-edge
coupling, which can be switched to ferromagnetic coupling when
5–8 topological line defects are introduced.2 Similarly, the elec-
tronic structure and magnetic properties of armchair GNRs can be
effectively tuned by 5–8 topological line defects.3 Recently, it has
been reported that 5–8 defects can significantly affect the thermal
transport properties of carbon materials and reduce their lattice
thermal conductivity. For instance, Yousefi et al.4 performed mole-
cular dynamics calculations and found that the thermal con-
ductivity of carbon nanotubes (CNTs) with 5–8 defects reduces
because of the enhanced phonon scattering. Luo et al.5 reported the
sensitivity of the thermal conductance of GNRs with 5–8 defects to
the defect configurations. Fthenakis et al.6 found that the existence
of 5–8 defects in graphene makes the thermal conductivity aniso-
tropic and quenches its value by one to two orders of magnitude, as
compared to the pristine graphene due to the reduction of the
phonon mean free path.

However, for all the reported 1D carbon structures so far, the
5–8 unit is treated as a defect, where the C atoms are in sp2

bonding. It would be interesting and highly desirable to design
new 1D carbon structures composed entirely of 5–8 units and
containing sp3 bonding because some exceptional properties
can be expected according to the property–structure relation-
ship. As is well known, the lattice thermal conductivity of a
material is an important physical quantity that characterizes
the thermal transport properties, which can be determined
by the following factors: the average atomic mass, complexity
of the geometry, strength of the interatomic bonding and
degree of the lattice anharmonicity.7 Low lattice thermal con-
ductivity is essential to achieve high performance for thermo-
electric materials. However, for some materials with light
atoms, like CNTs and graphene, it is difficult to achieve low
thermal conductivity because of their large phonon group
velocity and mean free path, and thus their intrinsic lattice
thermal conductivities are usually quite high and can reach
3000 W m�1 K�1.8 As stated above, the structures containing
the 5–8 units can have much lower lattice thermal conductivity
than their hexagonal counterparts. Therefore, we are curious
about how high the lattice thermal conductivity of a 1D carbon
structure composed of pure 5–8 units is, which motivates us to
carry out this study by using first principles calculations com-
bined with non-equilibrium molecular dynamics simulations.

2. Computational methods

Geometry optimization and electronic structure are calculated
within the framework of density functional theory (DFT) and
the projector augmented wave (PAW) method9 implemented in
the Vienna Ab initio Simulation Package (VASP) is used.10,11 The
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Perdew–Burke–Ernzerhof (PBE) functional12 within the generalized
gradient approximation (GGA)13 is used to treat the electronic
exchange–correlation interaction. The energy cutoff is set to
500 eV and a 9 � 9 � 1 Monkhorst–Pack K point mesh14 is
adopted to sample the Brillouin zone in reciprocal space. The
convergence of criteria for the force and energy components is set
to 10�2 eV Å�1 and 10�4 eV, respectively. A vacuum space of 15 Å is
set along the transverse directions of the structures.

The spectral energy density (SED) method15 is used to
calculate the phonon relaxation time.16,17 The phonon normal
modes can be obtained using the following equation:

Q k; m; tð Þ ¼
X
ji

ffiffiffiffiffiffi
mj

N

r
vji � ejðk;mÞ exp �2pik � rlð Þ (1)

where k, m, and mj are the wave factor, phonon branch and the
mass of jth atom, respectively, N is the number of unit cell, vjl

represents the velocity of jth atom in the lth unit cell, and ej is
the eigenvector of jth phonon mode. Then, the spectral energy
density can be calculated by taking Fourier transform using the
equation:

Fðk; m; f Þ ¼
ð
Qðk; m; tÞ expð�2piftÞdt

����
����
2

(2)

In addition, the spectral energy density can also be
obtained by:

Fðk; m; f Þ ¼ I

1þ ½2p½ f � f0ðk; mÞ�=Gðk; mÞ�2
(3)

where I represents the peak magnitude, f0(k, m) is frequency at
the peak center, and G(k, m) is the half-width at half-maximum.
The phonon relaxation time can be calculated by fitting the
following function: tðk; mÞ ¼ 1=2Gðk; mÞ.

The thermal conductivity is calculated using non-equilibrium
molecular dynamics (NEMD) method as implemented in the
large-scale atomic/molecular massively parallel simulation
(LAMMPS).18 We set fixed walls at the ends of structures and
control the temperature by subtracting/adding heat at the heat
sink/reservoir. Each structure is divided into 25 slabs. The simula-
tion time step is set to 0.25 fs and a vacuum space is set along the
transverse directions to avoid the interactions. The structures are
first relaxed in NPT and NVT ensemble for 107 steps, respectively,
and then thermalized in NVE ensemble for another 107 steps to
reach a steady state. The thermal conductivity is calculated by
using Fourier’s law: k = J/rT, where J is the heat flux andrT is the
temperature gradient. The Tersoff potential proposed by Lindsay
and Broido19 is used to describe the interatomic interactions of
carbon atoms, which has been proved successfully to calculate the
thermal conductivity of CNTs and graphene in previous
studies.20,21 In addition, we calculate the C–C bond lengths in
5–8-PSNT with the Tersoff potential using MD simulation and
compare the results with those of DFT calculations. After geometry
optimization, the corresponding bond lengths are found to be close
to each other, suggesting the accuracy of the Tersoff potential for
describing the carbon–carbon interactions in 5–8-PSNT. The details
can be found in Fig. S1 in the ESI.†

3. Results and discussions
3.1. Geometry and band structure

We first construct a 5–8 cage structure by using 24 carbon
pentagons and 6 octagons, as shown in Fig. 1(a) and (b), similar
to a zero-dimensional fullerene. Motivated by the recent experi-
ment of realizing the precise dimerization of hollow fullerene
compartments22 and the previous work on the synthesis of
peanut-shaped CNTs by using C60 fullerene as the structural
unit,23 we connect two 5–8 cages via four carbon atoms,
forming the structure unit of a 1D CNT with different curva-
tures. Due to the composition of pentagons and octagons, as
shown in Fig. 1(c–e), we name this new peanut-shaped CNT
5–8-PSNT. The structure unit contains 120 carbon atoms,
and the lattice constant along the a (longitudinal) direction is
18.61 Å. The cross sectional area is needed to calculate the heat
flux through the structure and the lattice thermal conductivity.
The cross section of (6,6) CNT can be seen as circles with the
same diameter. For 5–8-PSNT, the cross section is not uniform
but can be treated as circles with different diameters. Here, the
distance between the highest and lowest atoms dmax as indi-
cated in Fig. 1(e) is 6.42 Å, which is chosen as the diameter of
5–8-PSNT. Considering the van der Waals radius (3.4 Å),24 the
physical diameters used to calculate the cross sectional areas
for 5–8-PSNT and (6,6) CNT are 9.82 and 11.47 Å, respectively.

We then check the stability of 5–8-PSNT. The structure is
first thermalized in the NPT ensemble for 2500 ps at 1000 K by
using the molecular dynamics. It is found that 5–8-PSNT can
keep its original geometry and nearly constant energy during
the relaxation, as shown in Fig. 2(a), confirming the thermal
stability of this structure. The phonon dispersion of 5–8-PSNT
is calculated using molecular dynamics and plotted in Fig. 2(b).
No imaginary mode is found in the phonon spectrum, suggesting

Fig. 1 (a and b) Side and top views of 5–8 cage structure constructed by
using pentagons and octagons. (c and d) Side and top views of the
structural unit of 5–8-PSNT. (e) Geometric structure of 5–8-PSNT.
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the dynamical stability of 5–8-PSNT. Besides, we note that all the
three acoustic phonon branches (marked in red, orange and blue)
exhibit frequencies lower than 6 THz, indicating a possible low
phonon group velocity and low lattice thermal conductivity.

We next study the electronic band structure of 5–8-PSNT.
The calculated results are plotted in Fig. 2(c), which shows
metallic behavior as the partially occupied bands cross the
Fermi level, similar to the case of armchair (m, m) CNTs,
although their geometric features are very different, namely,
there is no hexagon in 5–8-PSNT while the armchair CNT is
composed entirely of hexagons, suggesting that the metallicity
in 1D carbon structures can be induced either by changing the
chirality or by introducing 5- and 8-membered rings.

3.2. Lattice thermal conductivity

To obtain the lattice thermal conductivity, the temperature
gradient developed when the heat flux travels through struc-
tures is first calculated. Here, we take the length of 50 nm as an
example. To have a comparison with the conventional CNTs, we
choose (6, 6) CNT that is also metallic with a similar radius to
that of 5–8-PSNT. The results are shown in Fig. 3(a). One can
see that the temperature distributions in 5–8-PSNT and (6, 6)
CNT both have linear characteristics along the heat transfer
directions, indicating that the parameters set in the simula-
tions are appropriate. The nonlinear parts of the distribution at

the heat reservoir and sink are caused by the edge effects. To
avoid the edge effects, only the linear parts are taken to
calculate the temperature gradient.

In NEMD simulations, the thermal conductivities become
larger as the size increases25,26 due to the size effect where
phonon propagation can be affected by the edges when the
phonon mean free path (MFP) is larger than the length of the
simulation structure. The size effect can be eliminated when
the length of the structure is much larger than the phonon
MFP, and in this case, the thermal conductivity can eventually
converge to a constant value.27 Therefore, we choose some
specific lengths (50, 100, 200, 300, 500, 800 and 1000 nm)
to calculate the thermal conductivities for both 5–8-PSNT and
(6, 6) CNT, as shown in Fig. 3(b). The thermal conductivities
with error bars are plotted in Fig. S2 in the ESI.† The average
lattice thermal conductivities of 5–8-PSNT are calculated to be
14.38, 18.25, 32.13, 44.80, 59.15, 93.95 and 95.87 W m�1 K�1 for
lengths of 50, 100, 200, 300, 500, 800 and 1000 nm, respectively,
much lower than 318.31, 515.63, 659.55, 764.48, 857.33, 941.45
and 994.99 W m�1 K�1 for the corresponding lengths of (6,6) CNT.
The calculated thermal conductivities of (6,6) CNT are consis-
tent with previous studies.28,29 In low-dimensional systems, the
thermal conductivity (k) of a material depends on its length (L)
with a relationship of k BLa, a 40. For instance, for CNTs
and silicon nanowires, the heat transfer shows power-law

Fig. 2 (a) Variation of the energy with simulation time in the NPT ensemble for 5–8-PSNT at 1000 K. (b) Phonon dispersion, and (c) band structure of
5–8-PSNT.

Fig. 3 (a) Temperature profile, and (b) variation of the average thermal conductivity with the length for 5–8-PSNT and (6,6) CNT.
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divergence (ao1).30 According to the calculated lattice thermal
conductivities of 5–8-PSNT with different lengths, the value of
a is 0.68, smaller than 1. Therefore, a power-law divergence of
thermal conductivity with length is also suitable for 5–8-PSNT
structure.

It is exciting to find that the lattice thermal conductivity of
this new 1D peanut-shaped carbon nanotube is less than one
tenth of that of (6,6) CNT, indicating a promising application of
this carbon allotrope in the field where low lattice thermal
conductivity is required. For both structures, the increase of
lattice thermal conductivity with the length becomes slower as
the edge effect becomes less dominant at large size. The
eventual lattice thermal conductivity of 5–8-PSNT converges to
93.95 W m�1 K�1 at 800 nm, while for (6,6) CNT, the lattice
thermal conductivity still has the increasing trend even when
the simulation size has reached 1000 nm. The temperature
dependence of the lattice thermal conductivity for 5–8-PSNT
(50 nm) is calculated and plotted in Fig. S3 in the ESI.† The
average lattice thermal conductivities of 5–8-PSNT are found to
be 23.89, 19.09, 14.38, 6.08 1.99 and 1.40 W m�1 K�1 for
temperatures of 100, 200, 300, 400, 500 and 600 K, respectively.
One can see that the thermal conductivity decreases with
temperature which can be attributed to more phonon scatter-
ing at higher temperatures.

3.3. Phonon properties

To understand why the lattice thermal conductivity of 5–8-PSNT
is much lower than that of (6,6) CNT, we calculate the phonon
group velocities and relaxation time as shown in Fig. 4, showing
that the phonon group velocities of 5–8-PSNT are smaller than
those of (6, 6) CNT in the entire frequency region and the
average group velocity of 5–8-PSNT is 11.12 m s�1, only one fifth
of the value of the (6,6) CNT (57.83 m s�1). We further calculate
the average phonon group velocity of the low frequency region
(0–5 THz), middle frequency region (5–40 THz) and high
frequency region, respectively, to see the difference more
clearly. The corresponding average phonon group velocities
for 5–8-PSNT are 44.93, 11.66 and 1.57 m s�1, while the
corresponding values for (6, 6) CNT are 68.35, 57.83 and
23.87 m s�1, respectively. One can see that the phonon group
velocities for the two structures both decrease as the

frequencies increase since the acoustic phonon branches
usually dominate the thermal transport. It is observed that
the differences in phonon group velocities are mainly reflected
in the middle and high frequency ranges. For instance, the
average phonon group velocity of (6, 6) CNT (23.87 m s�1)
with high frequencies is more than ten times larger than that of
5–8-PSNT (1.57 m s�1). Fig. 4(b) shows that the phonon relaxa-
tion time of 5–8-PSNT is also much less than that of (6, 6) CNT
in the whole frequency region. In the low, middle and high
frequency regions, the corresponding phonon relaxation time
for 5–8-PSNT is 18.45, 1.34 and 0.51 ps, while those values for
(6, 6) CNT are 30.01, 5.04 and 1.58 ps, respectively. The reduced
phonon group velocities, combined with phonon relaxation
time, directly lead to the low lattice thermal conductivity of
5–8-PSNT.

3.4. Vibrational mismatch

It is known that the phonon transport in a structure is actually
the transport of lattice vibrations and the lattice thermal
transport is the whole behavior of lattice vibrations. Previous
studies have shown that the thermal transport can be hindered
if the lattice vibrations of different regions in a structure are
different from each other.31,32 and the larger difference would
lead to the lower thermal conductivity. The lattice vibrations
are usually characterized by the vibrational density of states
(VDOS), which describes the frequency distributions of phonons
by taking Fourier transform on the atom velocity autocorrelation
function.31,33 Two different regions in 5–8-PSNT and (6,6) CNT
(see Fig. 5(a) and (b)) are chosen to calculate their VDOS and
the results are shown in Fig. 5(c) and (d). It is found that, for
5–8-PSNT, the VDOS of region 1 has an obvious deviation from the
VDOS of region 2 in many frequency regions, whereas the VDOS of
two regions are nearly overlapped together in the CNT. To
quantify the overlap between the two regions, we integrate the
vibrational spectra over frequency by using the equation:34,35

I ¼
Ð
f1ðoÞf2ðoÞdo, where f1(o) and f2(o) are the spectral func-

tions of phonon mode frequency o of the two regions. Based on
the above relation, the calculated result for 5–8-PSNT is 0.10 and
the value for (6,6) CNT is 0.13, increased by 30 percent. The less
overlap of the vibrations in 5–8-PSNT indicates that the phonons
would be hindered more due to the larger lattice vibrational

Fig. 4 (a) Group velocity and (b) phonon relaxation time versus frequency for 5–8-PSNT and (6, 6) CNT.
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mismatch, thus leading to its low lattice thermal conductivity.
Interestingly, a recent work found that the vibrational hierarchy in
a crystal can be a key factor leading to the low lattice thermal
conductivity.36 The different vibrational modes in two regions is
similar to the hierarchy phonon transport as in a previous work,
further confirming the low lattice thermal conductivity of 5–8-PSNT.

3.5. Anharmonicity

The anharmonicity of a structure is the underlying factor determin-
ing the phonon properties and the thermal conductivity. Large
anharmonicity, indicating a strong phonon scattering, usually leads
to the low lattice thermal conductivity. Generally, the whole lattice
anharmonicity depends on the bond anharmonicity in a structure.
To illustrate the bond anharmonicity, the energy profiles as a
function of the bond length of 5–8-PSNT and (6,6) CNT are
calculated. For 5–8-PSNT, we choose two types of C–C bonds to do
the calculation, with one existing in the cage forming pentagonal
rings (marked in blue in Fig. 5(a)) and another localizing in the
middle connecting the cages together (marked in red in Fig. 5(a)).
For (6, 6) CNT, we choose the C–C bond marked in blue as shown in
Fig. 5(b) to do the calculation. The energies are calculated by
compressing and stretching the bonds away from their equilibrium
positions along the longitudinal direction and the calculated results
are shown in Fig. 5(e). It is known that the deviation of the bond
energy profile from the quadratic profile can depict the bond

anharmonicity.37 Therefore, we fit the energy profiles of the bonds
using quadratic polynomial. The harmonic fit equations of the
energy variance curves for the type 1 and 2 bonds in 5–8-PSNT
and the type 1 bond in (6,6) CNT are: y = 23.51x2 � 0.28x,
y = 24.99x2 + 0.01x and y = 30.98x2 + 0.01x, respectively. One can
note that the quadratic parameter of the energy profile for the
type 1 (type 2) bond in 5–8-PSNT is about 23.51 (24.99), smaller
than that for (6,6) CNT (30.98), indicating the larger lattice
anharmonicity in 5–8-PSNT.

The atomic displacement parameter (ADP) can describe the
average displacements of atoms vibrating from their equilibrium
positions and can reflect the strength of the chemical bond.
A relatively small ADP usually indicates that the atoms vibrate
less frequently from the equilibrium positions, and in that case,
atoms are constrained by a large restoring force, implying a large
harmonicity and high lattice thermal conductivity. Here, as shown
in Fig. 5(f), the ADP for 5–8-PSNT is 0.071, more than ten times
larger than that of (6,6) CNT, the value of which is only 0.006.
Such a huge difference in ADP can also account for the large
anharmonicity and low lattice thermal conductivity of 5–8-PSNT.

To further explore the origins of the anharmonicity of the
two structures, the electronic localization function (ELF) is
calculated,38 which can directly picture the electron configuration,
by using the equation: ELF = 1/([1 + [K(r)/Kh(r)]2]), where K(r) is the
curvature of the pair electron density for the actual system at the

Fig. 5 (a and b) Schematic diagrams of the two regions, and (c and d) VDOS for 5–8-PSNT and (6, 6) CNT. (c and d) Energy variance as a function of
bond length change and ADP as a function of temperature for 5–8-PSNT and (6,6) CNT.
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location r, and Kh(r) represents the counterpart of a homogeneous
electron gas with the same density at the same location. The value
of the ELF ranges from 0 to 1. ELF = 0.5 means that the electrons
are highly delocalized and ELF = 1 implies the full localization of
electrons. Fig. 6(a) and (b) show the cross sections and tangent
planes of the 2D ELF, in 5–8-PSNT and (6,6) CNT. Planes A and B
in 5–8-PSNT contain carbon atoms at the cage part along the
transverse direction and atoms in the connection part along the
longitudinal direction, respectively. Planes C and D in (6,6) CNT
are perpendicular and parallel to the longitudinal direction,
respectively. The 2D ELF of plane A in Fig. 6(c) shows that the
lone-pair electrons exist around the carbon atoms at the connec-
tion part of 5–8-PSNT. Previous studies have shown that the
existence of lone-pair electrons can have strong interaction with
the phonons during the heat transport, thus leading to the low
lattice thermal conductivity.39–43 The lone-pair electrons in this
new carbon allotrope can contribute to its strong anharmonicity
and thus reduce the lattice thermal conductivity. However, one
can see that no lone-pair electrons appear in (6,6) CNT
(see Fig. 6(d)). Fig. 6(e) and (f) shows the 2D ELF of planes B
and D in the two structures. It is observed that the electrons in
5–8-PSNT distribute more inhomogeneously in the cage part than
the distribution of electrons in (6,6) CNT. We can see that there
are three s bonds around a carbon atom in both structures. For
5–8-PSNT, the electron distributions from the three regions
around the atom are not symmetric (see the black circle in
Fig. 6(e)), due to the unique geometry of the structure. The
asymmetric nonlinear electrostatic force induced by the neighboring
electrons on the atoms in 5–8-PSNT can enhance the anharmonicity
and thus reduce the lattice thermal conductivity. However, for (6,6)
CNT, the three s bonds are more symmetric, implying a more
homogeneous electrostatic force on the atoms, leading to its
strong harmonicity and high thermal conductivity. The asymmetric

electron distributions and the existence of lone-pair electrons
synergistically give rise to strong anharmonicity of 5–8-PSNT and
thus relatively low lattice thermal conductivity, which can be a
guiding strategy to design materials with low lattice thermal
conductivity.

4. Conclusions

In this work, we design a new 1D carbon allotrope composed
entirely of 5–8-units, 5–8-PSNT, which is confirmed to be ther-
mally and dynamically stable. Based on first-principles calcula-
tions and molecular dynamics simulations, the thermal transport
properties of 5–8-PSNT are studied systematically. Its lattice
thermal conductivity is calculated to be 95.87 W m�1 K�1, which
is much less than that of (6, 6) CNT (994.99 W m�1 K�1 at
1000 nm). The exhibited low lattice thermal conductivity of 5–8-
PSNT can be attributed to the following factors: (1) low
phonon group velocity and short relaxation time; (2) large
vibrational mismatch of the lattice; and (3) strong anharmo-
nicity induced by unique geometry and the lone-pair elec-
trons. These findings demonstrate that the thermal
conductivity of 1D carbon-based materials can be modulated
effectively by changing their structure unit and geometry, and 5–8-
PSNT expands the family of carbon containing pentagonal and
octagonal units with new features.
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