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A B S T R A C T   

The primary radiation damage is an important part of the radiation process, which is of current interest as the 
rapid development of nuclear reactors and space instrumentation. In this study, using machine learning, we have 
demonstrated that atomic mass difference, Poisson’s ratio, mean atomic mass, and mass density have significant 
influence on the defect generation efficiency of a material during the primary damage step. Furthermore, we 
construct a new dataset by using these important features and obtain a well-trained neural network for predicting 
new materials with low efficiency of defect generation. In our study, the target of the dataset for training the 
predictor is constructed using the results from molecular dynamics simulations. This work provides the guiding 
information for designing materials with low efficiency of defect generation.   

1. Introduction 

It has been an important task to seek for materials that are robust 
against irradiation in some devices such as fusion and fission reactors 
[1], space stations [2], and nuclear robotics [3], where high irradiation 
dose can induce swelling, hardening, creep, and amorphization in ma-
terials [4]. So far, some studies have been done for the physical phe-
nomena of materials under irradiation using molecular dynamics 
method, i.e. defects formation [4,5], impacts on elastically stressed 
crystallites [6], and edge dislocations [7], etc. The ideal radiation- 
tolerant materials should meet two basic requirements: (1) Few de-
fects are generated under irradiation; (2) Defects can be rapidly anni-
hilated or absorbed during annealing [8]. It is important to note that the 
dynamics of defects is closely related to the following physical quanti-
ties: (a) Configurational information. High configurational entropy can 
largely suppress the formation of dislocation loops, then enhance the 
phase stability of materials [9,10]. For instance, tungsten (W)-based 
alloys composed with Ta, Cr, V exhibit outstanding radiation tolerance 
and thermal stability compared with low entropy alloys [11]; (b) 
Chemical bond. Low activation energy barriers will facilitate the prop-
agation and diffusion of point defects to promote recrystallization 
[12,13]; (c) Mechanical properties. Amorphization can be induced by 
the ductile-to-brittle transition, which is related to Pugh criterion, 

Cauchy pressure, and Poisson’s ratio [14], etc.; (d) Irradiation intensity. 
High-energy irradiation has large stopping power, which can generate 
heat and lead to amorphization [15–17]. Previous studies only focus on 
two or three materials [8,18–21]. As the number of materials increases, 
it is better to use numerical analysis techniques and data mining [22] to 
obtain statistical results. 

Machine learning (ML) has been widely used in materials science for 
guiding chemical synthesis, predicting properties of materials, and 
constructing molecular dynamics potentials [22–24], etc. The core of 
ML is building a mapping between the target and some relevant pa-
rameters. Once the mapping is built, it can predict the target and 
establish a numerical interpretation of the dataset, where the dominated 
features make more contributions to training ML models, and the un-
derlying physics can be deduced by the numerical importance of fea-
tures, in other words, feature importance. Pilania and his co-authors 
have studied the connection between the amorphization of irradiated 
pyrochlores and some fundamental factors [25], demonstrating the 
capability of ML method in discovering the relationship between 
intrinsic features and defect generation efficiency (DGE) of materials. 
The primary damage is a crucial part of the whole radiation process, 
which can help us understand the defect generation [26,27]. Further-
more, the defect generation of primary damage is closely related to the 
properties of pristine materials rather than damaged materials, then is 
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suitable for the feature data acquisition before training ML models. 
In this work, we have trained three ML models (i.e. kernel ridge 

regression (KRR) [25,28], decision tree [29,30], and neural network 
[24]) using our dataset constructed by a series of elemental materials 
and binary compounds, and all of three models give acceptable results. 
Moreover, the decision tree can provide the feature importance to point 
out significant features. Our results show that atomic mass difference, 
Poisson’s ratio, mean atomic mass, and mass density are the important 
features of materials for defect generation in primary damage. To reduce 
the requirements that the predicted low DGE materials should meet, we 
only use these four important features combined with two environ-
mental features to build a new dataset, named dataset-6. The dataset-6 is 
used to train ML models and the well-trained model can predict new low 
DGE materials. 

2. Computational methods 

Molecular dynamics method [31–33] is used to simulate ballistic 
cascade. To avoid the error from different symmetries, all of the selected 
materials possess Fm3m symmetry. In total, 18 single-element materials 
and 21 binary compounds are collected from Materials Project [34]. 
LAMMPS [35] code is used to carry out the simulations for each of them 
with a supercell of 30× 30× 30. The embedded-atom method (EAM) 
[36], angular-dependent potential (ADP) [37], and Tersoff potential 
[38,39] are used for the interatomic interactions. The primary knocked- 
on atom (PKA) at the centroid of the cubic supercell with initial kinetic 
energy is introduced [40], and the PKA interacts with its neighbors to 
simulate collision cascade. The total simulation time is 1 ps with a time 
step of 0.01 fs, which is used for the whole primary damage process [41]. 
The systems are restricted by the NVE ensemble to keep the process 
adiabatic [42]. The numbers of vacancies and interstitials are counted 
by using Wigner-Seitz defect analysis method via Open Visualization 
Tool (OVITO) [43]. To study the influence of different kinetic energies of 
PKA and directions of PKA’s velocity, the energies of 2, 5, 8, and 10 keV, 
and the directions of [100], [110], and [111] are examined, and thus a 
dataset containing 444 samples is generated. KRR, decision tree, and 
neural network are employed as implemented in Scikit-learn (sklearn) 
[44] and PyTorch [45] packages. 

3. Results and discussion 

3.1. Constructing dataset 

We first examine whether the supercell size of 30 × 30 × 30 is 
adequate for simulating the ballistic cascade process. In brief, all sam-
ples are inspected and eligible. Taking the damage pattern of AlNi3 
shown in Fig. 1 as an example. One can see that the defects commonly 
distribute around the center of the cubic box, which means the irradi-
ation process is hardly affected by the periodicity of crystals, implying 
the size of supercell is large enough for the study of irradiation. 

Based on previous studies [46–49], we choose fourteen features and 
classify them in four groups, namely, (1) mean atomic radius, mean 
atomic mass, atomic mass difference, mass density, (2) formation en-
ergy, mean period, mean group, number of valence electrons, (3) shear 
modulus, bulk modulus, elastic anisotropy, Poisson’s ratio, (4) kinetic 
energy of PKA, and direction of PKA’s velocity to cover configurational 
information, chemical bond, mechanical properties, and irradiation in-
tensity as mentioned in the introduction part. While for the target, we 
choose the defect ratio after cascade to represent the amorphization and 
the damage of a material after primary damage, and is calculated by 
dividing the number of defects by the total number of atoms. Fig. 2 
shows the elements of the selected single-element materials and binary 
compounds in the dataset. Most of them are widely used in the area of 
radiation-tolerant materials, illustrating that the dataset is adapted for 
the study of seeking low DGE materials. 

3.2. Training ML models 

We implement three ML models, i.e. kernel ridge regression (KRR), 
decision tree, and neural network on our dataset. To measure the ac-
curacy of the models, the normalized root mean squared error (NRMSE) 
[50], Pearson correlation coefficient (r) [51] between the targets and 
predicted values are calculated. The expression of NRMSE: 

NRMSE =
1

ymax − ymin
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)

√

(1)  

for r: 

r =
∑

(y − y)(ŷ − ŷ)
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where y and ŷ represent the targets of the dataset and the predictions of 
the ML models, respectively. The NRMSE reflects the relative error be-
tween the targets and predictions. The r gives the degree of linear 
dependence as shown in Eq. (2). The learning curves of three ML models 
are plotted in Fig. 3. Moreover, the results of three ML models in Fig. 3 
are averaged over 100 independent trials. For NRMSE, the values 
decrease with increasing data of the training set. As for r, the values 
increase with increasing of the training set. Both of them show better 
predicting ability of ML models as the expansion of the training set. The 
90%-training-set results are the best and acceptable compared with 
other related works [28,52,53]. 

Among all of the ML models, the decision tree can not only do the 
prediction, but also provide the importance of each feature according to 
the optimization process [54]. The feature importance of the dataset is 
shown in Fig. 4(a), where the dominant features for defect generation 
are identified to be atomic mass difference (23.6%), kinetic energy of 
PKA (21.4%), Poisson’s ratio (15.0%), mean atomic mass (11.3%), and 
mass density (9.1%). They can be classified into two groups, which are 
named the environmental feature and intrinsic features of materials. For 
the environmental feature, the kinetic energy of PKA could lead to 
various amorphization and channeling effects especially in high energy 
cases with strong penetration to affect deeper regions [55]. Thus, it has 

Fig. 1. Point defects distribution in the AlNi3 supercell after 1 ps under the 
kinetic energy of PKA of 10 keV. The direction of PKA’s velocity is along the 
[100]. The red and blue spheres represent the vacancies and interstitials 
generated by the ballistic cascade, respectively. 
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large feature importance. For intrinsic features of materials, the mass 
density and mean atomic mass are related to the sizes of nuclei and the 
interspace between the nuclei. If the interspace is larger than the dis-
tance of defects’ migration, the defects could be absorbed or annihilated, 
otherwise the defect generating process should dominate [56]. On the 
other hand, Poisson’s ratio is one of the important mechanical properties 
for DGE, which is related to the interatomic bond angle and bond en-
ergy. Previous studies on dislocation dynamics have found that small 
Poisson’s ratio would increase the strain energy per unit length of edge 
dislocation [57–59], namely, amorphization is related to Poisson’s ratio 
[60]. The atomic mass difference implies the imbalance of atoms’ re-
sponses to radiation due to different atomic masses between the heavy 
and light atoms. During the ballistic cascade, the light atoms vibrate 
rapidly to induce defects and transfer energy [61], which is supposed to 
be the key point. Furthermore, the importance of atomic mass difference 
inspires us to control the DGE by light atom doping. For instance, it was 

reported that potassium doped tungsten shows higher radiation toler-
ance than pure tungsten [62], because potassium doping optimizes the 
grain size of the crystal and defects could diffuse to the grain boundaries 
in shorter paths. Thus, it further demonstrates that the light atoms can 
control the DGE by altering the grain sizes of a material. The reasonable 
feature importance shows the correctness of our ML models. 

In Fig. 4(a), it is obvious that some of the features only make negli-
gible contributions to the model. Thus, to simplify the model, we 
compress the dataset by omitting these features. For comparison, the 
principal component analysis (PCA) is also implemented. The percent-
ages of variances contributed by principal components are given in 
Fig. 4(b), showing that the sum of five largest components is 70.2%, 
which is similar to the feature importance provided by the decision tree. 
Both of PCA’s results and that of the decision tree show the validation of 
dataset compression. Therefore, we build a new dataset with the five 
important features combined with the direction of PKA’s velocity, 

Fig. 2. Elements with the shadows in the periodic table for our studied materials. The blue, green, and orange shadows represent the elements for the single-element 
materials, binary compounds, and both single-element materials and binary compounds, respectively. 

Fig. 3. NRMSE and r for KRR, decision tree, and neural network. The training sets are set as 60%, 70%, 80%, and 90% of the dataset for training.  
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named dataset-6. 

3.3. Predicting new materials with low defect generation efficiency 

The prediction of new low DGE materials can be achieved with the 
well-trained ML models by three steps: (1) Fix the parameters of ML 
models; (2). Treat the ML model as a function and the input features as 
new variables; (3). Utilize optimization methods to find local minimum 
points with respect to the input features. As a result, the minimum points 
correspond to possible low DGE materials. We can find the desired 
materials by comparing the features of the materials with our predicted 
features, and the matched one is the desirable low DGE material. 
However, in our models, the decision tree should be excluded first, since 
the derivative of decision-tree function is either zero or infinity with 
respect to features [29], which cannot be optimized using gradient- 
descent based methods [63]. On the other hand, the minimum points 
from the model may have no correspondence in real materials due to the 
large feature distance illustrated above. In order to improve the effi-
ciency, we use the dataset-6 to reduce the interference of unimportant 
features without a significant loss of accuracy. The performances of KRR 

and neural network on the new dataset are shown in Fig. 5(a). Only the 
neural network gives acceptable results. Therefore, the neural network 
is used for seeking new low DGE materials. Moreover, the cross- 
validation results of the neural network are plotted in Fig. 5 (b), 
which shows that the majority is on the line, in good agreement with the 
results in Fig. 5(a). 

We train the neural network on the whole new dataset and make 
some predictions. One of the predicted possible low DGE materials, 
Zr6Ni23 is listed in Table. 1 (the Poisson’s ratio is omitted due to the lack 
of data). To further confirm the rationality, the defect ratio of Zr6Ni23 is 
calculated by using a supercell of 15 × 15 × 15 for keeping the similar 

Fig. 4. (a) Feature importance plot for the mean atomic radius (R), mean period (P), mean group (G), mean atomic mass (M), atomic mass difference (MD), number 
of valence electrons (E), mass density (D), shear modulus (SM), bulk modulus (BM), elastic anisotropy (EA), Poisson’s ratio (PR), formation energy (FE), kinetic 
energy of PKA (KE), direction of PKA’s velocity (V). (b) Contributions to the variances of the features by fourteen principal components in PCA. 

Fig. 5. (a) Performance of neural network and KRR trained with dataset-6, the training set is randomly set to 90% of the dataset. The results are the average of 100 
trials. (b) Learning performance between the predicted values of the neural network and standardized targets of the dataset. 

Table 1 
Comparison of the predicted features using well-trained neural network (pre-
dicted) with the (calculated) features of mean atomic mass (M), atomic mass 
difference (MD), and mass density (D) for Zr6Ni23.   

M (amu) MD (amu) D (g/cm3) 

predicted  66.88  34.95  8.59 
calculated  65.43  32.52  8.45  
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cell size and the number of atoms as our dataset. The defect ratio of 
Zr6Ni23 is 3.24E-3, while the average defect ratio of the dataset is 6.00E- 
3, which confirms our prediction that Zr6Ni23 is a material with low 
defect generation efficiency. With the development of computational 
materials science, more low DGE materials will be reported, which can 
be used to build more complete dataset, then the accuracy of the pre-
diction would be improved. 

4. Conclusions 

In summary, based on the results of molecular dynamics simulations, 
we have constructed a dataset containing 444 samples including single- 
element materials and binary compounds. By using three ML models, i.e. 
decision tree, KRR, and neural network, to train the dataset, we have 
identified four important intrinsic features of materials, namely, atomic 
mass difference, Poisson’s ratio, mean atomic mass, and mass density, 
which have a crucial effect on the DGE of materials. Furthermore, a new 
dataset is constructed by using these features combined with two envi-
ronmental features, named dataset-6. Next, the KRR and neural network 
models are trained with the dataset-6 to predict new low DGE materials. 
Finally, Zr6Ni23 as one of our predictions is confirmed to be a low DGE 
material by molecular dynamics method, demonstrating the validity and 
high efficiency of our models. The method of using the optimization 
method with respect to the input features for predicting new low DGE 
materials would be helpful in screening radiation-tolerant materials. 
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[1] R. Sharp, M. Decréton, Radiation tolerance of components and materials in nuclear 
robot applications, Reliab. Eng. Syst. Saf. 53 (3) (1996) 291–299. 

[2] S.J. Zinkle, L.L. Snead, Designing Radiation Resistance in Materials for Fusion 
Energy, Annu. Rev. Mater. Res. 44 (1) (2014) 241–267. 

[3] .U. Youk, N.H. Lee, B.S. Kim, Y.B. Lee, K. Seungho, Technology development for 
the radiation hardening of robots. In: Proceedings 1999 IEEE/RSJ International 
Conference on Intelligent Robots and Systems. Human and Environment Friendly 
Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289), vol. 
3, 1999, pp. 1715–1720. 

[4] K. Jin, H. Bei, Y. Zhang, Ion irradiation induced defect evolution in Ni and Ni-based 
FCC equiatomic binary alloys, J. Nucl. Mater. 471 (2016) 193–199. 

[5] J.S. Zhen, Q. Yang, Y.H. Yan, X.W. Jiang, S.A. Yan, W. Chen, X.Q. Guo, Molecular 
dynamics study of structural damage in amorphous silica induced by swift heavy- 
ion radiation, Radiat Eff. Defects Solids 171 (3–4) (2016) 340–349. 

[6] K.P. Zolnikov, A.V. Korchuganov, D.S. Kryzhevich, V.M. Chernov, S.G. Psakhie, 
Structural changes in elastically stressed crystallites under irradiation, Nucl. 
Instrum. Methods Phys. Res., Sect. B 352 (2015) 43–46. 

[7] A.V. Korchuganov, K.P. Zolnikov, D.S. Kryzhevich, Simulation of interaction of 
edge dislocations with radiation defects in Fe-10Cr alloy, J. Phys. Conf. Ser. 1115 
(2018), 052032. 

[8] K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K. 
J. McClellan, T. Hartmann, Radiation tolerance of complex oxides, Science 289 
(5480) (2000) 748. 

[9] W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys, Sci. 
China Mater. 61 (1) (2018) 2–22. 

[10] T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Fang, Y. Zhang, J. Xue, S. Yan, Y. Wang, 
Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation, 
Sci. Rep. 6 (2016) 32146. 

[11] O. El-Atwani, N. Li, M. Li, A. Devaraj, J.K.S. Baldwin, M.M. Schneider, D. Sobieraj, 
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