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a b s t r a c t

In the manufacturing of soft fibers at small scales, lack of considering the presence of surface tension
may cause a significant shape deviation from the desired geometry due to the surface tension-induced
fiber deformation. Here we develop an analytic algorithm to calculate the surface tension-induced
deformation of soft nanofibers with different cross-section shapes. We prove that the displacement
at the fiber cross-section boundary is independent of the cross-section size. Numerical examples
demonstrate that upon surface tension nanofibers with circular cross-sections undergo radial shrinking
and these with non-circular cross-sections are driven to rounder shapes. Moreover, the surface tension-
induced cross-section area change is significant for non-circular soft nanofibers as their sizes fall below
tens of nanometers.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Surface stress effects play key roles in regulating mechanical
ehaviors of solid materials at small scales [1]. One of the widely
dopted continuum models incorporating the surface stress on
olid deformation is the Gurtin–Murdoch model, in which both
he residual surface tension and strain-dependent surface elas-
icity are taken into account. Mounting analysis has been per-
ormed on the mechanical behaviors of nanostructured materials
ased on the Gurtin–Murdoch model, such as the stress state of
anosized hole/void/cavity [2–6] and inclusions [7–10], effective
lastic constants of nanostructured materials [11], crack prob-
ems incorporating surface effects [12], vibration and instability
f nanobeams [13], and nanoindentation of soft layers [14]. In
omparison with extensive efforts devoted to the stress-related
nalysis of nanomaterials, much less attention has been paid
o the analysis of nanomaterial deformation and morphological
hanges. A possible reason could be that most of the relevant
orks are focusing on hard materials, such as metals, wherein
he deformation induced by the surface stress is significantly
mall due to the high material stiffness (up to tens of GPa, see,
.g., [7]). For example, the radial and hoop strains on the surface
f a spherical void with a radius of 5 nm in a freshly cleaved
ron are smaller than 0.1% [2]. The interfacial residual tension
nd interfacial elasticity barely affect the equilibrium shape of
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Ni3Al precipitates with misfit eigenstrains in Ni–Al matrix [15].
Moreover, it has been pointed out that the effect of surface stress
on the dynamics of interface/surface evolution is relatively small
in most cases, and can be neglected in analyzing the instabilities
of core–shell heterostructured cylinders with high stiffness [16].

With the rapidly growing attention to soft robotics and flexible
structures at small scales, significant attention has been drawn to
the mechanical behaviors of soft nanostructures influenced by the
surface stress, such as the surface tension-induced stiffening of a
soft matrix by microsize liquid inclusions [17], Rayleigh–Plateau
instability in soft elastic filaments [18], and the stress concen-
tration around an elliptic hole inside a soft matrix [19]. Owing
to the low stiffness of soft materials (e.g., Young’s modulus of
silicone gels could be merely 1.7 kPa [17]), the surface stress can
cause evident deformation [20]. Consequently, the morphology of
small-scale soft materials in manufacturing may deviate signifi-
cantly from the desired shape with a lack of careful consideration
of the surface stress effect.

Understanding the mechanical deformation of soft materials
at a small scale is fundamentally important to the rational design
and control of soft structures. In this theoretical work, we focus
on the morphological changes of soft fibers induced by surface
tension under plane strain deformation. Nanofibers of various
cross-section shapes are considered. Employing Muskhelishvili’s
complex variable formulation for plane elasticity [21], we ob-
tain the cross-section morphological and area changes of soft
nanofibers upon surface tension. Our results indicate that those
changes are determined by the cross-section shape and size,
elastic constants of nanofibers, and surface tension magnitude.
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. Problem description and complex variable formulation

Consider a long cylindrical soft nanofiber with an arbitrarily
haped cross-section upon surface tension. The fiber is made of
n isotropic linear elastic material. The cross-section of the fiber
ccupies a simply connected region � with a smooth boundary
. The local outward unit normal vector n and unit tangential

vector t of the boundary 0 form the basis of a right-handed local
coordinate system nt . The angle between n and the positive x-axis
is α.

The surface tension vector with magnitude γ reads γ = γ t
at 0 and is related to the bulk stress tensor σ at the boundary
through the generalized Young–Laplace equation denoting the
force balancing [1]

σ · n =
dγ
ds
,

here s is the arclength at the fiber cross-section boundary. Then

· n =
d(γ t)
ds

= γ
dt
ds

= γ kn (1)

where k = − dα/ds is the local curvature. From Eq. (1), we have
the normal stress σnn and shear stress σnt at the boundary

σnn = n · σ · n = γ k = −γ
dα
ds
,

σnt = t · σ · n = 0.
(2)

The displacement components ux and uy in the xy coordinate
ystem and their corresponding components un and ut in the
t coordinate system can be expressed by two analytic complex
otentials ϕ(z) and ψ(z) of the complex variable z = x + iy (i =

−1) as [21]

2µ(ux + iuy) = κϕ(z) − zϕ′(z) − ψ(z),

2µ(un + iut ) = [κϕ(z) − zϕ′(z) − ψ(z)]e−iα,
(3)

where µ is the shear modulus and κ = 3 − 4ν with ν being the
oisson ratio. The overbars represent the complex conjugates and
rimes denote differentiation with respect to the variable in the
arentheses.
In the xy coordinate system, the components of the surface

raction exerted on 0 are denoted by X and Y, and they satisfy

i
∫ B

A
(X+iY )ds = [ϕ(z0) + z0ϕ′(z0) + ψ(z0)]

⏐⏐B
A , z0 ∈ 0, (4)

where A and B are the starting and ending points of any counter-
clockwise directed arc on 0.

From Eq. (2), we know

X + iY = σnn cosα + iσnn sinα. (5)

Inserting Eq. (5) into Eq. (4) leads to [22,23]

ϕ(z0) + z0ϕ′(z0) + ψ(z0) = −γ eiα, z0 ∈ 0, (6)

where the integral constant has been omitted. The analytic poten-
tials ϕ(z) and ψ(z) can be determined from Eq. (6) for nanofibers
of given cross-section shapes.

3. Problem solutions

For the fiber of an arbitrary cross-section shape, a new variable
ζ is introduced such that the complex variables z and ζ are
related via the following conformal mapping [21]

z = ω(ζ ) = R

(
ζ +

∞∑
mnζ

−n

)
, (7)
n=1

2

Fig. 1. Schematic of conformal mapping.

through which the exterior of 0 in the physical z-plane is mapped
onto the exterior of a unit circle with boundary L in the imaginary
ζ -plane and 0 onto L (see Fig. 1). Here the constant R (>0) defines
the cross-section size and complex constants mn(n = 1, 2 . . .)
efine the cross-section shape. As 0 is mapped onto L, there exists
0 = ω(σ ) = ω(eiθ ) or σ = eiθ = σ (z0) where z0 and σ denote
oints on 0 and L, respectively. Note that σ here is different from
he stress tensor σ and the stress components with subscripts. In
ractical calculations, the infinite terms of the polynomial (7) are
sually truncated with finite terms.
The analytic functions ϕ(z) and ψ(z) in the simply connected

egion � can be expanded and truncated as [24,25]

(z) =

N∑
k=1

akP∗

k (z), ψ(z) =

N∑
k=1

bkP∗

k (z), (8)

here ak, bk are unknown coefficients, and P∗

k (z) are Faber poly-
omials. On the boundary 0, the Faber polynomials can be ex-
ressed as [24,25]

∗

k (z0) = P∗

k (ω(σ )) = Pk(σ ) = σ k
+

∞∑
n=1

βk,nσ
−n, (9)

here the coefficients βk,n (k, n = 1, 2, . . .) are determined
hrough the following relations

1,n = mn,

k+1,n = mk+n + βk,n+1 +

n∑
i=1

mn−iβk,i −

k∑
i=1

mk−iβi,n

with coefficients mn, mk+n, mn−i and mk−i taken from Eq. (7).
Inserting Eqs. (8) and (9) into Eq. (6) results in

N∑
k=1

[
akPk(σ ) + ak

ω(σ )

ω′(σ )
P ′

k(σ ) + bkPk(σ )
]

= −γ σ
ω′(σ )
|ω′(σ )|

. (10)

Here we have used the expression eiα = σω′(σ )/
⏐⏐ω′(σ )

⏐⏐.
Using the following truncated Fourier series expansions

Pk(σ ) =

N∑
n=−N

Ck
n1σ

n,
ω(σ )

ω′(σ )
P ′

k(σ ) =

N∑
n=−N

Ck
n2σ

n,

Pk(σ ) =

N∑
n=−N

Ck
n3σ

n, σ
ω′(σ )
|ω′(σ )|

=

N∑
n=−N

Cn4σ
n

with

Ck
n1 =

1
2π

∫ 2π

0
Pk(σ )σ−ndθ, Ck

n2 =
1
2π

∫ 2π

0

ω(σ )

ω′(σ )
P ′

k(σ )σ
−ndθ,

Ck
n3 =

1
2π

∫ 2π

0
Pk(σ )σ−ndθ, Cn4 =

1
2π

∫ 2π

0
σ
ω′(σ )
|ω′(σ )|

σ−ndθ,

q. (10) becomes
N∑ [

N∑
akCk

n1 + akCk
n2 + bkCk

n3

]
σ n

=

N∑
(−γ )Cn4σ

n. (11)

n=−N k=1 n=−N
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rom Eq. (11) one can obtain 2N linear equations with 2N un-
nown coefficients ak and bk (k = 1, . . . ,N) as

N∑
k=1

akCk
n1 + akCk

n2 + bkCk
n3 = −γ Cn4, n = −N, . . . ,−1, 1, . . . ,N.

(12)

olving ak and bk (k = 1, . . . ,N) from Eq. (12), the complex
otentials ϕ(z) and ψ(z) can be determined from Eq. (8), and the
isplacement components are determined from Eq. (3).

. Results and discussion

The following desired cross-section shapes (after deformation)
re considered [21] (Fig. 2)

z = ω(ζ ) = Rζ , circlewith radius R,

z = ω(ζ ) = R(ζ + ζ−1/2), ellipsewith aspect ratio 1/3,

z = ω(ζ ) = R(ζ + ζ−2/3), approximate equilateral triangle,

z = ω(ζ ) = R(ζ + ζ−3/6), approximate square.

(13)

For a nanofiber of circular cross-section with a radius R, the
isplacement components in the nt coordinate system can be
btained as

n = −
(κ − 1)γ

4µ
ρ

R
< 0, ut = 0, (14)

where ρ is the distance from the section origin. Eq. (14) agrees
with analytical results in Ref. [26]. From Eq. (14), one can find
that the boundary displacement is un|ρ=R = −(κ − 1)γ /(4µ),
independent of the cross-section size. This result can also be
derived from a simple plane elasticity analysis as follows. In
the case of a circular cross-section, the uniform surface tension
γ is equivalent to a uniform pressure p = −γ /R according
to the Young–Laplace equation, and the resulting normal stress
components in the radial and circumferential directions are σrr =

σθθ = p with vanishing shearing-stress component in a polar
coordinate whose origin is located at the section center. There-
fore, a uniform strain in the radial direction is obtained as εrr =

[(1 − ν)σrr − νσθθ ]/(2µ) = (κ − 1)p/(4µR) or equivalently the
radial displacement ur = un in Eq. (14).

For nanofibers with non-circular cross-sections, the displace-
ment field can be expressed by (truncated) series expansions. The
number N of the truncated series terms is determined by the
criterion that the relative error between two consecutive sums
of the series is smaller than 0.1%. In the present work, N = 60
is a good choice. For all numerical calculations, we take material
constants as [19]

γ = 0.019N/m, µ = 256.84 × 103 Pa, ν = 0.499.

Fig. 2 demonstrates the surface tension-induced morpholog-
ical changes of nanofibers with circular, elliptic, triangular, and
square cross-sections. It is found that the nanofiber of a circu-
lar cross-section undergoes radial shrinking while nanofibers of
non-circular cross-sections shrink remarkably in the regions of
relatively large curvatures but inflate slightly in the regions of
relatively small curvatures. This curvature-mediated deformation
feature leads to a more significant change of cross-section area
for non-circular cross-sections in comparison with circular cross-
sections (Fig. 3). We also calculate the variance of distances
between the boundary points and section origin after and before
the nanofiber deformation, and find that the ratio of the distance
variances after and before deformation for the elliptic, triangular,
3

Fig. 2. Morphological changes of selected nanofiber cross-sections.

Fig. 3. Relative area changes of different fiber cross-sections as functions of R.
Data for the circular fiber have been enlarged 100 times for a clearer comparison.

and square cross-sections are 0.11, 0.083, and 0.047, respectively,
significantly smaller than 1. In this sense, the surface tension
drives non-circular cross-sections to a rounder geometry [17,27].

Fig. 3 shows the relative area change of the cross-section
(cross-section area change divided by initial area). The areas of
nanofibers with circular cross-sections always decrease, which is
also reflected in Eq. (14) with a negative radial displacement. For
nanofibers with non-circular cross-sections, however, the cross-
section areas may, surprisingly, increase dramatically when the
cross-section size falls below tens of nanometers.

The different features of nanofibers with circular and elliptic
cross-sections in Fig. 4 indicate that the aspect ratio plays an
important role in regulating the morphological changes due to
surface tension. To further investigate the aspect ratio effect, we
examine the relative area changes versus aspect ratio m, defined
as the ratio between the semi-minor axis length and semi-major
axis length (Fig. 4). The cross-section area is fixed as πR2

0, where
R0 is the radius of the circular cross-section. At a given R0, the
relative area change decreases as m increases. Moreover, there
exist size-dependent critical aspect ratios, below which areas
of the deformed nanofibers with elliptic cross-sections become
larger than the initial areas.

To investigate the surface tension effect, we introduce a di-
mensionless parameter γ /(µR) which is usually no more than
10−1 for solid materials [28]. Fig. 5 depicts the horizontal dis-
placement components of the rightmost points ux/R (their ver-
tical displacement components are zero due to symmetry) versus
the dimensionless surface tension γ /(µR). From Fig. 5, one can
see that u /R decreases linearly with γ /(µR) and the slope
x
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Fig. 4. Relative area changes as functions of aspect ratio m for nanofibers with
lliptic cross-sections.

Fig. 5. Normalized displacement ux at the rightmost points of the nanofibers
versus normalized surface tension. The results for the circular fiber have been
enlarged 100 times for a clearer comparison.

−dux/d (γ /µ) depends on the cross-section shape. Moreover, the
linear relationship between ux/R and γ /(µR) indicates that ux of
he rightmost points is independent of R. Below we give a proof
o show that this conclusion holds for arbitrary cross-section
hape. The boundary displacement components are related to the
omplex potentials via Eq. (3)

2µ(ux + iuy)
⏐⏐
0

= κϕ(z0) − z0ϕ′(z0) − ψ(z0), z0 ∈ 0. (15)

Moreover, the boundary condition (6) that determines the com-
plex potentials reads

ϕ(z0) + z0ϕ′(z0) + ψ(z0) = −γ eiα = −γ σ
ω′(σ )
|ω′(σ )|

, z0 ∈ 0, (16)

hich is only related to the cross-section shape. Therefore, the
oundary displacement components (ux + iuy)

⏐⏐
0

are indepen-
ent of the cross-section size.
For an arbitrary shape with a simple-closed boundary curve

, the Riemann mapping theorem [29] indicates that there exists
unique conformal mapping from the exterior of 0 onto the
xterior of the unit circle with boundary L, and from 0 onto L.
ith knowledge of the conformal mapping (for example, Eqs.

7) and (13) in our case studies), the morphological change of
nanofiber with arbitrary cross-section shape can be obtained

ollowing the presented scheme in Section 3.
4

5. Conclusions

Based on the complex variable formulation, we have inves-
tigated the morphological changes and geometrical properties
for soft nanofibers upon surface tension. Nanofibers of circular,
elliptic, triangular, and square cross-section shapes are analyzed.
For a nanofiber with circular cross-section, the radius always
shrinks and the cross-section area always decreases upon sur-
face tension. For nanofibers with non-circular cross-sections, the
surface tension drives the cross-sections to rounder geometries
and the cross-section areas may significantly increase as their
sizes fall below some critical values. Moreover, it is found that
the displacement at the cross-section boundary linearly depends
on the surface tension but is independent of the cross-section
size. The present work is based on the linear elasticity theory and
cannot be simply employed to address large deformation.
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