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ABSTRACT: Understanding cell interaction with one-dimen-
sional nanomaterials, including nanotubes, nanowires, nano-
fibers, filamentous bacteria, and certain nanoparticle chains,
has fundamental importance to many applications such as
biomedical diagnostics, therapeutics, and nanotoxicity. Here
we show that cell uptake of one-dimensional nanomaterials via
receptor-mediated endocytosis is dominated by a single
dimensionless parameter that scales with the membrane
tension and radius of the nanomaterial and inversely with
the membrane bending stiffness. It is shown that as cell membrane internalizes one-dimensional nanomaterials the uptake follows
a near-perpendicular entry mode at small membrane tension but it switches to a near-parallel interaction mode at large
membrane tension.
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Understanding interaction mechanisms between nanoma-
terials and cell membranes is essential for biomedical

diagnostics, therapeutics, and nanotoxicity. Although extensive
studies have been conducted on cellular uptake of (spherical)
nanoparticles, relatively little is known about how cells interact
with one-dimensional (1D) nanomaterials with radius at the
nanoscale but length at a much larger scale, such as nanotubes
and filamentous bacteria.1−3 Recent experiments showed that
carbon nanotubes undergo endocytic entry into liver and
mesothelial cells through tip recognition and then rotation to a
near-perpendicular entry mode.1 Similar tip entry phenomena
were also observed in phagocytosis of high-aspect ratio
filamentous Escherichia coli bacteria.3 In another type of
experiment, it was found that nanoparticles adhering to a
substrate-supported flat phospholipid vesicle spontaneously
form particle-chains encapsulated inside lipid tubes that
protrude out of the vesicle at low membrane tension, but
when the membrane tension is increased by adding Ca2+ to
enhance adhesion between the vesicle and substrate, the lipid
tubes retract back to the vesicle.4 Here we show that these
seemingly different phenomena can all be understood with a
unified theoretical model of an elastic fluid membrane
interacting with a 1D nanomaterial.
The above experiments suggest that there exist two basic

modes of interaction between cells and 1D nanomaterials: tip
recognition followed by near-perpendicular entry versus near-
parallel adhering on the membrane. However, the underlying
mechanisms of different modes of interaction have not been
elucidated. In this Letter, we present the first theoretical model
on cellular uptake of 1D nanomaterials, which accurately
accounts for the elastic deformation energy associated with the
wrapping of an initially flat membrane around a nanotube
oriented at different orientations with respect to the membrane.
First, we note that a lipid membrane, subjected to various types

of loading, deforms and equilibrates immediately on a time
scale of less than one second.5−7 By contrast, cell uptake of
nanomaterials with a time scale from hundreds of seconds to
tens of minutes8−10 can usually be regarded as a process limited
by diffusion of receptors in the cell membrane toward the
contact region.1,11 For simplicity, here we do not consider the
dynamic process of receptor diffusion in the membrane; rather
we focus on a relatively short time window around a given
point of time in which the total area of the contact region
remains constant while the nanotube adjusts its entry angle to
reduce the energy of the system. It will be shown that
membrane tension, membrane bending stiffness, and tube
radius collectively determine the uptake mode through a single
dimensionless parameter.
Without loss of generality, we consider an initially flat

membrane wrapping around a semi-infinite cylindrical nano-
tube with a hemispherical end-cap (Figure 1). The total energy
of the system is expressed in terms of Canham-Helfrich
functional as12,13

θ σ γ= + Δ −E E A A( )tot b c (1)

where Eb = ∫ 2κH2dA is the bending energy, κ being the
bending rigidity of the membrane, H is the local mean
curvature, and dA is the membrane surface element; σ is the
membrane tension and ΔA the excess surface area induced by
wrapping; γ is the specific adhesion energy and Ac is the contact
area. The bending energy associated with the Gaussian
curvature remains constant for the problem and is neglected.
Spontaneous curvature is not considered here. All length scales
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are scaled by the nanotube radius a. Other dimensionless
parameters are γ ̅ ≡ 2γa2/κ and σ̅ ≡ 2σa2/κ.
Because the contact area Ac is assumed to be constant, the

minimum energy configuration of the nanotube-membrane
system should only depend on the single dimensionless
parameter σ̅, which represents the ratio of membrane tension
and bending energies. The bending energy plays a dominant
role for σ̅ ≪ 1, while the tension energy should do so for σ̅ ≫
1. On the basis of the value of σ̅, there are two limiting cases:
the limit of zero-bending stiffness (κ = 0), corresponding to
extremely large σ̅→∞, and the limit of zero-tension (σ̅ = 0). A
careful analysis of these limiting cases reveals the following two
fundamental theorems regarding cell membrane interaction
with nanotubes or any other relatively stiff 1D nanomaterials.
Theorem 1. In the limit of vanishing membrane tension (σ̅ =

0), a nanotube would favor the perpendicular entry mode θ =
90° when interacting with an initially flat membrane at a fixed
contact area. In this mode, the configuration of global
minimum energy for the membrane is the catenoid
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where h is the height of the membrane relative to the position
of the contact edge at z = z0.
Proof. At vanishing membrane tension and fixed contact area,

the elastic bending energy stored in the membrane governs the
free energy of the system. The catenoid in eq 2 has unit normal
vector n = [−ax/(x2 + y2), −ay/(x2 + y2),(1 − a2/(x2 + y2))1/2].
At contact edge h = 0, n = (−x/a,−y/a,0) satisfies the smooth
contact boundary condition between the nanotube and
membrane at the perpendicular entry angle of θ = 90°, and n
→ (0,0,1) as x2 + y2 → ∞ guarantees the asymptotic flatness of
the membrane away from the contact region. The principal

curvatures of the catenoid ± a−1 sech2(h/a) give rise to
vanishing mean curvature (H = 0) everywhere in the fluid
membrane, leading to zero elastic energy since 2κH2 = 0.13

Moreover, it has been shown that the catenoid is the only
complete, embedded minimal surface in the Euclidean space
with zero mean curvature and two ends.14 Because the bending
energy is positive definite, the catenoid in eq 2, as shown in
Figure 2a, is the only solution of zero deformation energy for
the present problem. Because of the smooth contact between
the nanotube and membrane and the uniqueness of catenoid,14

any rotation of the nanotube away from the perpendicular entry
configuration will cause a deviation in membrane shape from
the catenoid, resulting in nonzero mean curvature and positive
deformation energy. Therefore, the perpendicular entry mode θ
= 90° corresponds to the state of global minimum energy for a
nanotube to interact with an initially flat fluid membrane at zero
membrane tension. In this state, the membrane assumes the
configuration of a catenoid described in eq 2.
Theorem 2. In the limit of vanishing membrane bending

stiffness (κ = 0), a nanotube interacting with an initially flat
membrane under a fixed contact area would prefer an
infinitesimally small entry angle θ → 0°.
Proof. At vanishing membrane bending stiffness and fixed

contact area, it becomes possible for the membrane to adopt
arbitrarily sharp curvatures without any energy penalty, which
effectively releases the condition of smooth contact at the
contact edge. Because a flat membrane outside the nanotube
automatically satisfies the condition of asymptotic flatness away
from the contact region and also has smaller excess area
compared to any curved surfaces, the minimum energy
configuration of the membrane at any entry angle θ is just a
flat surface (Figure 2b). Moreover, because the flat surface
slices the nanotube along an elliptical contact edge with

Figure 1. Schematic of an initially flat membrane wrapping around a nanotube (green). A nanotube of radius a is seen to enter membrane at an angle
θ. Because of limited rate of receptor diffusion, the total area of the contact region (blue) is assumed to be fixed in the analysis while the nanotube
can adjust the entry angle θ to reduce the system energy. Curvilinear coordinates u,v = 0,1 define the boundaries of the free part S of the membrane,
and colors on S denote the relative height of the membrane. The hemispherical cap of the nanotube is bounded by x2 + y2 + z2 = a2 and z sin θ − y
cos θ = 0 in the adopted Cartesian coordinate xyz. (Lower left corner) Top view of the free part S.

Figure 2. Simulated modes of interaction between a patch of cell membrane bounded inside a cylindrical region of radius rm = 20a and a nanotube of
radius a with contact area fixed at Ac = 10πa2. (a) In the limiting case of vanishing membrane tension σ̅ = 0, the preferred mode of interaction is the
perpendicular entry mode. (b) In the limiting case of zero membrane bending stiffness κ = 0 (σ̅ → ∞), the preferred mode of interaction is a near-
parallel surface adhering mode. (c) In the case of normalized membrane tension σ̅ = 3, a nanotube interacts with the membrane at a prescribed entry
angle of θ = 15°. The colors represent the height of the membrane relative to the lowest point at the contact edge (black curves). Scale bars are set to
be the tube radius a.
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semimajor axis a/sin θ and semiminor axis a, resulting in an
enclosed area of πa2/sin θ, the excess membrane surface area
induced by the nanotube is ΔA = Ac − πa2/sin θ and the
membrane tension energy σΔA will be minimized when θ →
0°. Therefore, the most favorable configuration under vanishing
membrane bending stiffness and fixed contact area is for the
nanotube to lie nearly parallel to the membrane, that is, θ→ 0°.
In this state, the membrane wraps around the nanotube but
remains a perfectly flat surface outside the contact region.
The above limiting cases define two fundamental modes of

interaction between a nanotube (and any other rigid 1D
cylindrical nanomaterials) and a fluid membrane. On the basis
of these solutions, we postulate that a nanotube should undergo
a transition from the perpendicular entry mode θ = 90° to the
near-parallel mode θ → 0° as the normalized membrane
tension σ̅ increases. In the following, we confirm this transition
through a rigorous numerical analysis.
In the numerical analysis, the deformed membrane

configuration, as illustrated in Figure 1, is described in the
Euclidean space as a tensor product cubic B-spline surface.15

The entry of the nanotube into cell at a given angle can be
regarded as a steady-state process as soon as the tip region is
covered by the membrane. In such a steady-state entry process
limited by receptor diffusion, we can assume that the tip of the
nanotube is fully wrapped and focus on energy stored in the
free part of the membrane surface S. The position vector along
S, r = r(u,v), is parametrized by a set of curvilinear coordinates
(u ,v) on the domain u ,v ∈ [0 ,1] as r(u ,v) =
Σm = 0

L u Σ n = 0
L v cm , nNm , 4 (u)Nn , 4 (v ) , whe re r(u , v ) =

[x(u,v),y(u,v),z(u,v)] represents the Cartesian coordinates of
the membrane and control points cm,n = (cm,n

x ,cm,n
y ,cm,n

z ) are the
coefficients of the basis functions Nm(n),4 with integer indices 0
≤ m ≤ Lu and 0 ≤ n ≤ Lv. The unit normal vector to S is n = (ru
× rv)/|ru × rv|, where ru ≡ ∂r/∂u and rv ≡ ∂r/∂v are two tangent
vectors spanning the local tangent plane of S. The basis
functions Nm,4(u) and Nn,4(v) can be determined explicitly by
specifying two knot vectors {u0,...,uLu+4} and {v0,...,vLv+4},
respectively. Here a typical choice is taken as ui = vi = 0 (i =
0,...,3), uj = 1 (j = Lu + 1,...,Lu + 4) and vk = 1 (k = Lv + 1,...,Lv +
4).
The free part of the membrane patch S is bounded inside a

cylindrical region of radius rm, as shown in Figure 1. Since the
system energy at entry angles θ and π−θ should be the same, it
suffices to consider θ ∈ [0,π/2]. The inner boundary of S at u =
0 is constrained on the nanotube wall and described by x2 + y0

2

= a2 with y0 = y sin θ + z cos θ, and a smooth contact between
the nanotube and membrane requires n × n0 = 0, where n is
the normal vector to S and n0 = (x/a,y0 sin θ/a,y0 cos θ/a) is

the normal vector to the nanotube wall. The outer boundary of
the patch is at u = 1 and satisfies x2 + (y + yc)

2 = rm
2 with yc =

[Ac/(2πa) − a]cos θ to keep the inner boundary located
around the center of S. The membrane is assumed to be
asymptotically flat with n·n1 = 0, where n1 = [x/rm,(y + yc)/
rm,0] is the normal vector to the wall of the bounding
cylinder.16 The mirror symmetry of the configuration with
respect to the y−z plane at v = 0,1 requires x(u,0) = x(u,1) = 0,
which leads to cm,0

x = cm,Lv
x = 0, cLu,0

y = −(rm + yc), and cLu,Lv
y = rm −

yc; the condition that rv stays parallel with ex, the base vector in
the x-direction, leads to cm,0

y,z = cm,1
y,z and cm,Lv−1

y,z = cm,Lv
y,z (m =

0,···,Lu). The combination of conditions n·n1 = 0 at u = 1 and
rv||ex at v = 0,1 requires cLu − 1,0

z = cLu,0
z and cLu − 1,Lv

z = cLu,Lv
z . To

keep the height of the membrane at the outer boundary on the
same level, we take z(1,0) = z(1,1) which gives cLu,0

z = cLu,Lv
z . To

avoid penetration between the membrane and nanotube, we
require x2 + y0

2 ≥ a2 for u > 0.
At a given value of the normalized membrane tension σ̅, the

minimum energy configuration of the nanotube-membrane
system is determined using a Monte Carlo simulated annealing
approach. Random adjustments to the values of control points
cm,n are attempted in the Monte Carlo scheme to change the
membrane shape. The patch is divided into several regions in
which mesh elements have a similar size. The geometrical
boundary conditions at u = 0,1 are enforced by the least-squares
method, and the membrane curvature is kept within a range. To
minimize Etot, the system temperature is gradually reduced to a
value close to zero after initial equilibration. Adjustments to cm,n
are accepted according to the Metropolis algorithm. The
adjustment amplitudes are controlled to make sure that about
50% adjustments are accepted on the inner and outer
boundaries and in different patch regions. All simulations are
performed for about 7 × 106 Monte Carlo moves for each cm,n
with rm = 20a, Lu = 39, and Lv = 38. Larger membrane patch
and denser mesh give similar results.
While it is well-known that punching a clamped solid

membrane would result in wrinkling near the contact edge as a
mechanism of releasing energy by relieving the azimuthal
compression through bending, there is no wrinkling in the two-
dimensional fluid membrane and the energetically favorable
configuration is governed by the bending and membrane
tension energies (Figure 2c). As θ decreases from 90°, the
contact edge buckles from a planar circle to a spoon-like loop
(Figure 2c). This edge evolution results from a reduction in
membrane tension energy, as the excess membrane area is
relieved through out-of-plane displacement.

Figure 3. Variations of normalized total elastic, bending and tension energies of the membrane-nanotube system as functions of the entry angle θ for
membrane with tension (a) σ̅ = 1, (b) σ̅ = 3, and (c) vanishing bending stiffness κ = 0. (d) Total elastic energy change ΔE = Eel(15°) − Eel(90°) as a
function of σ̅. The solid squares in (d) are results from Monte Carlo simulations which are well approximated by eq 3.
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At a fixed contact area Ac, the total elastic energy Eel ≡ Etot +
γAc in eq 1 can be decomposed into a bending energy Eb and a
tension part σΔA = σ̅ΔAκ/(2a2). Figure 3a−c plots the
variations of the total elastic energy change ΔE = Eel(θ) −
Eel(90°) and the associated bending and tension energies as
functions of the entry angle θ. It can be seen that the
membrane bending energy tends to rotate the nanotube to the
perpendicular entry angle while the membrane tension energy
prefers interaction at vanishingly small entry angle (i.e., the
near-parallel interaction). These behaviors are perfectly
consistent with the two limiting solutions discussed earlier in
the paper. The larger the membrane tension, the more likely
the nanotube would stay parallel to the membrane surface. As
shown in Figure 3d, an empirical relation has been found
between the energy difference ΔE = Eel(15°) − Eel(90°) and σ̅
as

σ σ
κ

θ
π θ κ̅ = ̅ + − Δ −

−
Δ⎜ ⎟⎛

⎝
⎞
⎠c c

E E
ln 1

2 sin
(1 sin )c 2 1

(3)

where c1 = 5c2 = 2π2/15 at θ = 15° and σ̅c = 2π/5 ≈ 1.257 is the
critical point of transition between the two interaction modes.
The last linear term in eq 3 ensures ΔE = σπa2(1−1/sin θ) in
the limit of σ̅→∞ as discussed in theorem 2. In the case of σ̅ =
σ̅c and ΔE = 0, the bending and tension energies play equal role
in the regulation of nanotube rotation, and the nanotube is
expected to oscillate due to thermal fluctuation.
Below the critical value σ̅c, the bending energy dominates

over the tension energy, and the nanotube is driven to a high
entry angle (the near-perpendicular entry mode); see Figures
2a and 3a. The tension energy becomes dominant at large σ̅,
leading to a low entry angle; see Figures 2c and 3b. A
comparison of Figure 3b,c indicates that the tension energy
variation is essentially similar to its limit behavior −1/sin θ
once σ̅ rises above its critical transition value. The competition
between bending and tension energies thus leads to two
different interaction modes, as found in various experiments.1−4

The profile of the total elastic energy indicates that the
configurational torque dEel/dθ decreases as θ increases, and its
flatness around θ = 90° suggests that the nanotube would
spend much time in thermal oscillation around 90° during near-
perpendicular entry. In this sense, the entry angle at low σ̅ may
not be strictly equal to 90° in experiments. This prediction is
consistent with recent experimental observation that carbon
nanotubes, as well as gold nanowires and asbestos nanofibers,
largely adopt a near-perpendicular mode of entry into murine
liver cells and human mesothelial cells.1 Similar tip entry
phenomena have also been observed in successful phagocytosis
of high aspect ratio filamentous Escherichia coli bacteria.3

Our analysis indicates that the cellular uptake of a 1D
nanomaterial can exhibit different rotation behaviors at different
normalized membrane tension σ̅. For σ̅ < σ̅c, the 1D
nanomaterial would rotate to a high entry angle during uptake,
and the deformed membrane forms a surface of revolution
whose axis is the z-axis outside the contact region. For σ̅ > σ̅c,
the 1D nanomaterial would rotate to a shallow entry angle and
eventually adhere to the membrane surface in a near-parallel
configuration as the tip and the wall of the nanomaterial
become partially exposezd and partially wrapped by the weakly
deformed membrane. This σ̅-dependent uptake behavior
should be ubiquitous in the interactions between 1D
nanomaterials and lipid membranes. For example, recent
experiments and simulations have demonstrated nanoparticles

adhering to a vesicle can spontaneously form particle-chains
encapsulated inside lipid tubes or linear aggregates of particles
adhering on the membrane surface.4,17−20 In one experiment,
transient tubular structures grow vertically on the membrane
surface from adsorbed nanoparticles within substrate-supported
flat giant unilamellar vesicles in an ambient solution of low Ca2+

concentrations (1−4 mM).4 These vertically grown tubular
structures are in a tensionless state as indicated by thermal
fluctuations of the membrane. As the vesicles spread on a
substrate, their membrane tension increases and causes the lipid
tubes to retract and the nanoparticles to align at the peripheral
of the vesicle. At high concentrations of Ca2+ (4−10 mM), no
membrane tubes form due to the adhesion-induced high
membrane tension.4 Also, bacterial toxins (e.g., Shiga and
cholera), when binding to glycolipid receptors on a cell, induce
tubule formation at low membrane tension but fail to do so at
high membrane tension.17 Numerical simulations have shown
that two adsorbed nanoparticles induce a membrane tube on a
vesicle at a small reduced volume but form a linear cluster on
the membrane surface of a vesicle at a large reduced volume.20

This is consistent with our analysis in view of the fact that the
conjugated membrane tension is greater at a larger reduced
volume. On the basis of similar geometries and induced
wrapping configurations, the particle-chain induced membrane
tubulation and linear aggregation of nanoparticles adhering on
the surface can be considered as examples analogous to the
near-perpendicular tip entry at small membrane tensions and
surface adhering of 1D nanomaterials at large membrane
tensions, respectively.
Another interesting phenomenon that can be understood

from the theory of membrane tension-governed nanotube
rotation is that the filopodia of distinct types of cells only
display a certain range of radius (a = 40−150 nm).21,22 As
finger-like structures composed of bundled actin filaments
without an explicit end, the (growing) filopodia serve as an
ideal biological example of 1D nanomaterials. To move
efficiently toward a target, the filopodia involved in cell
migration typically grow perpendicular to the leading edge of
the cell membrane that requires σ̅ < σ̅c as suggested by our
analysis. Considering a typical filopodial of radius (a = 40−150
nm) and membrane bending stiffness κ = 20kBT, the critical
value σ̅c ≈ 1.257 predicted by eq 3 corresponds to membrane
tension of σ = 0.002−0.033 mN/m, which is consistent with
the reported range (0.003−0.04 mN/m) for the membrane
tension of neurons,23,24 a type of migrating cells displaying
filopodia. This explanation also implies that the coalescence of
neighboring filopodia cannot proceed constantly once the
filopodial radius is above some critical size governed by the
membrane tension. Microtubules in a vesicle also exhibit a
similar tension-induced rotation behavior. At low membrane
tension, a linear bundle of microtubules in a vesicle pushes the
membrane vertically and deforms it into a tether; while at large
membrane tension, the microtubules buckle into an equatorial
ring attaching parallel to the membrane.25,26

In the scaling dependence of the normalized membrane
tension parameter σ̅ ≡ 2σa2/κ on tube radius a, the σ̅-
dependent uptake behavior also implies a size-dependence that
nanotubes with small (large) radii could rotate to config-
urations with high (low) entry angles. For example, while
individual nanotubes could enter cells with a near-perpendicular
mode, a bundle of nanotubes may lay parallel adhering to the
membrane surface (e.g., Supplementary Figure S3a in ref 1).
Because reported values of membrane tension vary in a wide
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range from 0.003 to 1 mN/m,27 this size-dependent rotation
behavior may provide a new and valuable complementary
approach to estimate membrane tension by observing rotation
behaviors of 1D nanomaterials with different radii. This is
particularly interesting as nanophotonic tweezers based on
near-field technology allow manipulating the orientation of 1D
nanomaterials.28

Finally, to demonstrate the role of membrane tension on the
uptake pathway of 1D nanomaterials, we have also performed
coarse grained molecular dynamics (CGMD) simulations by
considering a multiwalled carbon nanotube binding to diffusible
receptors (green) embedded in an initially flat, square patch of
bilayer membrane (blue) at different membrane tensions (see
Figure 4). CGMD as one of the most popular computer
simulation techniques has been demonstrated to be effective
and efficient in studying biomembrane1,29−39 and other
biological systems.40,41 Because the time scale associated with
the equilibration of deformed lipid membranes is much smaller
than the typical time for dynamic cellular uptake mediated by
receptor diffusion, we focus on the shorter time scale and
assume in the preceding theoretical analysis that the area of the
contact region remains constant as the 1D nanomaterial adjust
its entry angle to reduce the elastic energy of the membrane.
That particular assumption is relaxed in the following CGMD
simulations whose results further support its validity. The
simulation setup here is similar to that used in our earlier
study,1 where each lipid and receptor molecule is modeled as
three connected beads with one hydrophilic head-bead and two
hydrophobic tail-beads. The bead diameter, db, is set to 1 nm to
construct a bilayer with an appropriate thickness. The CGMD
simulations are first performed at constant temperature (kBT =
1.1ε) and pressure with a dissipative particle dynamics (DPD)
thermostat. A damping parameter Γ = 1.0ετ/db

2 with τ = 15 ns
and a cutoff distance dcut = 3.0db are used in the thermostat. In
Figure 4a, the projected area of the membrane shrinks from 100
× 100 nm2 at t = 0 to 92 × 92 nm2 at t = 60 μs as the
membrane wraps around the nanotube. The lateral dimension
of the bilayer is then fixed and the simulation system is adjusted
to be at constant temperature and volume conditions. For a
membrane with a fixed lateral dimension, the membrane
tension can be effectively controlled by randomly deleting a
certain amount of lipid molecules. Such a procedure, often
referred to as the N-varied DPD method, has been widely used
to investigate the interaction between nanoparticles and cell
membrane.33−37 In Figure 4a, no lipids has been deleted, which
yields a membrane tension of σ = 0.0378ε/db

2 = 0.03436kBT/

nm2 or σ̅ ≡ 2σa2/κ = 0.3436 with κ = 20kBT, and the system
equilibrates at about t = 180 μs with an entry angle around 90°.
In contrast, in Figure 4b we simulate a larger membrane tension
by adopting a similar procedure as that in Figure 4a, except that
13% lipid molecules are deleted from the membrane at t = 60
μs . In this case, the membrane tension is σ = 0.814ε/db

2 (or σ̅ =
7.4 with κ = 20kBT) and the nanotube rotates to a lower entry
angle. These simulations clearly demonstrate the essential
physics revealed by our theoretical analysis that the nanotube
would prefer a low entry angle at a large tension and near-
perpendicular entry at a small σ̅.
A related but different phenomenon is the orientational

changes of a short nanorod wrapped around by a membrane
that would occur in the middle stage of the wrapping process
no matter how large or small the membrane tension is. Recent
studies showed that short rigid adhesive nanorods including
ellipsoidal nanoparticles with small aspect ratios orient their
longer axes parallel to the membrane first and remain in that
configuration until about a half of the particle surface area is
wrapped, and then undergo a configurational transition by
realigning their longer axes perpendicular to the membrane
during further wrapped.38,39,42,43 After the transition moment, a
short nanorod remaining parallel to the membrane with both
highly curved ends covered by the membrane would cost more
membrane bending energy than that the perpendicular
configuration in which only one end needs to be covered by
the membrane. Here, the membrane bending energy difference
results in nanoparticle reorientation. This reorientation of short
rigid nanorods caused by membrane wrapping has also been
observed in cellular uptake of very soft nanoparticles in which
the soft particle adheres on the membrane with its flattened
surface at early stage of wrapping but then changes its
configuration to one with longer axis perpendicular to the
membrane during the late stage of wrapping.44 Compared with
our present analysis on tension-controlled two modes of
interaction between 1D nanomaterials and lipid membranes,
the mode of interaction between short nanorods and lipid
membranes consists of two stages distinguished by a particle
reorientation regardless of the value of membrane tension.
The cellular uptake of nanomaterials can usually be

considered as a process limited by diffusion of receptors in
the cell membrane toward the contact region.1,11 For the
uptake of cylindrical nanoparticles staying parallel to the
membrane, the wrapping process is controlled by the one-
dimensional diffusion of receptors and the wrapped area should
scale as ∼α1dL(Dt)1/2 where D is the diffusivity of receptors in

Figure 4. Time sequences of CGMD simulations showing a nanotube entering a membrane patch (blue) with an initial entry angle of 45° and
diffusible receptors (green) under different membrane tensions. The receptor-to-lipid ratio is 1/3. The nanotube with radius of a = 10 nm and length
of 46 nm is seen to rotate to (a) 90° entry at a small membrane tension of σ = 0.03436kBT/nm

2, corresponding to σ̅ ≡ 2σa2/κ = 0.3436, and (b) a
near-parallel orientation at the relatively large membrane tension σ = 0.74kBT/nm

2, corresponding to σ̅ = 7.4.
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the membrane, t is the wrapping time, L is the length of the
cylindrical particle, and α1d is a dimensionless constant,
commonly referred to as the speed factor, which depends on
the initial receptor density ξ0 before contact with nanoparticles,
the receptor−ligand bond density ξL in the contact region, the
binding energy of a receptor−ligand bond eRLkBT, and the
elastic energy of the membrane.11 In contrast, the wrapping
process of sphere-like nanoparticles involves two-dimensional
diffusion of receptors and the wrapped area should scale as ∼
α2d
2 Dt, where α2d is the corresponding speed factor. Taking

typical parameter values as eRL = 15, ξL = 5 × 103 μm −2, r = 20
nm, κ = 20kBT and ξ0/ξL = 0.1, we estimate α1d ≈ 0.0603 and
α2d ≈ 0.185 from our previous study,11 meaning that membrane
wrapping regulated by two-dimensional diffusion of receptors is
much faster than that regulated by one-dimensional receptor
diffusion. For 1D nanomaterials, membrane wrapping of their
curved tip should be governed by two-dimensional diffusion of
receptors, while wrapping of their cylindrical wall is regulated
by one-dimensional diffusion of receptors. This means that the
tip, rather than the lateral wall, of a 1D nanomaterial should be
wrapped first, and the subsequent interaction is governed by
the two interaction modes controlled by the normalized
membrane tension σ̅ ≡ 2σa2/κ, as shown in our present
study. For short nanorods with two curved tips and a much
smaller lateral wall, the difference between receptor diffusion
between the tip and wall regions may not be evident. Therefore,
the initial wrapping of short nanorods would be mainly
governed by the elastic energy of the deformed membrane.
Such nanorods would align with their long axes parallel to the
membrane first and reorient perpendicular to the membrane
during the late stage of wrapping regardless of the value of
membrane tension. As the length of the nanorod increases, the
receptor diffusion in the early stage of wrapping and membrane
tension become more important and begin to dominate the
wrapping process beyond a critical length. A detailed study on
such length effect of rod-shaped nanoparticles on cellular
uptake is out of the scope of the current study and deserves
further investigations.
Some exceptional cases that are somewhat related to the

present study are worth mentioning. First, in a theoretical
limiting but physiologically irrelevant case in which the cell
membrane is fully covered with receptors, the interaction
between the membrane and adhesive nanomaterials becomes
nonspecific and a 1D nanomaterial would adhere parallel to the
membrane, as demonstrated in our previous study (see Figure
3c in ref 1). Second, we have focused on clathrin-free
endocytosis where the membrane deformation serves as the
dominant resistance to nanoparticle entry. In clathrin-mediated
endocytosis, the cell membrane and the underlying cortical
actin cytoskeleton form a composite physical barrier to the
entry of nanomaterials, which would involve both membrane
deformation and remodeling of actin cytoskeleton.45−48 Recent
theoretical study indicates that the relative contribution of
membrane deformation and cytoskeleton remodeling to the
entry resistance depends nonlinearly on the size of nanoma-
terials, the elastic and viscous properties of actin cytoskeleton,
and the stage of endocytosis.48 A thorough understanding of
these effects in cellular uptake would call for more sophisticated
models.
In summary, we have performed both theoretical analysis and

molecular dynamics simulations to study the cellular uptake of
one-dimensional nanomaterials such as nanotubes, nanowires,
nanofibers, and certain nanoparticle-chains. First, we have

established exact solutions to the problem in the limiting cases
of vanishing bending stiffness or vanishing membrane tension,
revealing two fundamental modes of interaction between one-
dimensional nanomaterials and lipid membranes: a perpendic-
ular entry mode and a parallel adhering mode. On the basis of
the limiting solutions, we postulated that there exists a
transition between these two modes as the normalized
membrane tension parameter σ̅ ≡ 2σa2/κ increases. This
hypothesis is then confirmed through a numerical analysis
based on a Monte Carlo method. In the numerical analysis, we
have calculated the variations of the system energy as a
nanotube is wrapped into a patch of membrane at a prescribed
entry angle. We conclude that perpendicular tip entry and
parallel surface adhering are two basic modes of cell interaction
with one-dimensional nanomaterials, controlled by a single
dimensionless parameter, the normalized membrane tension σ̅
≡ 2σa2/κ that depends on the nanomaterial radius a,
membrane tension σ, and bending stiffness κ of the membrane.
This σ̅-dependent uptake behavior is ubiquitous in the interplay
between cell membranes and one-dimensional nanomaterials.
The B-spline based simulation method for evolving lipid
membrane surfaces used in the present analysis can be extended
to membrane wrapping around nanomaterials of more complex
geometries, such as ellipsoidal nanoparticles and cylinders with
elliptic cross sections. Our results can also serve as a foundation
for future studies taking into account membrane fluctua-
tion,49,50 receptor diffusion,11,51 receptor−ligand binding,52

deformation of cytoskeleton,48 elasticity of nanomaterials,44

and simultaneous interaction with multiple nanopar-
ticles.16,18−20,31,53,54
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(18) Šaric,́ A.; Cacciuto, A. Phys. Rev. Lett. 2012, 108, 118101.
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