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Theoretical analysis on the ignition of a
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Mechanical spark is an important ignition source in various industrial processes involving
combustible mixtures and it may cause serious safety issues. In this work, we analysed the
ignition induced by hot particles in a combustible mixture. In Semenov’s transient ignition
criterion, we introduced a hypothetical heat loss coefficient accounting for the temperature
inhomogeneity and obtained a revised ignition criterion which allows us to calculate
the ignition delay time. Explicit expressions for the critical ignition temperature were
derived and used to demonstrate the primary impacts of temperature inhomogeneity on
the ignition process. Consistent with experimental and numerical results, the temperature
inhomogeneity is intensified by either reducing the particle size or convective heat transfer
at the particle surface, resulting in an increase of the critical ignition temperature. For
flow separation on the particle surface, the boundary layer problem was solved based
on a Blasius series. A temperature gradient for ignition was defined at the location
of flow separation to reproduce the experimentally observed phenomenon that ignition
prefers to occur first near the flow separation position. It is shown that the unsteadiness
of particle cooling makes negligible contribution to the ignition process because of the
exceedingly large density ratio between the particle and the ambient gas. In addition, the
finite residence time of ignition for a fluid parcel due to its elevation from the particle
surface leads to additional growth in the critical ignition temperature. However, such a
correction appears to be inconsequential because the ignition of the fluid parcel restricted
to the Frank–Kamenetskii region is close to the particle surface.

Key words: combustion

1. Introduction

In various industrial processes such as manufacturing and aviation, it is inevitable that
small, hot particles are produced. Such hot particles are also known as mechanical
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sparks since they usually glow because of the exceedingly high temperature (Hawksworth
et al. 2005; Beyer & Markus 2012). The nature of the high temperature makes the
mechanical spark an efficient ignition source. When a mechanical spark enters a flammable
environment, the possibility of unwanted explosion due to ignition on the particle surface
is substantially promoted (Eckhoff & Thomassen 1994; Hawksworth et al. 2005; Proust
et al. 2007). Such accidental ignition and explosion can lead to tremendous damage and
hazards. Besides, hot particle induced ignition is one of the important pathways to wildland
and urban spot fires (Wang et al. 2016; Urban 2017; Urban et al. 2017). Therefore, an
in-depth understanding of the underlying physics behind hot particle induced ignition is of
crucial importance for industrial and fire safety.

The ignition of a combustible mixture by a mechanical spark takes place close to the
hot surface (Law 2010). Such an ignition process is essentially inhomogeneous since
there is large temperature gradient around the hot particle. Stamatov, King & Zhang
(2005) conducted experiments on the ignition of quiescent CH4/air mixtures caused by a
laser-heated particle. They showed that the ignition delay time depends on the equivalence
ratio and has a minimum value for a stoichiometric mixture. Beyer & Markus (2012)
investigated the ignition capability of inert particles in a static explosive mixture. Their
experiments and simulations showed that reducing the particle size promotes the critical
ignition temperature. Roth et al. (2014) considered the thermal ignition of a quiescent
H2/air mixture by a small hot particle whose diameter was in the range from 0.3 to 0.8
mm. Their experiments showed that the critical ignition temperature strongly depends on
the material of the hot particle. However, such a phenomenon can hardly be reproduced in
numerical simulation. It was hypothesized that the surface reaction, i.e. quenching and
catalysis, might contribute to the large difference in the critical ignition temperatures
corresponding to different materials. Roth, Häber & Bockhorn (2017) examined the
ignition process of different fuel/air mixtures by a silicon nitride particle. They found
that the critical ignition temperature varies widely among different fuels and increases
consistently as the equivalence ratio approaches the ignition limit. Wang & Chen (2020)
conducted transient one-dimensional simulations on the ignition of CH4/air and H2/air
mixtures by an inert hot particle, and found that the ignition delay time strongly depends
on the particle size. Besides, Wang et al. (2021) found that the low-temperature chemistry
plays an important role in hot particle induced ignition.

In general, the creation of mechanical sparks by means of mechanical action at the
solid surface is associated with a non-vanishing momentum of the hot particle. Therefore,
in most situations, the hot particle moves relative to the explosive mixture, leading to
convective heat transfer around the particle surface in addition to pure heat conduction
under quiescent conditions. Coronel et al. (2016, 2018) used a novel experimental
set-up in observing the ignition of n-hexane/air mixture by a moving hot particle.
Implementing a shear interferometer, they visualized the ignition kernel formation and
the subsequent flame propagation. Melguizo-Gavilanes et al. (2016, 2017a,b) conducted
a series of two-dimensional simulations on ignition induced by a hot particle falling
into a combustible mixture. They observed that the boundary layer development and
flow separation have crucial impacts on the ignition process, which is consistent with
the experimental results of Mével et al. (2016, 2019). Usually, ignition occurs between
the front stagnation point and the location of flow separation, and the ignition position
moves downstream as the particle temperature decreases. In particular, ignition first takes
place adjacent to the separation point when the particle temperature is close to the
threshold value. Zirwes et al. (2019) revisited the ignition of a combustible mixture by
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a moving hot particle based on both two-dimensional (2-D) and 3-D simulations. An
in-depth understanding was obtained concerning the dependence of the critical ignition
temperature on the relative velocity, ranging from creeping flow to flow with unsteady
vortex shedding. They showed that a 2-D simulation assuming axisymmetric flow agrees
well with a 3-D simulation in predicting the critical ignition temperature for relatively
small velocities. However, the deviation becomes noticeable at higher flow velocities due
to the 3-D unsteady vortices appearing behind the hot particle.

Ignition of a combustible mixture by a hot particle can be considered as the particular
situation of ignition by a hot surface (Law 2010). Concerning thermal ignition of
methane/air mixtures by a hot surface, Laurendeau (1982) developed a simple scaling
correlation among particle temperature, size, pressure and flow velocity, using van’t Hoff’s
ignition criterion. However, the temperature inhomogeneity was not fully considered in
his work. The temperature inhomogeneity is represented by its gradient adjacent to the
particle surface, whose magnitude is dominated by the local curvature. Law (1978a,b,
1979) conducted a large activation energy asymptotic analysis for hot particle induced
ignition in a quiescent reactive mixture and obtained the ignition criterion in terms of
a reduced Damköhler number, which interpreted the thermal energy balance between
heat release from chemical reaction and heat loss due to conduction in steady state.
Su & Sirignano (1981) revisited the same problem and in their asymptotic analysis, the
second-order correction terms were retained for both temperature and mass fraction of
the reactive species. Compared with a transient calculation (Su, Homan & Sirignano
1979), the second-order solution provided an improved ignition criterion. Based on the
consideration that the ignition process was minimally affected by the geometry of the body,
Law (1979) analysed the transient ignition of a combustible exposed to hot isothermal
bodies. The flow field adjacent to the surface was shown to be diffusive–reactive in nature
and satisfied local similarity, which enables the derivation of an explicit expression for the
ignition delay time, denoted by τig. However, at moderate to large Reynolds numbers, the
flow separates at the rear hemisphere of the particle, and moreover the flow field before
separation does not satisfy self-similarity. Consequently, the explicit analytical description
of the velocity profile becomes unavailable (Johnson & Patel 1999; Schlichting & Gersten
2016). This imposes further difficulty in analytically solving temperature inhomogeneity
at the particle surface due to convection (Riley 1986; Paterson & Hayhurst 2000).

Ignition is essentially a transient process involving multiple time scales. Ignition is
characterized by the appearance of sustained combustion, where the rate of heat release
due to chemical reaction is balanced by the rate of heat loss. For ignition by a hot particle
with constant temperature in a quiescent mixture, the heat loss can be solely attributed
to the temperature inhomogeneity at the particle surface. The critical ignition condition
defines the largest rate of heat loss that can support combustion in the limit situation
of steady state, i.e. τig → ∞, and accordingly, the critical ignition temperature can be
derived.

The relative motion between the hot particle and the combustible mixture introduces
additional transient effects during the ignition process. On the one hand, the enhanced
heat transfer resulting from both conduction and convection on the particle surface may
shorten the cooling time (denoted by τpc) of the hot particle (Leal 2007). On the other hand,
ignition takes place at some distance from the hot surface, implying that the fluid parcel
where ignition first occurs has a finite residence time (denoted by τres) adjacent to the hot
particle (Melguizo-Gavilanes et al. 2016, 2017a; Mével et al. 2016). The time scales τpc and
τres introduce transient effects to the ignition process. Under such situations, the critical
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ignition condition is revised to the equality of the ignition delay time and the characteristic
time of the corresponding unsteady process, e.g. τig = τpc or τig = τres. In comparison
with steady state situations, we hypothesize that the finiteness of τpc and τres may increase
the critical ignition temperature. Coronel (2016) proposed a simplified ignition model in
which the relevant time scales were discussed in the scaling sense. However, quantitative
comparison among these time scales was not conducted.

Based on the above-mentioned considerations, this work aims to develop a theoretical
model for the ignition of a combustible mixture by a hot spherical particle. The present
model can quantitatively interpret the role of temperature inhomogeneity and various
transient effects on ignition behaviour and provide the dependence of the critical ignition
temperature on relevant parameters in explicit form, which is so far not in place. The
remaining parts of this paper proceed as follows. In § 2, Semenov’s transient ignition
criterion is revised by introducing a hypothetical volumetric heat loss to account for the
temperature inhomogeneity, and accordingly, the ignition delay time can be evaluated
analytically. In § 3, an in-depth discussion is presented on the effect of temperature
inhomogeneity, resulting from both conductive and convective heat transfer, on the hot
particle induced ignition process. An explicit formula for the critical ignition temperature,
interpreting its dependence upon various affecting parameters, is derived. In § 4, the
transient effect due to particle cooling is discussed. The particle cooling time is determined
by solving the thermal energy equation of the solid particle and is compared with the τig
obtained in § 2. In § 5, the transient effect due to the motion of the ignition fluid parcel
is taken into account, and its contribution to the change of critical ignition temperature is
assessed. The general conclusions are given in § 6.

2. The inhomogeneous ignition criterion

Discharging a hot particle into a combustible mixture can lead to ignition. According to
thermal ignition theory, ignition is most likely to take place first on the particle surface,
where the temperature is highest. In addition to thermal runaway, ignition is also controlled
by complicated chemical reaction pathways. The active radicals, e.g. H and OH, can be
destroyed due to collision with the particle surface (Glassman, Yetter & Glumac 2014).
Therefore, the fluid parcel, where ignition occurs first, should be slightly elevated from
the solid surface such that its temperature is almost identical to that of the particle and
meanwhile the accumulation of radicals exceeds termination. This fact was found in
previous simulations by Melguizo-Gavilanes et al. (2017b).

The hot particle continuously transfers thermal energy into the relatively cool ambient
gas, leading to large temperature gradient in the vicinity of the particle surface. Pertaining
to such inhomogeneous ignition process, Law (1978a) analysed the hot particle induced
ignition in the absence of relative motion between the particle and the environmental gas,
and the temperature of the particle was assumed constant. The diffusive–reactive nature
of the ignition process was analysed via large activation energy asymptotics. Adopting a
simplified one-order Arrhenius-type model, the chemical reaction rate is

ω = BcF0 exp(−Ta/Ts), (2.1)

where B represents the reaction frequency factor, Ta the activation temperature, Ts the
particle temperature and cF0 the fuel concentration in the mixture. The balance of heat
release from chemical reaction and the heat loss due to temperature inhomogeneity gives
the critical ignition condition, which is indicated by the following reduced Damköhler
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number (Law 2010)

ΔI = 2R2
0Bρgcpg(Tad − T∞) exp(−Ta/Ts)

λgTa(1 − T∞/Ts)
2(dθ/dr̃)2

r̃=1

≥ 1, (2.2)

where λg, ρg and cpg are respectively the thermal conductivity, density and the heat
capacity of the combustible gaseous mixture, R0 is the radius of the spherical particle,
Tad is the adiabatic flame temperature, T∞ is the temperature of combustible mixture
and θ = (T − T∞)/(Ts − T∞) is the normalized temperature. The normalized radial
coordinate is defined by r̃ = r/R0. The term (dθ/dr̃)r̃=1 denotes the non-dimensional
temperature gradient on the particle surface, and it depends on the geometry of the particle.
For a spherical particle in a quiescent frozen mixture, we have (dθ/dr̃)r̃=1 = −1, which
will be shown in § 3.1.

The modified Damköhler number, given by (2.2), is a general formula that interprets
the ignition of a quiescent combustible mixture close to the hot surface of a spherical
particle of constant and uniform temperature. To derive (2.2) from first principles, the
non-dimensional temperature is defined as T̃ = cpT/qc, where qc is the heat release from a
unit mass of reactant mixture. According to the energy conservation law and the definition
of the adiabatic flame temperature Tad, we have cp(Tad − T∞) = qc, which is substituted
into the non-dimensional temperature and results in the appearance of Tad in the modified
Damköhler number.

The condition of ΔI = 1 gives the critical ignition temperature of the particle, Tcr, below
which ignition fails since the heat generation from chemical reaction cannot compete with
the heat loss to the ambient gas.

Fixing the frame of reference at the centre of the spherical particle, the relative motion
between particle and combustible mixture can be equivalently regarded as the uniform
flow of the environmental gas. Such relative motion between the combustible mixture
and the hot particle modifies the ignition behaviour in three aspects. First, the convection
accelerates heat transfer from the hot particle to the surrounding mixture and thus
intensifies the temperature inhomogeneity at the particle surface. Second, the enhanced
heat transfer facilitates the cooling of the hot particle, which leads to a decrease of the
particle temperature. Last but not least, the fluid parcel where ignition occurs has finite
residence time close to the hot particle, after which the fluid parcel cools down as it moves
downstream. The steady state ignition criterion (Law 1978a,b, 2010) considers rigorously
the non-homogeneous temperature profile in a quiescent environment and can predict the
ignitability of the reactant gas subject to a hot particle with constant temperature. However,
it meets exceeding difficulty in describing the temperature inhomogeneity caused by
convective heat transfer because the velocity profiles adjacent to the particle surface may
not be obtained in a mathematically explicit form. Consequently, the energy equation for
the combustible mixture cannot be converted into the conventional conductive–reactive
type, and the derivation route leading to (2.2) becomes inaccessible. Besides, the steady
ignition theory is unable to evaluate the ignition delay time. To account for the unsteady
effect, an additional term involving temporal evolution of the temperature should be
included in the energy equation, which escalates the mathematical complexity in obtaining
an analytical solution.

From the perspective of a Lagrangian description of the flow, we may trace the history
of the ignition fluid parcel (abbreviated as IFP hereinafter) which ignites first. Since the
size of the IFP can be arbitrarily small, we may assume that it has uniform temperature.
In addition, appropriate heat loss must be associated with the IFP to account for the

936 A22-5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ek
in

g 
U

ni
ve

rs
ity

, o
n 

12
 F

eb
 2

02
2 

at
 1

3:
56

:3
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

2.
63

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.63


D. Yu and Z. Chen

inhomogeneity of the temperature profile close to the particle surface. Therefore, we may
equivalently regard ignition as a local, non-adiabatic thermal explosion within the IFP. It
is recognized that the consumption of reactant species appears to be negligible prior to
ignition (Law 1978a, 2010). Consequently, the ignition process is solely characterized by
the following energy equation for the IFP:

ρgcvg
dTI

dt
= qcBcF0 exp(−Ta/TI) − h(TI − T∞), (2.3)

where TI represents the temperature of the IFP, cv the heat capacity at constant volume,
qc the heat release per unit mass of the reactant and h the effective volumetric heat loss
coefficient to be determined. Conventionally, the non-dimensional temperature is defined
by

T̃ = ρgcvgT/qccF0, (2.4)

where cvg is the heat capacity at constant volume and qc the heat release per unit mass
of reactant. According to energy conservation, we may correlate qc with Tad via qccF0 =
ρgcvg(Tad − T∞), and consequently, we may alternatively write T̃ = T/(Tad − T∞). The
characteristic time for chemical reaction can be defined in terms of the non-dimensional
temperature of the particle,

τch = T̃2
s exp(T̃a/T̃s)

T̃aB
. (2.5)

The heat loss coefficient h can also be written in non-dimensional form,

h̃ = hτch

ρgcvg
= hT̃2

s exp(T̃a/T̃s)

ρgcvgT̃aB
. (2.6)

In terms of T̃ and h̃, we can write (2.3) in dimensionless form

dT̃I

dt̃
= T̃2

s

T̃a
exp

[
−T̃a

(
1

T̃I
− 1

T̃s

)]
− h̃(T̃I − T̃∞). (2.7)

Since the IFP is close to the particle surface, we have TI ≈ Ts. Assuming that T̃a � T̃I ,
we can write an asymptotic series for the latter, i.e.

T̃I = T̃s + εχ, (2.8)

where ε = T̃2
s /T̃a � 1 is a small parameter, and χ is the first-order perturbation to the

non-dimensional temperature of the IFP. Substituting (2.8) into (2.7) and collecting terms
of like powers of ε, we obtain:

The leading-order equation for T̃s

dT̃s

dt̃
= −h̃(T̃s − T̃∞). (2.9)

The first-order equation for χ

dχ

dt̃
= eχ − h̃χ. (2.10)

The leading-order (2.9) demonstrates that the temperature of the IFP continues to decay
due to volumetric heat loss characterized by h̃. However, the magnitude of the first-order
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correction to the temperature χ , according to (2.10), is also affected by heat release from
chemical reaction. For a sufficiently large heat loss coefficient h̃, (2.10) suggests that χ

approaches a finite value in the limit of t̃ → ∞. In association with the decay of T̃s
according to (2.9), ignition is prohibited. To achieve successful ignition, the heat loss
rate must be bounded from above, which is characterized by the explosive increase of
χ in the course of time (Law 2010). The condition that ensures successful ignition can be
determined according to the Semenov ignition criterion as

h̃ ≤ e. (2.11)

The equality, h̃ = e, holds for the critical ignition condition, which should be equivalent
to ΔI = 1 derived by rigorously considering temperature inhomogeneity in the steady state
theory. The critical ignition condition defines the reference state, at which the ignition
could occur after a sufficiently long time, or the heat release by chemical reaction is
balanced by heat transfer to the surroundings during the whole ignition process. Physical
plausibility suggests that the heat loss effect could be varied independently from the
chemical reaction rate. We solve for the reaction frequency factor B from the condition
ΔI = 1 in terms of (dθ/dr̃)r̃=1 using (2.2) and substitute the results into the equivalent
ignition condition h̃ = e, in which h̃ is given by (2.6). Consequently we can obtain

h = eλgT2
a (1 − T∞/Ts)

2

2γ R2
0T2

s

(
dθ

dr̃

)2

r̃=1
, (2.12)

where γ = cpg/cvg is the heat capacity ratio. With knowledge of h given by (2.12), the
non-dimensional effective heat loss coefficient can be determined according to (2.6) as

h̃(Ts) = αgTa(1 − T∞/Ts)
2 exp(Ta/Ts + 1)

2BR2
0(Tad − T∞)

(
dθ

dr̃

)2

r̃=1
, (2.13)

where αg = λg/ρgcpg is the thermal diffusivity of the combustible mixture. Equation
(2.13) indicates that the effective heat loss coefficient is inversely proportional to the
surface area of the particle, i.e. h̃ ∼ 1/R2

0. This means that ignition becomes more difficult
for smaller particles, which is consistent with previous experimental and numerical results.
In addition, (2.13) demonstrates that the effective heat loss coefficient varies with the
square of the normalized temperature gradient on the particle surface, which substantially
increases in the presence of convective heat transfer. Therefore, the relative motion
between the hot particle and the combustible mixture may greatly affect the ignition
behaviour.

Taking the derivative of h̃ with respect to Ts, one obtains

dh̃
dTs

= − αg

2BR2
0

(
1 − T∞

Ts

)[
1 − T∞

Ts

(
1 + 2

Ts

Ta

)]
T2

a eTa/Ts+1

T2
s (Tad − T∞)

(
dθ

dr̃

)2

r̃=1
. (2.14)

The conditions Ts � T∞ and Ts/Ta � 1 suggest that dh̃/dTs < 0. Therefore, as the
particle temperature falls, the heat loss coefficient becomes larger and thereby heat loss is
more pronounced.

The critical ignition temperature, denoted by Tig,cr, can be determined by setting Ts =
Tig,cr in (2.13) and using the ignition condition of h̃ = e. After rearrangement, we have the
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following expression the for the critical ignition temperature:

Ta

Tig,cr
= ln

2BR2
0(Tad − T∞)

αgTa(1 − T∞/Tig,cr)
2(dθ/dr̃)2

r̃=1

. (2.15)

When the particle temperature is greater than the critical ignition temperature, i.e. Ts >

Tig,cr, the ignition delay time can be evaluated by integrating equation (2.10)

τig = τch

∫ ∞

0

dχ

eχ − h̃(Ts)χ
. (2.16)

In particular, (2.13) indicates that h̃ vanishes for (dθ/dr̃)r̃=1 = 0, i.e. the particle
temperature is equal to that in the ambient. In such circumstances, the integral in (2.16)
is equal to unity, indicating that τig = τch, i.e. ignition occurs under adiabatic conditions.
For finite temperature difference, the magnitude of (dθ/dr̃)r̃=1 describes the temperature
inhomogeneity. For a spherical particle in a quiescent mixture, the heat transfer is only
through thermal conduction and we have (dθ/dr̃)r̃=1 = −1, which will be shown in
§ 3.1. When there is relative motion between the particle and the environment, the heat
transfer consists of convection and conduction and we have |(dθ/dr̃)r̃=1| > 1, which will
be discussed in §§ 3.2–3.4.

3. The effect of temperature inhomogeneity on ignition by a hot particle

According to (2.13), the temperature gradient on the particle surface, (dθ/dr̃)r̃=1, needs
to be obtained so that the effective volumetric heat loss coefficient h̃ can be evaluated,
and subsequently the critical ignition temperature can be determined via (2.15). We
consider a hot particle placed in a combustible mixture with different flow velocities,
including the quiescent situation, creeping flow and flow with separation. For each flow
condition, solving the thermal energy equation for the gas mixture yields the temperature
distributions, by means of which the temperature gradient on the particle surface
(dθ/dr̃)r̃=1 can be evaluated. Adopting two assumptions, that the particle temperature
remains constant during the ignition process and that the IFP is anchored at the particle
surface, the ignition criterion of the combustible mixture by the hot particle can be
described by the critical ignition condition in steady state theory, i.e. h̃ = e, which gives
the correlation between the critical ignition temperature and various parameters that
affect it, e.g. the radius of the particle, the temperature inhomogeneity and the transport
properties of the combustible mixture. The fall of the particle temperature and the motion
of the IFP lead to transient effects in the ignition process, and their impacts will be
discussed in §§ 4 and 5, respectively.

3.1. Quiescent combustible mixture
First, we consider the hot particle placed in a quiescent combustible mixture so that
the heat transfer at the surface is pure conduction. So far, we have assumed that the
particle temperature is constant during the ignition process. The solution of the thermal
equation for a solid particle presented in § 4 will confirm that the effect of particle cooling
is negligible before ignition occurs. For a particle with a constant temperature, we can
employ the quasi-steady state assumption to deal with heat transfer at the particle surface.
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Theoretical analysis on the ignition

The energy equation for the gas mixture can be written in the form (Leal 2007)

∇̃2θ = 0, (3.1)

where ∇̃ = R0∇ is the non-dimensional gradient operator. The solution of (3.1) satisfying
the boundary conditions of θ = 1 at r̃ = 1 and θ = 0 as r → ∞ is

θ = 1
r̃
. (3.2)

Accordingly, the non-dimensional temperature gradient on the particle surface is

−
(

dθ

dr̃

)
r̃=1

= 1. (3.3)

3.2. Creeping flow without separation for Re � 1
In the presence of relative motion between the particle and the ambient gas, convection
contributes to additional heat transfer, and the energy equation should be revised to

Pe(ũ · ∇̃θ) = ∇̃2θ, (3.4)

where the non-dimensional velocity ũ is normalized by the uniform flow velocity, U∞,
of the ambient gas, i.e. ũ = u/U∞. The Péclet number is defined as Pe = U∞R0/αg. The
Péclet number can equivalently be written as the product of the Reynolds number, Re =
U∞R0/νg, and the Prandtl number, Pr = νg/αg, where νg is the kinematic viscosity of the
ambient gas. The Prandtl number depends only on the fluid properties and is around unity
for most gases under atmospheric pressure at room temperature. Consequently, the Péclet
number and the Reynolds number are of the same order, i.e. Pe ∼ Re.

The flow field is affected by changing the Reynolds number. For creeping flow with
Re � 1, i.e. the flow velocity distribution can be described by the Stokes solution (Landau
& Lifshitz 1987)

ũr = − cos φ

(
1 − 3

2r̃
+ 1

2r̃3

)
, ũφ = − sin φ

(
1 − 3

4r̃
− 1

4r̃3

)
, (3.5a,b)

where φ represents the polar angle and its origin (φ = 0) is selected at the front stagnation
point of the sphere, and thereby φ = π corresponds to the rear stagnation point.

For Re � 1 and Pe ∼ Re, the temperature distribution can be expanded in asymptotic
series in terms of Pe. However, separate solutions must be sought respectively in the inner
region for 1 ≤ r̃ ≤ O(Pe−1), where the heat conduction term is much larger than the
convection term, and in the outer region for O(Pe−1) < r̃ < ∞, where the convection term
is of equal importance to the conduction term. The detailed derivation of the asymptotic
solution of the temperature distribution can be found in Leal (2007), and here we only
briefly present key processes.

In the inner region, the proper length scale is R0, and the asymptotic series for θ in terms
of Pe is

θin = θin,0(r̃, φ) + Peθin,1(r̃, φ) + O(Pe2). (3.6)

Substituting equation (3.6) into (3.4) and collecting terms of like powers of Pe, one
obtains the leading-order solution θin,0 = 1/r̃, and the first-order correction θin,1 which
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satisfies the following equation

∇̃2θin,1 = ũ · ∇θin,0. (3.7)

The solution of (3.7) subject to the boundary condition of θin,1 = 0 at r̃ = 1 can be
written as

θin,1 =
∞∑

n=0

An[r̃n − r̃−(n+1)]Pn(−η) +
(

1
2

− 3
4r̃

+ 3

8r̃2 − 1

8r̃3

)
P1(−η), (3.8)

where Pn represents the Legendre polynomial of order n, and η = cos φ. The integration
constants An should be determined through matching with the asymptotic solution in the
outer region. The fact that P1(−η)/2 does not vanish as r̃ → ∞ suggests that θin,1 does
not satisfy the boundary condition at infinity. Therefore, the solution in the outer region
needs to be obtained.

In the outer region, the length scale should be redefined because the temperature
distribution appears to be less sensitive to the particle radius at remote distance. A suitable
rescaling is ξ = r̃Pe, in terms of which, the leading order of the normalized temperature
in the outer region, θout, satisfies

∇̃2
ξ θout = −

[
∂θout

∂ξ
+
(

1 − η2

ξ

)
∂θout

∂η

]
. (3.9)

The right-hand side of the above equation represents the modification of the temperature
distribution in the outer region by uniform flow of ambient gas. The solution of (3.9)
subject to the boundary condition of θout → 0 as ξ → ∞ is

θout =
√

π

χ
e−χη/2

∞∑
k=0

BkKk+1/2

(χ

2

)
Pk(−η), (3.10)

where the coefficients Bk must be determined by matching with the inner solution θin. The
functions Kk+1/2 represent the modified Bessel functions of order k + 1/2. The matching
of θin and θout is conducted in an overlap region in which, r̃ and ξ could be interchangeably
selected as the characteristic length scale. From the matching we have

A0 = −1
2 , Ak = 0 for k ≥ 1, (3.11)

B0 = 1
π

, Bk = 0 for k ≥ 1. (3.12)

Substituting equations (3.11) and (3.12) into (3.8) and (3.10) respectively, the inner
and outer solutions for the normalized temperature are fully determined. The composite
solution valid in the whole domain can be constituted by summarizing θin and θout and
subtracting their common part in the overlapping region, and it is

θ = 1
r̃

e−r̃Pe(1+η)/2 + Pe
[

1
2r̃

− η

(
− 3

4r̃
+ 3

8r̃2 − 1

8r̃3

)]
. (3.13)

In contrast to θin, the composite solution of θ given by (3.13) satisfies the boundary
condition θ → 0 as r̃ → ∞ at finite Pe. Subsequently, the negative of the temperature
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Theoretical analysis on the ignition

gradient on the particle surface can be obtained as

−
(

∂θ

∂ r̃

)
r̃=1

= 1
2

(
1 + 3

4
η

)
Pe + e−(1+η)Pe/2

[
1 + 1

2
(1 + η)Pe

]
. (3.14)

The heat transfer rate changes with polar angle, represented by η = cos φ. It takes
the largest and smallest values at the front (η = 1) and rear (η = −1) stagnation points,
respectively, i.e.

−
(

∂θ

∂ r̃

)
r̃=1,max

= e−Pe(1 + Pe) + 7
8

Pe ≈ 1 + 7
8

Pe, (3.15)

−
(

∂θ

∂ r̃

)
r̃=1,min

= 1 + 1
8

Pe. (3.16)

The heat transfer on the particle surface plays the role of heat loss during the ignition
process. Equations (3.15) and (3.16) indicate that ignition first occurs at the rear stagnation
point (i.e. φ = π) where the temperature inhomogeneity is the smallest over the particle
surface. This is consistent with previous simulation results (Zirwes et al. 2019; Wang et al.
2021).

3.3. Boundary layer flow with separation for Re � 1
At high Reynolds number, i.e. increasing either the particle size or the flow velocity of the
ambient gas, flow separation takes place at the rear hemisphere of the spherical particle.
The IFP adjacent to the particle surface continues to absorb thermal energy from the front
stagnation location to the separation point, beyond which the IFP is taken away from the
particle surface by the recirculating flow. The relative motion between the particle and the
combustible mixture facilitates the heat transfer on the particle surface due to convection,
which thereby increases the critical ignition temperature.

Previous studies (Mével et al. 2016, 2019; Melguizo-Gavilanes et al. 2017a,b)
demonstrated that, at the critical ignition state, i.e. Ts = Tcr, ignition first occurs
around the separation point. This can be understood as follows. Flow decelerates on
approaching the separation point, suggesting that convective heat transfer becomes less
intensive and hence decreases the heat loss for ignition. Near the separation point, the
temperature variation becomes gentle and thereby provides favourable conditions for
ignition. Accordingly, we define the critical ignition condition based on the assumption
that the resulting ignition location coincides with the separation point, where the local
temperature gradient has the least magnitude and thus preferentially supports ignition.
Moreover, the IFP would be taken away from the hot particle passing over the separation
point and therefore lose the capability of ignition. While, as the particle temperature
continues to increase, the ignition location moves upstream since an elevation of particle
temperature can sustain more severe heat loss during ignition.

For large Reynolds number, i.e. Re � 1, the flow field consists of a boundary layer on
the particle surface. Across the boundary layer, the flow velocity decelerates to zero on
the particle surface. In the outer region above the boundary layer, viscous stress can be
neglected. For uniform flow across a spherical particle, the velocity components in the
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outer region are given by (Leal 2007; Schlichting & Gersten 2016)

ũφ =
(

1 + 1

2r̃3

)
sin φ, ũr = −

(
1 − 1

r̃3

)
cos φ. (3.17a,b)

On the particle surface with r̃ = 1, the radial component becomes zero while the
tangential component is ũφ,r̃=1 = (3/2) sin φ /= 0, which does not satisfy the no-slip
condition. This indicates the necessity of solving the velocity distribution in the
momentum boundary layer.

The boundary layer theory suggests rescaling the non-dimensional transverse coordinate
and velocity component, defined by

Y =
√

Re(r̃ − 1), V = ũr
√

Re, (3.18a,b)

for suitable description of the velocity distribution in the boundary layer. In the limit of
Re → ∞, the governing equations for the momentum boundary layer covering a spherical
particle are

∂V
∂Y

+ 1
sin φ

∂

∂φ
(u sin φ) = 0, (3.19)

∂2u
∂Y2 = dp

dφ
+ V

∂u
∂Y

+ u
∂u
∂φ

, (3.20)

where we denote the non-dimensional tangential component of the flow velocity in the
momentum boundary layer by u. Since the flow outside the momentum boundary layer is
almost potential, the pressure gradient can be solved in terms of the ũφ given by (3.17a,b)
based on Bernoulli’s equation, which, at the particle surface r̃ = 1, yields

dp
dφ

= −ũφ,r̃=1
dũφ,r̃=1

dφ
= −9

8
sin 2φ, (3.21)

where the pressure is non-dimensionalized by ρgU2∞.
Equations (3.19) and (3.20) can be solved by means of a Blasius series, i.e. a series of

velocity components in terms of φn with n being integer. The detailed description of the
mathematical method can found in Leal (2007) and Schlichting & Gersten (2016). Here,
we only briefly present key steps in our solution.

According to (3.17a,b), the tangential component of the potential flow ũφ at r̃ = 1 can
be expanded in a series of φ,

ũφ,r̃=1 = 3
2 sin φ = 3

2φ − 1
4φ3 + 1

80φ5 − 1
3360φ7 + · · · . (3.22)

Correspondingly, the tangential velocity in the momentum boundary layer can also
be expanded as a series of φ with coefficients being general functions of the rescaled
transverse coordinate Y. To obtain a relatively accurate interpretation to the velocity profile
in the rear hemisphere, we retain terms of φn with n ≤ 7 in the expansion of u, i.e.

u = F′
1(Y)φ + F′

3(Y)φ3 + F′
5(Y)φ5 + F′

7(Y)φ7, (3.23)

where the prime in coefficient function F refers to derivative with respect to Y. The no-slip
boundary condition requires that the coefficient functions F’s satisfy

F′
1(0) = F′

3(0) = F′
5(0) = F′

7(0) = 0. (3.24)
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Theoretical analysis on the ignition

Matching with outer potential flow suggests that

F′
1(Y) → 3

2 , F′
3(Y) → −1

4 , F′
5(Y) → 1

80 , F′
7(Y) → − 1

3360 as Y → ∞. (3.25)

Substituting the series of u given by (3.23) into the continuity equation (3.19), one
obtains the series for ∂V/∂Y . Integrating with respect to Y yields

V = −2F1 + (1
3 F1 − 4F3)φ

2 + ( 1
45 F1 + 1

3 F3 − 6F5)φ
4

+ ( 2
945 F1 + 1

45 F3 + 1
3 F5 − 8F7)φ

6, (3.26)

whose coefficients are functions of Fi values instead of their derivative with respect to
Y. The no-penetration boundary condition on the particle surface, i.e. V = 0 at Y = 0,
requires that the functions F satisfy

F1(0) = F3(0) = F5(0) = F7(0) = 0. (3.27)

Substituting the series forms of (3.23) and (3.26) into the momentum equation (3.20)
and collecting the powers of φ, we have

F′′′
1 + 2F1F′′

1 − F′2
1 + 9

4 = 0, (3.28)

F′′′
3 + 2F1F′′

3 − 4F′
1F′

3 − F′′
1(1

3 F1 − 4F3) − 3
2 = 0, (3.29)

F′′′
5 + 2F1F′′

5 − 6F′
1F′

5 − 1
45 F′′

1 (F1 + 15F3 − 270F5)

−F
′′
3(

1
3 F1 − 4F3) − 3F′2

3 + 3
10 = 0,

(3.30)

F′′′
7 + 2F1F′′

7 − 8F′
1F′

7 − 1
945 F′′

1(2F1 + 21F3 + 315F4 − 7560F7)

−F′′
5 (1

3 F1 − 4F3) − 8F′
3F′

5 − 1
45 F′′

3(F1 + 15F3 − 270F5) − 1
35 = 0,

(3.31)

Which, subject to boundary conditions given by (3.24), (3.25) and (3.27), and can be
solved numerically.

With knowledge of Fi values, the profiles of u and V can be determined through (3.23)
and (3.26), respectively. According to the boundary layer theory, the separation point is
characterized by the relation (Leal 2007)(

∂u
∂Y

)
Y=0,φ=φsep

= 0, (3.32)

which, with our numerical results of u and V, gives φsep ≈ 108◦ and is consistent with
previous studies (Schlichting & Gersten 2016). This separation angle holds for Re → ∞
which can be understood as meaning that the boundary layer equations (3.19) and (3.20)
in fact give the leading-order solution of the flow field at the limit Re → ∞. For moderate
Re, the polar angle representing the separation point moves downstream on reducing the
Reynolds number (Rimon & Cheng 1969). To interpret such relation, we have to retain
higher-order terms in the boundary layer equations, which results in exceeding difficulty
in the mathematics and is thus beyond the scope of the present study.

Figure 1 shows that the tangential velocity increases from zero on the particle surface to
the potential flow solution in the outer region. According to (3.21), the outer potential flow
accelerates from the front stagnation point (φ = 0) to the peripheral side of the sphere
(φ = π/2), after which the pressure gradient becomes adverse, leading to flow separation
around φ ≈ 0.6π = 108◦.
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Figure 1. Change of the tangential velocity u with scaled transverse coordinate Y across the momentum
boundary layer for different polar angles of φ = 0.1π ∼ 0.6π.
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φ

Figure 2. Change of the tangential velocity gradient adjacent to the particle surface and the thickness of the
momentum boundary layer with polar angle φ.

The outer edge of the boundary layer is characterized by u = 0.99ũφ,r̃=1, and its distance
from the particle surface is defined as the thickness of the momentum boundary layer,
denoted by δm. Figure 2 shows that δm increases monotonically with φ, particularly
beyond φ = π/4, where the favourable pressure gradient at Y = 0 is of largest magnitude
according to (3.21). Besides, the tangential velocity gradient, interpreting the frictional
resistance experienced by the particle, achieves the largest value around φ = 1.0 and
vanishes around φsep = 0.6π . This is consistent with the velocity profiles shown in
figure 1.

Since Pe ∼ Re, large Reynolds number also implies that Pe � 1. This indicates that the
temperature of the gaseous premixture also exhibits a rapid transition from θ = 1 on the
particle surface to θ → 0 in the ambient, which is known as the thermal boundary layer.
Since the Prandtl number of the gaseous premixture is of O(1), the rescaling relation
(3.18a,b) holds in the thermal boundary layer as well. Therefore, neglecting dissipation of
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Theoretical analysis on the ignition

kinetic energy to thermal energy, the governing equation for the thermal boundary layer
can be written in the following form:

u
∂θ

∂φ
+ V

∂θ

∂Y
= 1

Pr
∂2θ

∂Y2 , (3.33)

where the coefficients u and V, given by (3.23) and (3.26), are known functions of φ and
Y. Equation (3.33) is subject to the following boundary conditions:

θ = 1 at Y = 0, (3.34)

θ → 0 as Y → ∞. (3.35)

In analogy to the Blasius series representing the velocity profiles u and V, the normalized
temperature in the thermal boundary layer can also be expanded in the series form as

θ = H0(Y) + H2(Y)φ2 + H4(Y)φ4 + H6(Y)φ6. (3.36)

Since the temperature profile is an even function about the axis of symmetry, i.e. θ(φ) =
θ(−φ), only terms of even power in φ appear. To obtain consistent accuracy with the
Blasius series of the velocity profiles, we retain four terms up to φ6. Substituting the series
representations of u, V and θ , given by (3.23), (3.36) and (3.36), respectively, into (3.33),
we obtain

H′′
0

Pr
= −2F1H′

0, (3.37)

H′′
2

Pr
=
(

F1

3
− 4F3

)
H′

0 + 2F′
1H2 − 2F1H′

2, (3.38)

H′′
4

Pr
=
(

F1

45
+ F3

3
− 6F5

)
H′

0 + 2F′
3H2 +

(
F1

3
− 4F3

)
H′

2 + 4F′
1H4 − 2F1H′

4, (3.39)

H′′
6

Pr
=
(

2F1

945
+ F3

45
+ F5

3
− 8F7

)
H′

0 + 2F′
5H2 +

(
F1

45
+ F3

3
− 6F5

)
H′

2 + 4F′
3H4

+
(

F1

3
− 4F3

)
H′

4 + 6F′
1H6 − 2F1H′

6.

(3.40)

The boundary conditions for Hi are given by

H0(0) = 1, H2(0) = H4(0) = H6(0) = 0, (3.41)

H0(Y) = H2(Y) = H4(Y) = H6(Y) = 0 as Y → ∞. (3.42)

The numerical solution to (3.37)–(3.40) subject to boundary conditions (3.41) and (3.42)
can be sought following the same procedure as that used to obtain the coefficients Fi for the
Blasius series of u and V. The representative parameter of the Prandtl number is selected
to be that of air, i.e. Pr = 0.71, in the numerical solution.

Figure 3 indicates that the normalized temperature tends to decrease linearly with Y
around the particle surface, whose slope continues to reduce as φ increases. At some
elevated distance in the transverse direction, the change of θ becomes very slow and
exhibits a long tail on relaxing to θ = 0. The outer edge of the thermal boundary layer
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Figure 3. Change of the normalized temperature with scaled transverse coordinate across the thermal
boundary layer for different polar angles of φ = 0.1π ∼ 0.6π.
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) Y=
0

δT

φ

Flow separation

Figure 4. Change of the temperature gradient adjacent to the particle surface and the thickness of the thermal
boundary layer with polar angle φ.

refers to the transverse coordinate where θ = 0.01, and its distance from the particle
surface is defined as the thickness of the thermal boundary layer, denoted by δT .

Figure 4 shows the temperature gradient adjacent to the particle surface and the
thickness of the thermal boundary layer. Similar to δm, the thermal boundary layer grows
monotonically with φ. Besides, comparison between figures 2 and 4 indicates that the
thermal boundary layer is thicker than the momentum boundary layer. This is because
Pr < 1.

The rate of heat transfer on the particle surface can be quantified by the magnitude
of the temperature gradient there, which, as seen from figure 4, decreases to almost one
third from the front stagnation point to the separation point. According to (2.13), the fall
in temperature gradient reduces the heat loss for ignition of the combustible mixture.
This is consistent with the experimental observation (Coronel 2016; Coronel et al. 2018)
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Theoretical analysis on the ignition

that ignition most probably takes place near the separation point, where the temperature
gradient calculated from (3.36) is

−
(

∂θ

∂ r̃

)
r̃=1,φ=φsep

=
√

Re[H′
0(0) + H′

2(0)φ2
sep + H′

4(0)φ4
sep + H′

6(0)φ6
sep] = 0.276

√
Re.

(3.43)

3.4. The critical ignition temperature
According to (2.13), the non-dimensional heat loss coefficient is proportional to the
square of the temperature gradient. Consequently, ignition occurs at the point where the
magnitude of the local temperature gradient is the smallest, which is defined as the ignition
temperature gradient, denoted by (dθ/dr̃)ig. In a quiescent environment, the temperature
gradient is uniform over the particle surface according to (3.3), yielding

−(dθ/dr̃)ig,0 = 1. (3.44)

For creeping flow over the hot particle, the lowest heat transfer rate occurs at the rear
stagnation point, for which the temperature gradient is given by (3.16). Consequently, the
ignition temperature gradient for creeping flow is

−(dθ/dr̃)ig,c = 1 + 1
8 RePr. (3.45)

At large Re, flow separation takes place and the ignition temperature can be evaluated by
the boundary layer solution given by (3.43). Therefore, the ignition temperature gradient
for large Re is

−(dθ/dr̃)ig,∞ = 0.276
√

Re. (3.46)

The correlations between the ignition temperature gradients and the Reynolds number
for Re � 1 and Re → 1 are respectively presented by (3.45) and (3.46). However, for hot
particle induced ignition, the Reynolds number usually varies in the intermediate range
from O(1) to O(102), in which there exists a gap in the ignition temperature gradients
predicted by (3.45) and (3.46) because the controlling mechanism of heat transfer alters as
Re increases.

Since the Blasius series holds at the limit condition of Re → ∞, the result given by
(3.46) is not qualitatively accurate in the intermediate range of Re. It would be convenient
to obtain an explicit formula that can predict the ignition temperature gradient in a wide
range of Reynolds numbers from Re = 0 (for pure conduction) to Re ∼ O(102) (flow
separation without unsteady vortex shedding) (Johnson & Patel 1999; Schlichting &
Gersten 2016). Combining the mathematical forms of (3.45) and (3.46), we can specify
the dependence of (dθ/dr̃)ig on Re in the following form:

−(dθ/dr̃)ig,m = 1 + αTRe1/2, (3.47)

which reduces to pure conduction for Re = 0 and scales with
√

Re for large Reynolds
numbers. The parameter αT shall be determined with the help of the Frossling formula
(Hughmark 1980; McAllister, Chen & Fernandez-Pello 2011). The detailed procedures are
presented as follows.

The Frossling formula (Hughmark 1980; McAllister et al. 2011) interprets the total
heat transfer from the particle in terms of the Nusselt number, which can be equivalently
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correlated to an average temperature gradient, i.e.

−(dθ/dr̃)av,m = 1 + 0.282Re1/2Pr1/3. (3.48)

In spite of a similar mathematical form, the coefficient αT in (3.47) differs from that in
(3.48). Considering similarity in the boundary layer, we suppose that the proportionality
between the temperature gradient at the flow separation point, (dθ/dr)ig,m given by (3.47),
and its average value over the whole particle surface, (dθ/dr)ave given by (3.48), would be
less than unity and tends to vary slowly with Re. Thereby, we can determine the coefficient
αT with the help of both the Frossling formula and the Blasius series solution of thermal
boundary layer.

The average temperature gradient in the limit of Re → ∞ can be calculated via the
boundary layer solution, giving

−(dθ/dr̃)av,∞ = −
(∫ φsep

0
sin φ dφ

)−1 ∫ φsep

0
(dθ/dr̃)r̃=1 sin φ dφ = 0.582

√
Re,

(3.49)
where φsep ≈ 108◦ as obtained before and (3.36) is used.

Therefore, the ratio in the limit of Re → ∞ can be determined,

c∞ = (dθ/dr̃)ig,∞
(dθ/dr̃)av,∞

= 0.474. (3.50)

If we assume that the value of c∞ is independent of the Reynolds number, then we can
determine the parameter αT in the limit of Re → ∞ through the subsequent relation,

lim
Re→∞

(dθ/dr̃)ig,m

(dθ/dr̃)av,m
= αT

0.282Pr1/3 → 0.474, (3.51)

which gives αT = 0.117 for Pr = 0.71. Substituting the value of αT into (3.47), the ignition
temperature gradient in this intermediate range of Re can be determined.

Substituting equation (3.47) into (2.13), we obtain the effective heat loss coefficient in
the presence of relative motion between hot particle and the combustible mixture

h̃(Ts) = αgTa(1 − T∞/Ts)
2eTa/Ts+1

2BR2
0Tad(1 − T∞/Tad)

(1 + αTRe1/2)2. (3.52)

This expression indicates that the non-dimensional heat loss coefficient increases
monotonically with the Reynolds number. The critical ignition temperature Tig,cr can be
determined by substituting equation (3.47) into (2.15), which gives

Ta

Tig,cr
= ln

2Tad(1 − T∞/Tad)R2
0B

Ta(1 − T∞/Tig,cr)
2αg

− 2 ln(1 + αTRe1/2). (3.53)

In quiescent environment with Re = 0, the second term on the right-hand side of (3.53)
vanishes and we have

Ta

Tig,cr
= ln

2Tad(1 − T∞/Tad)R2
0B

Ta(1 − T∞/Tig,cr)
2αg

, (3.54)

which is equivalent to the ignition theory given by the steady state theory with ΔI = 1.
In the absence of relative motion between the particle and the combustible mixture, the
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Theoretical analysis on the ignition

temperature inhomogeneity is attributed solely to heat conduction at the particle surface,
and thus depends on the square of the particle radius.

Usually, Tig,cr and Tad are much higher than T∞, and thereby we can assume 1 −
T∞/Tig,cr ≈ 1 and 1 − T∞/Tad ≈ 1. Accordingly, a simplified ignition criterion can be
obtained from (3.54)

Ta

Tig,cr
≈ ln

2TadBR2
0

Taαg
, (3.55)

which shows that the inverse of the critical ignition temperature is linearly proportional to
the logarithm of the particle radius or the surface area. It agrees with the scaling relation
for ignition in a stagnant environment proposed by Laurendeau (1982).

To determine the critical ignition temperature through (3.53), we need to know the
reaction rate factor B and activation temperature Ta. In this work, we consider both CH4/air
and H2/air mixtures in stoichiometric conditions, and accordingly, the parameters B and
Ta for an individual mixture should be determined independently by fitting the ignition
delay time calculated from simulation using detailed chemistry based on (2.5). According
to ignition behaviour, we specify the reaction related parameters for the CH4/air mixture
at a relatively high temperature range, e.g. T > 1500 K, giving B = 9.5 × 108 s−1 and
Ta = 25 000 K, and for the H2/air mixture at a comparably lower temperature range, e.g.
T > 900 K, obtaining, B = 1014 s−1 and Ta = 28 500 K.

Figure 5 compares the critical ignition temperature predicted by the present theory,
i.e. (3.54), and previous simulations and experiments. Good agreement is shown to be
achieved. For both CH4/air and H2/air mixtures, the critical ignition temperature Tig,cr is
shown to increase rapidly when the particle radius R0 decreases. In particular, Tig,cr for
CH4/air for is around 1500 K at R0 = 1 mm, while it is around 2200 K at R0 = 0.1 mm.
The quantitative difference between theoretical prediction and numerical/experimental
results may be primarily attributed to the simplified one-step reaction model considered
in present analysis. According to the numerical study by Häber et al. (2017), the critical
ignition temperature of spherical particle (with radius 0.8 mm) determined using the Gas
Research Institute (GRI) 3.0 mechanism tends to be uniformly lower than that calculated
utilizing the University of California at San Diego (UCSD) mechanism for a wide range
of stoichiometric ratios, and the maximum difference could be greater than 50 K. This
suggests that the chemical reaction mechanism has a considerable effect on the quantitative
evaluation of the critical ignition temperature.

The actual chemical reaction involves multiple stages and various elementary rate
coefficients, which can hardly be characterized by two constant parameters (activation
temperature and reaction frequency) in a wide range of temperatures. Generalizing the
activation temperature and reaction frequency as functions of temperature, i.e. Ta = Ta(T)

and B = B(T), would improve the accuracy of the reaction model, which, however, is
beyond the scope of the present study.

In this work, we neglected the effect of thermal radiation from the hot particle to the
combustible mixture in the environment. Based on scaling analysis, the rate of heat transfer
per unit area due to radiation and conduction can be evaluated as hradiation ∼ αrσT4 and
hconduction ∼ λ∇T , respectively, where σ is the Stefan–Boltzmann constant, and αr < 1
indicates the deviation from black-body radiation. For particles with of temperature around
1000 K and radius around 1 mm, the magnitudes of hconduction and hradiation approximately
satisfy hconduction/hradiation ∼ 1/2αr. However, the emissivity αr in this temperature range
would be considerably smaller than unity (corresponding to black-body radiation) and
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Figure 5. Change of the critical ignition temperature with the particle radius. The mixture is stoichiometric
CH4/air at 300 K and 1 atm. The theoretical results are from (3.54); the experimental data were reported by
Roth et al. (2017); and the simulation results are from Beyer & Markus (2012), Häber et al. (2017) and Wang
& Chen (2020).

thus the rate of heat transfer by conduction would be greater than that due to radiation.
Besides, the radiative heat transfer is of long range, i.e. only a slight portion of the thermal
energy carried by the propagating electromagnetic waves could be absorbed by the reactive
mixture close to the particle surface. Therefore, thermal radiation of the hot particle on the
ignition of combustible mixture should be secondary.

For particle in non-static mixture, i.e. Re > 0, the second term on the right-hand side of
(3.53) is greater than zero, suggesting that the enhanced temperature inhomogeneity due
to convective heat transfer tends to increase the critical ignition temperature. For small
Reynolds number, (3.53) can be simplified to

Ta

Tig,cr
≈ ln

2TadR2
0B

Taαg
− 2αTRe1/2, (3.56)

while at large Reynolds number it becomes

Ta

Tig,cr
≈ ln

2TadR2
0B

Taαg
− ln(α2

TRe). (3.57)

Equations (3.56) and (3.57) show that the relative motion between the particle and the
ambient gas increases the critical ignition temperature, and that Tig,cr increases with the
Reynolds number. Nevertheless, the logarithmic scaling relation between Tig,cr and U∞
(proportional to Reynolds number) appears to differ from the fitting formulas given by
Zirwes et al. (2019), which interpret Tig,cr as power functions of U∞.

Figure 6 plots the critical ignition temperature predicted by the present analysis and
simulations in Zirwes et al. (2019). Using the average temperature gradient in (3.48)
greatly overestimates the heat loss coefficient and thereby the critical ignition temperature.
On the contrary, the ignition temperature gradient given by (3.47) appropriately evaluates
the temperature inhomogeneity at the ignition location and thereby has predictions
agreeing well with those from simulations. The slight elevation of the theoretically
predicted critical ignition temperature can be attributed to the fact that the viscosity of
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Figure 6. Change of the critical ignition temperature with flow velocity. Stoichiometric mixtures of CH4/air
and H2/air are considered at conditions of 300 K and 1 atm, and the particle radius is 0.4 mm. The solid line
represents prediction by (3.53) in comparison with the dashed line obtained by replacing (dθ/dr̃)ig,m with
(dθ/dr̃)av,m given by (3.48). The symbols denote simulation results in Zirwes et al. (2019).

the gaseous mixture is evaluated based on the far-field temperature rather than the particle
temperature, which results in a larger Reynolds number and thereby a greater temperature
gradient at the ignition location.

Based on energy budget analysis, Häber et al. (2017) proposed a theoretical formula for
the ignition temperature, which scales with R0 in the form of Ta/Tig,cr ∼ ln(R2

0/
√

Re) in
contrast to ln(R2

0/Re) in (3.53). In the work of Häber et al. (2017), the rate of heat loss is
approximated by λg(Ts − T∞)/δT , which underestimates the temperature inhomogeneity
during ignition and thus results in a lower critical ignition temperature.

Rewriting (3.57) in an alternative form

Ta

Tig,cr
≈ ln

2νgBTadR0

αgTaα
2
TU∞

, (3.58)

we obtain that Ta/Tig,cr ∝ ln(R0/U∞), which agrees well with the scaling relation given
by Laurendeau (1982) for ignition under the condition of forced convection.

4. The effect of particle cooling on ignition

In general, ignition occurs when the heat release from chemical reaction exceeds the heat
loss due to the surroundings. In addition to temperature inhomogeneity, various transient
processes during the ignition process may also affect the ignition behaviour and thus
modify the ignition condition, such as the drop of particle temperature and the finite
residence time of the IFP staying close to the particle for Re > 0. In this section, we shall
consider the effect of particle cooling on the ignition behaviour. The impacts of finite
residence time of IFP will be discussed in the next section.

When a hot particle is in a flowing environment, heat is continuously removed from
the hot particle through a combination of conduction and convection. Since the thermal
conductivity of a solid is substantially greater than that of a gas, the particle temperature
can be considered uniform prior to ignition. Accordingly, the energy equation for the solid
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particle is given by

dTs

dt
= 1

ρscvsVs

∫
λg

(
dT
dr

)
r=R0

dAs, (4.1)

where ρs, cvs and Vs are, respectively, the density, heat capacity and volume of the
particle and As is the area of the particle surface. The integration on the right-hand side
represents heat conduction over the particle surface. The Nusselt number representing the
dimensionless total heat transfer rate is usually defined in the following general form (Leal
2007):

Nu ≡ − 2R0

Asλg(Ts − T∞)

∫
λg

(
dT
dr

)
r=R0

dAs. (4.2)

In terms of Nusselt number, the energy equation for the spherical particle can be written
as

dTs

dt
= −3αgρgcpgNu

2ρscvsR2
0

(Ts − T∞). (4.3)

When the Nusselt number is assumed to be constant, the above equation can be
integrated and we obtain the following expression for the temporal change of particle
temperature:

Ts = T∞ + (Ts0 − T∞) exp

(
−3Nuρgcpgαgt

2ρscvsR2
0

)
, (4.4)

where Ts0 is the initial temperature of the hot particle.
According to the thermal ignition theory (Vázquez-Espí & Liñán 2001, 2002), relatively

small temperature variation (of O(Ts/Ta)) may lead to substantial change (of O(1)) in the
chemical reaction rate. From (4.4), the time required for the particle temperature to drop
from Ts0 to Ts0(1 − Ts0/Ta) is

τpc = 2ρscvsR2
0T2

s0
3NuρgcpgαgTa(Ts0 − T∞)

, (4.5)

which is the characteristic time for particle cooling.
For given initial particle temperature Ts0, the non-dimensional heat loss coefficient h̃ is

determined by (2.13) and the non-adiabatic ignition delay time is given by (2.16). For h̃
slightly smaller than e, the integral on the right-hand side of (2.16) would be of O(1). For
simplicity, we may use τch given by (2.5) to represent the characteristic time for chemical
reaction. Evaluating τch by setting Ts = Ts0 in (2.5) and expressing the reaction frequency
factor B in terms of the reduced Damköhler number ΔI given by (2.2), we obtain the ratio
between characteristic time for particle cooling and that for chemical reaction time

τpc

τch
= ρscvs�ITa(1 − T∞/Ts0)

3NuρgcpgTs0

(
dθ

dr̃

)2

r̃=1
. (4.6)

Near the critical ignition state, we may analyse the order of magnitude of each
term on the right-hand side of (4.4), yielding that ΔI ∼ O(1), (Ts0 − T∞)/Ts0 ∼ O(1),
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(dθ/dr̃)r̃=1 ∼ Nu and (cvs/cpg)(Ta/Ts0) ∼ O(1) for most solid particles. Consequently,
the ratio τpc/τch can be evaluated as

τpc

τch
∼ ρs

ρgNu
, (4.7)

which is of O(103) for most solid materials at moderate Nusselt numbers. Despite the fact
that the non-adiabatic ignition delay time τig tends to be higher than τch, the value of the
integral on the right-hand side of (2.16) may not be as large as ρs/ρg. Therefore, we have
τpc � τch, which indicates that the change of particle temperature is negligible during the
ignition process. Consequently, the particle temperature Ts can be assumed to be constant.
This assumption is used § 3.

Despite the fact that the time scale ratio scale depends on the particle radius by following
τpc/τch ∼ R1/2

0 , it is noted that the magnitude of the ratio τpc/τch changes slightly because
of the significant density difference. Therefore, we can always have τpc � τch, which can
be understood as follows. On the one hand, the total thermal energy of the particle is
proportional to the volume, while the heat transfer occurs on the particle surface. The
relatively large surface-to-volume ratio for a small particle tends to increase the cooling
rate. On the other hand, according to (3.53), the critical ignition temperature for the particle
increases rapidly as the particle radius decreases. Meanwhile, the reaction rate grows
exponentially with the particle temperature according to (2.5), and exceeds the increasing
cooling rate due to shrinking of the particle size. In general, we conclude that the particle
temperature change is not important during the ignition process, and the assumption of a
constant particle temperature before ignition is validated.

5. The effect of finite residence time of IFP on ignition

In the preceding analysis, we determine the critical ignition temperature by equating the
heat loss coefficient to its maximum value, i.e. h̃ = e, which implies that the ignition
delay time is infinitely large. Since ignition occurs slightly away from the particle surface,
uniform flow of the reactant mixture suggests that the IFP has a finite residence time,
denoted by τres, as it moves around the hot particle. Consequently, the critical ignition
condition should be revised to τres = τig.

Since the IFP must be located within the thermal boundary layer, its velocity, denoted
by uIFP, depends on the transverse distance from the hot particle. The largest speed of the
IFP is ũφ,r̃=1 of the potential flow, given by (3.17a,b). In such a situation, the arrival time
of the IFP at polar angle φ can be calculated as

τφ = R0

U∞

∫ φ

0

dφ′

ũφ,r̃=1
→ 2R0

3U∞

[(
ln
∣∣∣∣tan

φ′

2

∣∣∣∣
)φ

0

]
. (5.1)

The evaluation of the integral on the right-hand side requires discussion in depth.
On the one hand, for φ = 0, we should have τφ = 0 according to the definition of
integration. On the other hand, the integrand in (5.1) becomes divergent at φ = 0, i.e.
limθ→0 ln | tan θ/2| → ∞. This is because both ũφ and dp/dθ vanish simultaneously at
the front stagnation point according to (3.17a,b) and (3.21), i.e. there is no impetus for
the fluid element to move downstream. Consequently, the residence time τres cannot be
calculated by direct integration.

Due to unavoidable flow perturbations, it would be very likely that the IFP confronts
the hot particle with an impact parameter, which may be arbitrarily small and which
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indicates the deviation of the IFP from the stagnation point. Therefore, it is plausible
to retain the condition that τφ = 0 for φ = 0, as suggested by Coronel (2016). Then the
analytical expression for τφ , represented by the last term on the right-hand side of the
arrow symbol in (5.1), should be slightly revised by adding a unit within the logarithmic
operator, as suggested by Coronel (2016). Accordingly, characteristic time for the potential
flow moving from the front stagnation point to the separation point can be evaluated as

τsep ≈ 2R0

3U∞
ln
∣∣∣∣1 + tan

φsep

2

∣∣∣∣ . (5.2)

Nevertheless, equating uIFE to the tangential component of the potential flow, i.e. uIFP =
ũφ,r̃=1 = (3/2) sin φ, considerably underestimates the residence time of the IFP and may
lead to overestimation in the critical ignition temperature.

For large activation temperature, Ta � Ts, asymptotic analysis shows that intensive
chemical reaction is concentrated in a relatively small region, known as Frank–Kamenetskii
region (Vázquez-Espí & Liñán 2001, 2002). In the Frank–Kamenetskii region, the
temperature falls from the peak value to the Frank–Kamenetskii temperature, denoted by
TFK , which is lower than Tmax by an O(ε) with ε = T2

s /Ta(Tad − T∞). In our problem,
the maximum temperature is Ts on the particle surface and for each Ts the value of ε can
be determined uniquely, for instance, ε increases from 0.05 to 0.1 as particle temperature
changes from 1500 to 2200 K and, for convenience, we may specify ε = 0.1 and thus
determine the normalized Frank–Kamenetskii as θFK = 1 − ε = 0.9 in the subsequent
discussions.

The thermal boundary layer accounts for the transition of the temperature from
θ = 1 on the particle surface to θ = 0 at the far field. The transverse coordinate
corresponding to θ = θFK defines the outer edge of the Frank–Kamenetskii region,
denoted by YFK . According to Vázquez-Espí & Liñán (2001, 2002), ignition occurs within
the Frank–Kamenetskii region, where the IFP must be situated. We assume that the IFP
parcel is located at the edge of the Frank–Kamenetskii region and thereby define its
moving velocity based on the boundary layer solution. This assumption is based on the
fact that, for a fluid parcel outside the Frank–Kamenetskii region, the local reaction rate is
so low that ignition can never occur during its passage across the particle. The tangential
velocity of the IFP thus defined, i.e. uFK = u(φ, YFK), provides the upper limit describing
the effects of finite residence time of IFP on the ignition behaviour and the critical ignition
condition. The value of uFK can be expressed in series form according to (3.23)

uFK = F′
1(YFK)φ + F′

3(YFK)φ3 + F′
5(YFK)φ5 + F′

7(YFK)φ7. (5.3)

Figure 7 shows that the outer edge of the Frank–Kamenetskii region is slightly above the
particle. From the front stagnation position to the separation point, we may approximately
have YFK/δm ∼ 0.1, which is consistent with previous studies (Coronel 2016; Coronel
et al. 2018). Consequently, the magnitude of uFK at Y = YFK is one order lower than ũφ,r̃=1
of the potential flow.

For convenience, we may approximately correlate uFK to ũφ,r̃=1 through a linear
relation,

uFK = αFKũφ,r̃=1 = 3
2αFK sin φ, (5.4)

where the numerical value of the proportional factor αFK can be calculated by means
of the series solution of the tangential velocity in the momentum boundary layer, giving
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Figure 7. The blue and black solid lines respectively give the variation of Frank–Kamenetskii region thickness
YFK , corresponding to θFK = 0.9, and the tangential velocity component uFK at that distance. The blue and
black dashed lines provide the boundary layer thickness δm and the tangential component of the potential
velocity for comparison.

αFK ≈ 0.15. Replacing ũφ,r̃=1 by uFK in (5.1) provides the correction of the residence time
for IFP, i.e.

τres = 2R0

3U∞αFK
ln
∣∣∣∣1 + tan

φsep

2

∣∣∣∣ . (5.5)

According to (5.5) and (5.2), we have τres/τsep = 1/αFK , which is considerably greater
than unity. This demonstrates that the residence time of the IFP should not be evaluated
by the characteristic time for potential flow past a spherical particle.

Equating τres in (5.5) to the ignition delay time τig calculated via (2.16), we revise the
ignition criterion by considering the motion of the IFP and thereby determine the critical
ignition temperature.

To derive an explicit formula for Tcr, the integral on the right-hand side of (2.16), which
is defined as a function of h̃,

Fig(h̃) =
∫ ∞

0

dχ

eχ − h̃χ
, (5.6)

must be evaluated in analytical sense. Here, Fig can be understood as the amplifying factor
of ignition delay in the presence of heat loss. The series of Fig in powers of h̃ converges
very slowly. To reproduce the asymptotic behaviour of Fig → ∞ as h̃ → e, one has to
retain terms of h̃100, and thus the series exhibits little applicability in analytical operations.
However, the general behaviour of Fig(h̃) suggests that we may approximately evaluate its
value through a simplified model in the subsequent form

F′
ig(h̃) = 1

1 − h̃/e
. (5.7)

The model F′
ig is consistent with Fig satisfying that F′

ig (0) = Fig(0) = 1 and the
asymptotic behaviour that F′

ig → ∞ as h̃ → e. Figure 8 shows that, in almost the whole
range of h̃, the relative deviation between F′

ig and Fig, defined by ferr = |Fig − F′
ig|/Fig,
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Figure 8. Comparison of F′

ig predicted by simplified model (5.7) with Fig calculated by integral (5.6). The
solid lines represent the variation of Fig or F′

ig with the non-dimensional heat loss coefficient, whose deviations
ferr are indicated by the dashed lines.

is of O(1), suggesting qualitative agreement between the simplified model F′
ig and the

exact integral Fig. Replacing Fig by F′
ig enables solution of h̃ (or equivalently Ts) with

knowledge of τig (or equivalently τres) and hence provides convenience in deriving an
explicit expression for Tcr.

Using the simplified model F′
ig in the ignition criterion τres = τig, we obtain

Ta

Tig,cr
= ln

2Tad(1 − T∞/Tad)BR2
0

Ta(1 − T∞/Tig,cr)
2αg

− 2 ln(1 + αTRe1/2)

− ln

[
1 + 3αFKPe

Ar2 ln |1 + tan(φsep/2)|(1 + αTRe1/2)
2

]
,

(5.8)

where Ar = Ta/Tig,cr is the Arrhenius number and is usually of O(10).
The first and second terms on the right-hand side of (5.8) are identical to those in (3.53),

which interprets the effect of temperature inhomogeneity, resulting from respectively
conductive and convective heat transfer, on the critical ignition temperature. The additional
growth of Tcr due to the motion of IFP is represented by the last term on the right-hand
side of (5.8), which vanishes identically by either taking αFK = 0 (i.e. IFP attached to the
particle surface) or Pe = 0 (i.e. the combustible mixture in a quiescent condition). The
magnitude of this additional term appears to be considerably smaller than the remaining
terms, which implies that the motion of the IFP can hardly contribute to the elevation of
Tig,cr.

Figure 9 shows the change of critical ignition temperature, corresponding to a spherical
particle of radius 0.4 mm in a stoichiometric CH4/air mixture, with uniform flow velocity.
It is observed that the discrepancies between the solid lines appears to be indiscernible,
which demonstrates that considering the motion of the IFP results in negligible change
in the critical ignition temperature. Replacing Fig by its simplified model F′

ig results in
the elevation of Tig,cr, as indicated by the difference between the blue and red lines
of either solid or dashed type in figure 9. This can be attributed to the fact that the
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ig by (5.7)
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CFD (Zirwes et al.)

U∞
Figure 9. The variation of critical ignition temperature with uniform flow velocity, where the motion of the
IFP is taken into account. The black/red/blue solid lines refer to theoretically predicted Tig,cr respectively by
(3.53) without motion of the IFP, by revised criterion τres = τig equating uIFP = uFK with Fig calculated based
on its definition, i.e. (5.6), and with F′

ig evaluated through the simplified model, i.e. (5.7). The dashed lines
denote Tig,cr values obtained by the revised criterion τres = τig corresponding to underestimated residence
time with uIFE = ũφ,r̃=1. The symbols denote results from simulation (Zirwes et al. 2019).

magnitude of F′
ig is uniformly higher than that of Fig in the whole range of h̃, as shown

in figure 8, and thereby overestimates the heat loss effect during ignition. Nevertheless,
quantitative interpretation of the critical ignition condition requires appropriate evaluation
of the velocity of the IFP, uIFP. Comparison between the solid and dashed lines in figure 9
indicates that equating uIFP to uφ,r̃=1 outside the boundary layer would lead to a physically
implausible boost in Tig,cr. This can be attributed to the considerable reduction of the
residence time of the IFP, which is equivalent to an intensification of the heat loss effect
during the ignition process. Besides, the fact that the temperature of the IFP is close to Ts
denies the specification of uIFP = uφ,r̃=1 because the temperature at the outer edge of the
boundary can never be close to Ts and thereby hardly support a rapid chemical reaction.

6. Conclusions

In this work, we conducted theoretical analysis on the inhomogeneous ignition of a
combustible mixture by a hot particle. We revised Semenov’s transient ignition criterion
by introducing a hypothetical volumetric heat loss coefficient that accounts for the actual
temperature inhomogeneity. The revised ignition criterion allows us to determine the
critical ignition temperature. The critical ignition temperature is primarily determined
by the temperature inhomogeneity, which is quantified by the temperature gradient on
the particle surface and depends on the relative motion between the hot particle and
the ambient gas. At quiescent conditions with Re = 0, the temperature inhomogeneity
is caused by pure heat conduction and is dominantly affected by particle size, yielding
the result that the critical ignition temperature grows noticeably as the particle radius
decreases. At conditions of Re � 1, the creeping flow of the combustible mixture tends
to accumulate thermal energy on the rear hemisphere, which leads to non-uniformity of
the temperature gradient and thus facilitates ignition at the rear stagnation point. As Re
continuously increase, flow separation originates from the rear stagnation point and moves
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upstream. The momentum and thermal boundary layers before the separation point were
solved using a Blasius series, and the temperature gradient was obtained. Defining the
temperature gradient for ignition, i.e. lowest (∂θ/∂ r̃)r̃ over the particle surface, we derived
an explicit formula that correlates the critical ignition temperature with the temperature
inhomogeneity and the properties of the flammable mixture relating to its chemical
reactivity and molecular transport. The formula can be used to individually quantify the
contributions of various transient effects.

Due to the exceedingly large density ratio between the particle and the ambient gas,
the unsteadiness of particle cooling due to continuous heat transfer to the combustible
mixture was shown to make a negligible contribution to the ignition process. Besides, the
finite residence time of the IFP was considered and evaluated in the Frank–Kamenetskii
region. The theoretical formula for the critical ignition temperature was revised to include
an additional term accounting for the transient effect of a finite residence time of the IFP.

In general, the critical ignition temperature predicted by the present theory agrees
well with those obtained in experiments and numerical simulations for methane/air and
hydrogen/air mixtures. The discrepancy in quiescent situations can be attributed to the fact
that the frequency factor B is evaluated based on relevant data at high temperature and thus
overestimates the reaction rate in the low-temperature regime. A revised Arrhenius-type
reaction rate model considering the temperature dependence of the pre-exponential factor
would improve the theoretical prediction of the critical ignition temperature. In the
presence of relative motion between the particle and the ambient gas, the discrepancy in
the critical ignition temperature can be attributed to the assumption of constant transport
properties. In the present analysis, the viscosity of the ambient premixture is evaluated
at the environmental temperature, resulting in overestimation of the Reynolds number.
Accordingly, the stronger temperature inhomogeneity at the ignition location corresponds
to a higher critical ignition temperature. However, when the temperature dependence of
the transport properties is considered, the energy equation for the ambient premixture
becomes nonlinear and an analytical solution cannot be obtained.

This work neglects the thermal expansion of the ambient premixture and the radiative
heat transfer from the particle. For a particle of sufficiently high temperature, thermal
expansion may alter the flow field close to the particle surface, which in turn affects the
heat transfer rate and thereby the critical ignition temperature. The thermal radiation of the
hot particle may provide an additional route to the heating of the flammable mixture, and
the additional time scale for radiative heat transfer may also change the critical ignition
temperature. Besides, radical destruction reactions may take place on the particle surface,
which modify the local temperature profile and consequently may affect the ignition
behaviour. In future works, it would be interesting to take into account these effects. It
would be exceedingly difficult to deal with these effects in a theoretical analysis, and
thereby numerical simulations maybe conducted instead.
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