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Force Barrier for Lipid Sorting
in the Formation of Membrane
Nanotubes
Understanding lipid sorting of multicomponent cell membranes associated with tubular
deformation is of essential importance to many cell activities such as filopodial growth
and protein-mediated vesiculation. Here, we conduct theoretical analysis to investigate
how the membrane tubulation induced by an external pulling force over a finite region is
regulated by the coupling between the lipid composition and the membrane bending rigidity
and tension. It is shown that the presence of the lipid-disordered phase facilitates the nano-
tube formation by reducing the force barrier. As the pulling region size and the membrane
tension increase, the membrane tubulation becomes discontinuous regardless of the cou-
pling effect. The direct proportional relationships between the maximum pulling force
and size of pulling region at different coupling scenarios are identified. Analytical solutions
for the linear force-extraction relation and the membrane configurations in the early stage
of the membrane extraction are obtained. Our results indicate that in the case of a relatively
small pulling region, the coupling between the membrane composition and mechanical
properties plays an important role in regulating the membrane extraction, and such an
effect due to the phase separation diminishes gradually as the pulling region enlarges
and the force barrier becomes dominated by a large pulling region.
[DOI: 10.1115/1.4044385]
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1 Introduction
Biological membranes consist of different types of lipid mole-

cules, sphingomyelin, and cholesterol. Owing to the free motion of
these molecules in the membrane plane, the multicomponent mem-
branes could laterally organize into rafts and micro-domains and
exhibit complex morphology. For example, ternary lipid mixtures
could undergo phase separation into two coexisting fluid phases
with clear domain structures, one with a large and the other with a
low cholesterol molar fraction [1,2]. It is demonstrated that the
phase separation and selective incorporation of specific proteins
within domains regulate the protein functions [3], membrane defor-
mation [2], budding transition [4], and vesicle fission, which play
essential roles in many cellular activities including the membrane
signaling, trafficking, sorting processes, endocytosis, and exocytosis
[5]. In budding yeast, protein clusters containing activated Cdc42
could be formed and activated Cdc42 concentrates at a site on the
cell membrane where the bud eventually emerges [6]. Clathrin-
mediated endocytosis exhibits complex behaviors of phase separa-
tion and membrane reshaping [7]. Moreover, depending on the
local composition of the membrane, phase-separated domains
prefer regions of certain local membrane curvatures, suggesting
lipid sorting aided by membrane curvatures [8]. For a vesicle with
multiple lipid phases, it could adopt stable morphologies with
several disconnectedflexible liquid-disordered (Ld) domains embed-
ded in amore stiff multiply-connected liquid-ordered (Lo) domain, in
which the flexible Ld domains have large curvature and the relatively
stiff Lo domains bend weakly, lowering the bending energy of the
vesicle [1,2,4]. Further numerical studies indicate that volume con-
straints of the vesicle and the difference in the Gaussian curvature
moduli of the lipid phases could facilitate the formation of the

multidomain morphologies [4]. Curvature-based sorting of lipid
phases has also been observed in supported lipid bilayers on pat-
terned or templated substrates with varying curvatures, where fluo-
rescent lipids have been used as trafficking markers [9,10]. For
example, stiffer Lo domains prefer to partition into the flat regions
and more flexible Ld domains into the curved regions [9,10]. Simi-
larly, sorting of peripheral proteins takes place on substrate-
supported wavy lipid membranes [11].
In addition to round vesicles and membrane patches, sorting of

lipid phases has also been observed in lipid membrane nanotubes
which are ubiquitous in living cells and their organelles and play
an important role in numerous cell activities including intra- and
intercellular transport [12], communication, endocytosis [7], and
cell migration [13]. As a tubular structure or protrusion, lipid mem-
brane nanotubes have a simple geometry with a typical diameter of
tens of nanometers but could exhibit strong coupling between the
curvature and membrane composition. It is reported that periodic
membrane tubes could adopt a necklace-like shape and undergo a
complete phase separation with the Ld phase in the neck region
while the Lo phase in the bulge region of each oblate subunit [2].
Previous experimental studies show that Ld domains nucleated in
membrane nanotubes pulled from giant vesicles in ternary mixtures
in quasi-static pulling circumstances [14,15]. Similar results have
been obtained in theoretical analysis on the membrane nanotube
formation at a local point pulling force, considering the coupling
between the membrane composition and the membrane bending
rigidity and tension [16]. Further experimental and theoretical
investigations show that the lipid sorting in membrane tubes also
highly depend on the pulling speed [17,18]. Besides studies on
the extraction of purified lipid membranes, it is demonstrated
recently that the BAR protein scaffold bounding to an underlying
elongated membrane nanotube could generate a lipid mobility
barrier which increases the membrane tension and eventually
induces the tube rupture through lysis [19].
In real situations, the external pulling force required for the nano-

tube formation in vivo is applied on a pulling region of a finite size,

1Corresponding authors.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received May 21, 2019; final manuscript
received July 26, 2019; published online August 1, 2019. Assoc. Editor: Yashashree
Kulkarni.

Journal of Applied Mechanics DECEMBER 2019, Vol. 86 / 121002-1Copyright © 2019 by ASME

mailto:x.y.tang@pku.edu.cn
mailto:jxwang@pku.edu.cn
mailto:xyi@pku.edu.cn


which includes attachment domains for a cluster of molecular bonds
or motors [20,21], protein scaffolding [22], and the tip region of
polymerizing cytoskeletal filaments [23,24]. However, in most
existing theoretical work, a scenario of a point pulling force is
widely assumed to approximate the actual finite pulling region
[16,18,25,26]. Only for a homogeneous membrane, few studies
based on experiments, computational simulations, and continuum
modeling in quasi-static pulling circumstance have been performed
to investigate the size effect of the pulling region on the membrane
extraction [20,27–30].
Though significant progress has been made in understanding the

formation and pulling behaviors of the multicomponent membrane
tubes, the effects of the pulling region size on the membrane extrac-
tion and possible lipid sorting remain unclear. In this work, we
perform theoretical analysis under a continuum modeling frame-
work to explore the interplay of lipid composition and curvature
in membrane tubes as well as the size dependence of the relation-
ship between the pulling force and membrane extraction. It is
shown that the presence of the Ld phase facilitates the nanotube for-
mation by reducing the force barrier. As the pulling region size and
the membrane tension increase, the force-extraction curve becomes
discontinuous, and a discontinuous membrane shape transformation
from a catenoid-like shape to a tubular structure is observed. Such a
discontinuous shape transformation might occur at certain coupling
scenarios once the maximum pulling force is achieved. We also
investigate how the phase separation depends on the membrane
tension. The direct proportional relationships between the maxi-
mum pulling force and size of the pulling region at different cou-
pling scenarios are identified. Moreover, analytical solutions for
the force-extraction relation and the membrane configuration in
the early extraction stage are obtained based on a general force
balance of the nonlinearly deformed membrane.

2 Modeling and Methods
In the adopted cylindrical coordinate (r, θ, z), we consider an ini-

tiallyflat circularmembrane of lipidmixtures undergoing an axisym-
metric deformation induced by an external pulling force f acting on a
circular region along the z-axis as shown in Fig. 1. The radial sizes of
the membrane patch and pulling region are R and rp, respectively.
This model lipid membrane is composed of unsaturated and
saturated lipid molecules (along with other types of molecules)
forming two coexisting fluid phases, the liquid-disordered (Ld)
phase rich in unsaturated (red) lipids and the liquid-ordered (Lo)

phase rich in saturated (blue) lipids (see Fig. 1). A typical example
is a lipid membrane consisting of a ternary mixture of unsaturated
dioleoylphosphatidylcholine (DOPC), saturated sphingomyelin
(SM), and cholesterol (Chol) which can separate into distinct
domains at 290 K. To characterize the free energy of the domain
structure, an order parameter ϕ= (c1− c)/(c1− c2) is introduced
with c1 and c2 as the concentrations of the unsaturated lipids in the
Ld phase and Lo phase, respectively, and c∈ [c2, c1] as the local con-
centration of the unsaturated lipids. At ϕ= 0 (or c = c1), the local
membrane domain is in the Ld phase, while the local membrane
domain is in the Lo phase at ϕ= 1. In general, unsaturated lipid mol-
ecules are of relatively larger lateral area per molecule and shorter
chains in comparison with saturated lipid molecules, leading to a
more flexible lipid domain in the Ld phase [14].
The elastic deformation energy of the axisymmetric membrane is

given by the Canham-Helfrich membrane theory as [31]

E1 = 2π
∫

κ(ϕ)
2

(C1 + C2)
2 + σ(ϕ)

[ ]
rds

where C1= dψ/ds and C2= sin ψ/r represent the principal curvatures
in the meridional and circumferential directions, respectively, with s
and ψ denoting the arclength and tangent angle of the membrane
profile (Fig. 1). The bending rigidity κ(ϕ) and tension σ(ϕ) of the
membrane are functions of the local composition ϕ. Here, we
adopt κ(ϕ)= κ0[1− α(1−ϕ2)] with α > 0 and σ(ϕ)= σ0[1− β(1−
ϕ2)] as introduced in Ref. [16]. In the Lo phase, κ= κ0 and σ= σ0,
whereas κ= κ0(1−α) and σ= σ0(1− β) in the Ld phase. Experi-
ments on the lipid segregation in the SM:Chol:DOPC vesicles
suggest that a reasonable value for the coupling parameter α
could be around 0.5 [2,14]. For example, at a molar ratio of 1:1:0
of SM:Chol:DOPC, an Lo phase is observed, and the membrane
bending rigidity is κ(ϕ= 1)= κ0= 65± 6 kBT with the thermal
energy 1 kBT= 4.11 × 10−21 J, while an Ld phase is observed with
κ(ϕ= 0)= κ0(1−α)= 30± 3 kBT for the 0:1:1 membrane composi-
tion [2,14]. Hereinafter, we take α= 0.5 in the case of the membrane
composition coupling to bending rigidity. The coupling parameter β
could be positive or negative. For instance, it is reported that the
lateral tension of the SM:Chol:DOPC membrane in the Ld and Lo

phases is σ(ϕ= 0)= 8.2± 0.1 × 10−5 mN/m and σ(ϕ= 1)= 1.06±
0.01 × 10−4 mN/m, respectively [2], which suggests β= 0.23;
while other experiments indicate that the tension of the lipid
domain in the Ld phase could be five times less than that in
the Lo phase [17]. The effects of the spontaneous curvature and
Gaussian rigidity on the lipid domain configuration are not consid-
ered [32,33]. We have also omitted the pressure difference across
the membrane as it plays a negligible role in the membrane nano-
tube formation [25,26].
The phase separation is analyzed within the Ginzburg–Landau

free energy functional as [16,32,34]

E2 = 2π
∫

λ

2
ϕ2(1 − ϕ)2 +

μ

2
∂ϕ
∂s

( )2
[ ]

rds

where λ and μ are positive material constants arising from the inter-
molecular interactions and their combination gives a characteristic
length

				
μ/λ

√
determining the thickness of the interface transition

domain and a line tension of a characteristic value
			
λμ

√
in the transi-

tion domain; s is the arclength of themembrane profile initiating from
the boundary of the pulling region. Here, we assume that the mem-
brane connects to a lipid reservoir and the number of lipid molecules
is not conserved. In our calculations, λ= 2000 κ0/R

2 and μ= κ0.
With the geometric relations dr/ds = cos ψ and dz/ds = −sin ψ ,

E1 and E2 can be expressed as functions of ϕ and ψ. The total free
energy of the system is now given as Etot(ϕ, ψ)=E1+E2− fL with
L as the displacement of the pulling force f along the z-direction.
To obtain the minimum state of Etot(ϕ(s), ψ(s)) at a given force

displacement L, we employ the interior point optimization tech-
nique to numerically determine the corresponding unknown vari-
ables ϕ and ψ. As shown in Fig. 1, the membrane profile can be

Fig. 1 Schematic of the extraction of a mixture membrane
induced by an exterior force f on a circular pulling region of
radius rp in the adopted cylindrical coordinate (r, θ, z). s and ψ
denote the arclength and tangent angle of the membrane
profile with phase Ld colored red (the tubular region) and phase
Lo colored blue (the lower region). The tangent angleψ is positive
as measured clockwise from the positive r-axis. Σn and Σs,
defined in Eq. (1), denote the out-of-plane shear force and
in-plane force, respectively. Insets illustrate the enlarged struc-
tures of the local membrane domains. (Color version online.)
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divided into two regions, the flat pulling region and the outer
free membrane region. In the pulling region (r∈ [0, rp], z= L),
ψ(r)= 0 and the order parameter ϕ=ϕ(r) is approximated by a
cubic B-spline curve as ϕ(r) =

∑
aiNi(r) (i= 0,…, m), where the

control points ai denote coefficients of the basis functions Ni(r)
defined on a non-uniform knot of r. For the outer free membrane
with an unknown total arclength lm, we introduce a new variable
t= s/lm (t∈ [0, 1]), and both ϕ=ϕ(s) and ψ=ψ(s) (s∈ [0, lm])
are reparametrized and approximated as ϕ(t) =

∑
b jN j(t) and

ψ(t) =
∑

c jN j(t) (j= 0,…, n) with control points bj and cj as coef-
ficients to be determined. Here, we take m= 54 and n= 114 in our
calculations. A relatively large value of m is taken here to ensure
the numerical accuracy for the local composition ϕ in the flat
pulling region with a zero membrane curvature. Further calcula-
tions indicate that the results are not sensitive to the values of m
and n, and a much smaller m would not affect the final results.
The boundary conditions are as follows. At r= 0 and z= L,

dϕ/dr
∣∣
r= 0 = 0 which means that the order parameter ϕ can vary

freely at the center of the pulling region [16]. At s= 0 (t= 0), we
have ψ= 0, r= rp, z=L, and the continuity of ϕ. At the remote
boundary s= lm (t= 1), we have ψ= 0, r=R, z= 0, and ϕ2=ϕ0.
Here, ψ(s= lm)= 0 approximates the asymptotic flatness of
the membrane at the remote boundary. A zero mean curvature at
s= lm is enforced alternatively in some theoretical work
[16,25,26]. ϕ(s= lm)=ϕ0 implies that the membrane connects to
a lipid reservoir in either Ld phase (ϕ0= 0) or Lo phase (ϕ0= 1).
As a membrane at ϕ= 0 has lower system energy and automatically
satisfies the boundary condition ϕ0= 0, the lipid separation could
not occur at ϕ0= 0 and the membrane stays homogeneous. There-
fore, we focus on the case of ϕ0= 1 in the following analysis. We
further take α= 0 (β= 0) for no coupling between the membrane
composition and bending (tension) and adopt α= 0.5 (β= 0.5) to
account for the composition coupling to the membrane bending
(tension). With the knowledge of these boundary conditions, the
total free energy of the membrane is minimized with respect to
the coefficients ai, bi, ci, and lm, and the corresponding membrane
configuration and the pulling force are determined.

3 Results and Discussion
We first investigate the effects of the coupling parameter α

and pulling region radius rp on the membrane extraction at β= 0.
In a special case of a cylindrical membrane nanotube of uniform
composition (ϕ= 0 or 1), the elastic membrane energy is
Etube = 2πrL[κ/(2r2) + σ], where r and L denote the tube radius
and length, respectively. Minimizing Etube with respect to r by
taking dEtot/dr = 0, we could obtain the equilibrium tube radius
[25,26]

r0 =
							
κ/(2σ)

√
Substituting r0 intoEtube, we then have an equilibriumpulling force f0
and the corresponding minimum energy Etube as

f0 = dEtube/dL
( )|r=r0 = 2π

				
2σκ

√
and Etube = 2πL

				
2σκ

√

For the nanotube in Lo phase (ϕ= 1), we then have r0 =
										
κ0/(2σ0)

√
and f0 = 2π

							
2σ0κ0

√
; for the tube in Ld phase (ϕ= 0), we have rαβ =																									

κ0(1 − α)/[2σ0(1 − β)]
√

and fαβ = 2π
																						
2σ0κ0(1 − α)(1 − β)

√
. As

α, β< 1, the elastic deformation energy of the nanotube in the Ld

phase is smaller than that in the Lo phase.
As shown in Fig. 2(a), in the early stage of the membrane extrac-

tion, the pulling force f increases almost linearly with the pulling
displacement L and then gradually increases to a peak value fmax.
Once the force barrier is overwhelmed, the catenoid-like outer
free membrane region exhibits a slight constriction and begins to
form a cylindrical tubular structure (Figs. 2(b)–2(e)), and the

force drops to a plateau force

fαβ = 2π
																						
2σ0κ0(1 − α)(1 − β)

√
which is required to maintain the tubule. In comparison with the case
of no coupling (α= β= 0) with the plateau force f0 = 2π

							
2σ0κ0

√
, the

phase separation leads to a lower plateau force atα, β< 1.AsL further
increases, the tubular structure elongates without conformational
variation of other membrane regions, and the pulling force maintains
constant. The phenomena discussed above are shared by the cases of
either zero or finite α and rp. Similar f–L profiles are observed in the
packing of a nanotube or microtubule in a vesicle which is deformed
and exhibits a cherry-like shape with a single tubular protrusion
[29,35]. In the case of the coupling of composition and bending rigid-
ity, the phase separation occurs as the extraction displacement L
increases. As shown in Figs. 2(c) and 2(e), the more flexible Ld

phase aggregates into the tubular domain of a relatively large local
curvature and the catenoidal outer membrane region remains in the
Lo phase. Compared with the cases without composition coupling
to the bending rigidity (α= 0), the membrane at a finite α exhibits
smaller peak and plateau forces as the Ld phase is more flexible
than the Lo phase (Fig. 2(a)). The coupling between the membrane
bending rigidity and membrane composition benefits the formation
of the membrane nanotube. This is also reflected in the force jump.
At α= 0.5, the force jump occurs at a smaller L/R and the force over-
shoot ( fmax− f0)/f0 or the magnitude of the force jump increases in

(a)

(b) (c)

(d) (e)

Fig. 2 Effects of the coupling parameter α and the pulling region
radius rp on the membrane extraction at σ0=200κ0/R

2 and β=0.
(a) Normalized f–L curves and (b−e) selected membrane config-
urations at different α and rp. The forces correspond to the con-
figurations in (b−e) are denoted by the symbols in (a). The grey
solid lines in (a) indicate the analytical solutions of the linear f–L
relations at zero and finite rp. The membranes in (b) and (d) have
no coupling and are in the Lo phase colored blue (or dark grey). In
(c) and (e), the blue (or dark grey) lines represent the membrane
domains in the Lo phase and red (or grey) lines the Ld phase.
(Color version online.)
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comparisonwith the case of zeroα. As the elastic deformation energy
of a membrane nanotube of a given length in Ld phase is smaller than
that in Lo phase, the membrane nanotube is always in the Ld phase as
long as the phase separation occurs. We also calculate the area vari-
ation ɛA= (A−A0)/A0 during the pulling process with A0= πR2 and
A as areas of the initially flat and deformed membrane. In the case of
rp= α= 0 (Fig. 2(b)), we have ɛA= 0.075 atL/R= 0.8 and ɛA= 0.095
at L/R= 1; in the case of rp= 0.2R and α= 0.5 (Fig. 2(e)), we have
ɛA = 0.17 at L/R= 0.8 and ɛA= 0.184 at L/R= 1. Including the
area contribution from the tubular protrusion and the deformation
of the catenoid-like outer membrane region, the small value of ɛA
indicates that the area of the nanotube is significantly smaller than
that of the whole membrane.
In the above analysis, we perform the full nonlinear analysis

based on the angle-arclength parametrization. As shown in
Figs. 2(b)–2(e), in the early extraction stage, f increases almost lin-
early with the displacement L, and the membrane can be regarded as
a homogeneous membrane as no phase separation occurs. These
features imply that there might exist a simple analytical solution
for the initial linear f–L relation. To seek that analytical prediction,
we start the derivation from the balance of the membrane force. For
the deformed outer free membrane before phase separation, the
local membrane force per unit length can be expressed as [36,37]

Σn = −κ0
d(C1 + C2)

ds
= −κ0

d2ψ
ds2

+
cosψ
r

dψ
ds

−
sinψ cosψ

r2

( )

Σs = σ0 +
κ0
2
(C2

2 − C2
1) = σ0 +

κ0
2

sin2 ψ
r2

−
dψ
ds

( )2
[ ]

Σθ = 2σ0 − Σs

(1)

where Σn denotes the out-of-plane shear force along the inward
normal direction of the deformed membrane, and Σs and Σθ repre-
sent the in-plane force along the meridional and circumferential
directions, respectively. In the notation of plate theory,
(Σn, Σs, Σθ) is usually denoted as (Qn, Nr, Nt) with Qn named as
the shear force, Nr the radial force and Nt the tangential force [38].
The force balance along the z-axis requires that

2πr Σs sin ψ + Σn cosψ
( )

= f (2)

At small membrane deformation (L/R≪ 1 or dz/dr≪ 1), we have

sinψ ≈ −
dz
dr

, cosψ ≈ 1,
dψ
ds

≈ −
d2z
dr2

,
d2ψ
ds2

≈ −
d3z
dr3

(3)

and then Eq. (1) reduces to

Σn ≈ κ0
d3z
dr3

+
1
r

d2z
dr2

−
1
r2

dz
dr

( )

Σs ≈ Σθ ≈ σ0

(4)

Substituting Eqs. (3) and (4) into Eq. (2), we have

d
dr

1
r

d
dr

r
dz
dr

( )[ ]
=

1
κ0

f

2πr
+ σ0

dz
dr

( )
(5)

which can be rewritten as a linear modified Bessel differential equa-
tion

r2
d2

dr2
dz
dr

( )
+ r

d
dr

dz
dr

( )
− 1 +

σ0
κ0

r2
( )

dz
dr

=
f

2πκ0
r

Equation (5) can also be derived based on the von Karman plate
theory widely used in solid mechanics for punching a flat thin
film, taking advantage of the assumption of equal radial and tangen-
tial forces (Nr=Nt) [38–40].
With the boundary conditions dz/dr= 0 at r = r p and r=R, an

analytical solution of dz/dr can be found as

dz
dr

=
fR

2πκ0

1
ω2

Λ1I1(ω�r) − Λ2K1(ω�r) − �r−1
[ ]

where �r ≡ r/R, �rp ≡ r p/R, ω =
									
σ0R2/κ0

√
, Λ0 = I1(ω)K1(ω�rp)−

I1(ω�rp)K1(ω), Λ1 = [K1(ω�rp) − K1(ω)/�rp]/Λ0, and Λ2 = [I1(ω�rp)−
I1(ω)/�rp]/Λ0. Here, Ii(x) and Ki(x) (i= 0, 1, 2) are the ith order of
the first and second kind modified Bessel functions of x,
respectively.
As the pulling displacement is L, we have

−
∫R
r p

dz
dr

dr = L

with the boundary condition z= 0 at r=R, which then leads to the
following linear force-extraction relation

f =
2πκ0
R

ω3

Λ1 I0(ω�r p) − I0(ω)
[ ]

+ Λ2 K0(ω�r p) − K0(ω)
[ ]

− ω ln �r p

L

R

(6)

and, in turn, the membrane shape

z = −
∫R
r

dz
dr

dr

=
f R2

2πκ0

1
ω3

Λ1 I0(ω�r) − I0(ω)[ ] + Λ2 K0(ω�r) − K0(ω)[ ] − ω ln�r{ }
(7)

Combining Eqs. (6) and (7), we know that the membrane profile
characterized by z(r) is also linearly proportional to L. From the
first derivative,

df
d�r p

=
2πκ0L
R2

�r pω
4g2(ω, �r p)

with g(ω, �r p) as a function ofω and �r p, we know that the slope of the
linear f–L relation increases as �r p increases, consistent with the plots
in Fig. 3(a) showing the linear f–L relation in Eq. (6) as a function of
ω at different �r p. The membrane profiles determined by Eq. (7) for
�r p = 0 and 0.2 at L/R= 0.1 and ω= 10 are plotted in Fig. 3(b).
It is interesting to note that another linear relation between z and L

at small membrane extraction has been reported in a previous theo-
retical study [25]. In that work, based on an assumption that the
membrane portion in the vicinity of the remote boundary (r→R)
adopts a catenoid configuration with a prescribed boundary condi-
tion of zero moment (or zero mean curvature) at r=R, the outer
free membrane region is divided into two parts, a catenoid outer
part and an inner part which can be determined from a geometric
matching condition [25]. No analytical solution on the f–L relation
is reported therein [25]. In our current work, both the linear f–L and
z–L relations at small membrane deformation (from Eqs. (6) and
(7)) are derived analytically, and no additional assumption is
required. As shown in Fig. 3(b), our theoretical solution agrees
well with fully nonlinear numerical solutions.
In the case of a point pulling force (�rp = 0), Eqs. (6) and (7)

reduce to

f = 2πκ0
R

ω3I1(ω)
2− I0(ω) − ωK1(ω) + ωI1(ω) ln

ω

2
+ γE

( ) L
R

z = fR2

2πκ0

1
ω3

1− ωK1(ω)[ ] I0(ω�r) − I0(ω)[ ]I1−1(ω) − ω K0(ω�r) − K0(ω) + ln�r[ ]{ }
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where γE= 0.5772… is the Euler–Mascheroni constant. The grey
solid lines in Fig. 2(a) indicate the analytical solutions of the
linear f–L relations above at zero and finite rp. The results are con-
sistent with our numerical calculations in the early stage of the
membrane extraction.
In the limiting case of zero membrane tension (ω= 0), Eqs. (6)

and (7) become

f =
16πκ0
R

1 − �r2p

(1 − �r2p)
2 − 4�r2p( ln �r p)

2

L

R

z = (1 − �r2 + 2�r2 ln �r) −
2�r2p ln �r p
1 − �r2p

(1 − �r2 + 2 ln �r)

[ ]

×
(1 − �r2p)

(1 − �r2p)
2 − 4�r2p( ln �r p)

2
L

(8)

leading to

z = (1 − �r2 + 2�r2 ln �r) −
2�r2p ln �r p
1 − �r2p

(1 − �r2 + 2 ln �r )

[ ]
f R2

16πκ0
(9)

At �r p = 0, Eq. (8) reduces to

f =
16πκ0L
R2

and z = (1 − �r2 + 2�r2 ln �r)L

giving rise to

z =
f R2

16πκ0
(1 − �r2 + 2�r2 ln�r) (10)

Eq. (10) can also be derived from Eq. (9) with �r p = 0. A similar
form to Eq. (10) has been obtained for a concentrated load acting
at the center of a circular isotropic linear elastic plate [38,40].
In another limiting case of ω→∞ (infinitely large membrane

tension or negligible bending rigidity) which might not be physio-
logically relevant, Eqs. (6) and (7) reduce to

f = −
2πκ0ω2

R2 ln �r p
L and z =

ln �r
ln �r p

L

resulting in

z = −
f R2

2πκ0ω2
ln�r

Our previous study [28] on the pulling of a homogeneous mem-
brane indicates that increasing the pulling region size rp leads to an
increasing fmax, and moreover, as rp increases, the f–L profile
changes from a smooth and continuous curve to a discontinuous
curve (Fig. 2(a)). Such features are also observed for the extraction
of the multicomponent membrane considered here (Fig. 2(a)). As
r p increases, the energy profile exhibits a kink at a critical L/R (see
Fig. S1 available in the Supplemental Materials on the ASME
Digital Collection), corresponding to a discontinuous membrane
shape transformation from the catenoid-like shape to the tubular
structure. Additional calculations on the effects of rp and α on
the f–L curve and the order parameter profile can be found in
Figs. S2 and S3, respectively. One more intriguing phenomenon is
that the sudden drop in the force f could occur immediately
following the force peak fmax at finite α as rp increases (see the
blue dotted line with rectanglar marker in Fig. 2(a) and a comparison
between Figs. S2(a) and S2(b)). This indicates again that the compo-
sition coupling to the bending rigidity facilitates themembrane nano-
tube formation.
We next investigate the effects of the membrane tension on the

membrane extraction. In our previous study on the pulling of a
homogeneous membrane, we show that as the membrane tension
increases, both the force peak and the plateau force increase, and
the force drop occurs at smaller L/R [28]. A similar feature is
offered during the pulling of multicomponent membranes
(Fig. 4). Since the coupling parameter α is finite here, the force
drop occurs immediately following the force peak at a finite rp of
0.1R consistent with Figs. 2(a) and S2. In the case of α= 0.5 and

(a)

(b)

Fig. 3 (a) The linear f–L relation at small membrane deformation

given in Eq. (6) as a function of ω=
										
σ0R

2/κ0

√
at different values of

rp. (b) Comparison of the rescaled membrane profiles from the
current and previous analysis for rp=0 and 0.2R at L=0.1R
and ω=10. Equation (7) agrees well with the fully nonlinear
numerical solutions. (Color version online.)

Fig. 4 The f–L curves for different membrane tension σ0 R
2/κ0=

100, 200, and 300 at α=0.5 and β=0 with f0=2π
							
2σ0κ0

√
(Color

version online.)
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β= 0, the plateau force equals to 2π
							
2σ0κ0

√
at small membrane

tension σ0= 25κ0/R
2 (Fig. S4); in other words, the membrane nano-

tube is in Lo phase with ϕ= 1. This means that the phase separation
never occurs if the membrane tension is small enough.
To demonstrate more clearly, the effects of the coupling between

the membrane composition and mechanical properties, pulling
region size, and membrane tension on the force barrier, we plot the
normalized maximum pulling force differences (f (α=0)max − f (α=0.5)max )/f0
as functions of �r p at different σ0 R2/κ0 and β= 0 with f0 =
2π

							
2σ0κ0

√
in Fig. 5. It is shown that at small �r p, the coupling of com-

position andflexibility plays an important role in regulating themem-
brane extraction, and such an effect due to the phase separation
diminishes gradually as the pulling region enlarges and the force
barrier becomes dominated by �r p of a relatively large value.
Though in the numerical studies here, we consider a wide range of
�r p ∈ [0, 0.2] for systematic analysis, �r p(≡r p/R) in most biological
circumstances is very small [15,17,20,27]. For example, it is reported
that �r p ≈ 0.018 (r p = 100 nm and R∼ 5.6 μm) in the pulling of a
nanotube from lipid mixture vesicles [15]; �r p → 0 with a pulling
region size around 55 nm for supported cells [27]. In these cases,
the coupling effect cannot be simply ignored as indicated in Fig. 5.
To understand how the membrane patch size affects the mem-

brane extraction, we perform case studies at different patch radii
(R, 2R, and 3R) (see Fig. S5). In the case of point pulling force
(rp= 0), though the force peak fmax does not change, the extraction
displacement L at which the force reaches a peak increases as the
membrane size increases, namely, the formation of the membrane
nanotube is delayed. At finite rp, an increasing patch size induces
a slightly decreasing fmax.
Having knowledge of the f–L curves at different membrane ten-

sions and pulling region sizes (Figs. 2(a), 4, S2, S4, S5), we could
determine the dependence of fmax on rp at different σ. Two groups of
the dependence have been found (Fig. 6). In the first group, the
symbols refer to the cases of no coupling (α= 0) with arbitrary rp
and the cases of α= 0.5 with rp= 0, and all these symbols collapse
onto a single master curve (dotted line in Fig. 6), corresponding to
the cases in which the force drop does not immediately follow the
peak fmax such as the curves in Fig. 2(a) marked by the circles, tri-
angles, and diamonds. The dotted line can be approximated by an
empirical equation as [28]

rp
rαβ

= B1
fmax

fαβ
− �f

( )
+

																									
fmax

fαβ
− �f + B2

( )2

−B2
2

√

where fαβ = 2π
																					
2σ0κ0(1− α)(1− β)

√
, rαβ =

																							
κ0(1− α)/[σ0(1− β)]

√
,

B1= 28/29, B2= 7/17, and �f = 1.1267. In the case of a point

pulling force (rp= 0), fmax/f0 =�f . At large rp, the above empirical
equation can be estimated by a simple linear equation fmax/f0= 1
+ rp/(2rαβ) which was first proposed by Koster et al. for the extrac-
tion of a homogeneous lipid membrane [20]. The second group
refers to the cases of α= 0.5 with finite rp (the rest three colored
solid lines in Fig. 6), and the symbols therein correspond to the
cases in which the force drop immediately follows fmax such as
the curves in Fig. 4 at rp= 0.1R. Though the curves of fmax/fαβ as
functions of rp/rαβ at different σ0 exhibit linear feature, their
slopes are slightly different and they do not collapse together.
To investigate the effect of coupling between the membrane com-

position and tension on the extraction, we now consider the f–L
curves with finite β at σ0= 200κ0/R

2 and rp= 0.2R and compare
them with the cases of β= 0 at the same σ0 and rp in Fig. 2(a).
The common feature shared by these four curves is that the force
rises to a peak force which is followed by a drop to a plateau
upon the formation of a membrane nanotube (Fig. 7). In the case
of no coupling (α= β= 0), the plateau force is f0 = 2π

							
2σ0κ0

√
; in

the rest cases in Fig. 7, the plateau forces become lower and stay
at fαβ = 2π

																						
2σ0κ0(1 − α)(1 − β)

√
. Difference in the plateau force

from the no coupling case means that the membrane undergoes
lipid phase separation during the extraction, which can be used as
a criterion for the occurrence of lipid sorting complementary to
the direct experimental observation. Moreover, the membrane
tension is reduced by a factor 1− β as β∈ (0, 1) (β= 0.5 in our
studies), leading to a lower slope in the early stage of the f–L
curve and a lower force peak. The force curves at finite β in the
case of the point pulling force is shown in Fig. S6 where no kink
(or discontinuous shape transformation) is observed.
In this work, we focus on the extraction of a free membrane. For

a supported membrane bonded to a substrate such as functionalized
solid surface and underlying cytoskeleton, the membrane would
undergo detachment from the substrate against the adhesive inter-
action. In the case of specific adhesion, the pulling force exhibiting
a rate-dependent feature increases as the loading rate increases
[41,42]. For an extremely soft substrate [43], the elastic deforma-
tion and mechanical instability of the substrate surface might
play a significant role in manipulating the membrane nanotube
formation.

Fig. 5 Normalized maximum pulling force differences
(f(α=0)max − f(α=0.5)max )/f0 as functions of �rp(≡rp/R) at different σ0 R2/κ0
and β=0 with f0=2π

							
2σ0κ0

√
(Color version online.)

Fig. 6 Plots of the normalized maximum pulling force fmax/fαβ
as a function of rp/rαβ at different σ0 R2/κ0 with
fαβ=2π

																						
2σ0κ0(1−α)(1− β)

√
and rαβ=

																								
κ0(1−α)/[σ0(1− β)]

√
. Here,

we take β=0 in our case studies. The data collapsing onto the
dotted curve correspond to the cases where the force drop
does not immediately follow the peak fmax (α=0 with arbitrary
rp and α=0.5 with rp=0), while other symbols correspond to
cases where the force drop immediately follows fmax (α=0.5
with finite rp). (Color version online.)
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Membrane tension could vary in a wide range from 10−5 mN/m
to 1 mN/m as reported [44]. Previous theoretical studies on the
average force exerted by a thermally fluctuating membrane nano-
tube indicate that the thermal fluctuation of the membrane
lowers the axial force f0 = 2π

				
2σκ

√
by an amount of Δf [45,46].

At high membrane tension (>0.01 mN/m), Δf is negligible; at
low-to-moderate membrane tension (<10−4 mN/m), Δf is compara-
ble with f0 [45,46]. Therefore, strictly speaking, the thermal fluctu-
ation would induce a lower plateau force and facilitate the
membrane nanotube formation. A thorough theoretical analysis
on the effect of thermal fluctuation to the pulling behavior of a
homogeneous or multicomponent membrane is certainly deserved
in the future study.
Our current studies are restricted to the quasi-static cases. At a

finite pulling velocity, the membrane viscosity, inter-monolayer
slip, and possible membrane slip over the cytoskeleton could
together play significant roles in manipulating the membrane extrac-
tion [47–49]. Recent experiments have demonstrated that the phase
separation during the membrane extraction also depends on the
pulling velocity [17]. At a low pulling velocity, the lipid or protein
flow is negligible in comparison with the lipid or protein diffusion
[18]. Therefore, the phase separation is dominated by the elastic
deformation energy of the system, and the Ld phase aggregates
into the membrane tubule induced by the external extraction as our
current quasi-static analysis indicates. At a high pulling velocity,
the membrane is far from the equilibrium state and the extracted
membrane stays in a Lo rather than Ld phase as a whole [17,18].
After the pulling stops, one Ld phase domain nucleates and
expands around the neck of the membrane nanotube which connects
the catenoid-like outer membrane region and exhibits a slight con-
striction. As the Ld phase domain expands, the pulling force
decreases until the whole membrane nanotube is in the Ld phase
[17,18]. Further investigation indicates that the Lo phase domain
and Ld phase domain arrange in the membrane nanotube alternately
at an intermediate speed [17], as a result of the competition between
the curvature-modulated lipid diffusion and pulling-driven lipid
flow. For a homogeneous membrane, experimental studies [47,48]
and numerical calculations [49] indicate that the effective viscosity
of themembrane nanotube and the pulling force follows a linear rela-
tionship in a physiological range of the pulling speed. Further studies
are required to explore whether the linear relationship is valid for a
multicomponent membrane.
Introducing an energy term associated with the difference of the

principal membrane curvatures, our current model can be general-
ized to the cases with anisotropy of membrane components which
could be membrane-attached proteins and macromolecules with
anisotropic properties [50].

4 Conclusions
We have performed a theoretical study on the formation of the

multicomponent membrane nanotube and the associated curvature-
driven lipid sorting and explore the dependence on the size of the
pulling region. The pulling force required for the membrane extrac-
tion increases first almost linearly with the pulling displacement and
then drops and saturates at a value depending on the coupling
between the membrane composition and the bending rigidity and
tension of membrane upon the formation of a membrane nanotube.
During the membrane extraction, the more flexible lipid-disordered
phase aggregates into the tubular domain of a relatively large local
curvature, and the outer membrane region stays in a lipid-ordered
phase as long as the phase separation occurs. Moreover, the cou-
pling between the membrane bending rigidity and membrane com-
position facilitates the formation of the membrane nanotube by
reducing the force barrier. The maximum pulling force fmax is pro-
portional to the size of the pulling region rp. For a homogeneous
membrane or at a point pulling force, fmax and rp follow a nonlinear
relationship independent of the membrane tension, while for a mul-
ticomponent membrane at a finite rp, the fmax–rp relationship
depends on the membrane tension. These results indicate that the
finite pulling region size cannot be ignored in approaching biophy-
sical contexts such as the bundle of microtubules polymerizing
underneath cell membranes and membrane extraction by clusters
of motor proteins. Analytical solutions for the force-extraction rela-
tion and the membrane configuration in the early stage of the mem-
brane extraction are obtained based on the nonlinear plate theory.
Our results establish a correlation between the lipid sorting and
membrane nanotube formation and shed light on the mechanical
behaviors of multicomponent cell membranes associated with
tubular deformation such as filopodial growth, cell uptake of one-
dimensional nanomaterials such as gold nanowires and asbestos
nanofibers, protein-mediated endocytosis, or vesiculation.
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Fig. S1. Variation of the elastic deformation energy el tot tot( ) (0)E E L E∆ = −  as a function 
of L/R at different rp and α. 

Fig. S2. Effects of the pulling region size rp on the f-L curves at α=0 (a) and 0.5 (b). 
Here 0 0 02 2f = π σ κ , σ0=200κ0/R2, and β=0. 



Fig. S3. The evolution of the order parameter ϕ as a function of the normalized total 
arclength including the membrane on the pulling region at rp=0 (a) and 0.2R (b). Here 
we take σ0=200κ0/R2, β=0, and L/R=1. 

Fig. S4. Effects of the pulling region size rp on the f-L curves at relatively small 
membrane tension σ0=25κ0/R2. Here we take α=0.5 and β=0. For α smaller than 0.5, no 
distinguishable differences are found from the f-L curves in this figure. 

Fig. S5. Effects of the membrane patch size on the f-L curves at rp=0 and 0.2R with 

0 0 02 2f = π σ κ . Here we take σ0=200κ0/R2, α=0.5, and β=0. 



Fig. S6. The f-L curves for the point pulling force (rp=0) at different sets of the coupling 
parameters (α,β).  
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