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Nanoblisters such as nanobubbles and nanotents formed by two-dimensional (2D) materials have been
extensively exploited for strain engineering purposes as they can produce self-sustained, nonuniform in-
plane strains through out-of-plane deformation. However, deterministic measure and control of strain fields
in these systems are challenging because of the atomic thinness and unconventional interface behaviors of
2D materials. Here, we experimentally characterize a simple and unified power law for the profiles of a
variety of nanobubbles and nanotents formed by 2D materials such as graphene and MoS2 layers. Using
membrane theory, we analytically unveil what sets the in-plane strains of these blisters regarding their
shape and interface characteristics. Our analytical solutions are validated by Raman spectroscopy measured
strain distributions in bulged graphene bubbles supported by strong and weak shear interfaces. We advocate
that both the strain magnitudes and distributions can be tuned by 2D material-substrate interface adhesion
and friction properties.
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Two-dimensional (2D) materials are atomically thin crys-
tals with unique properties that lend well to next-generation
ultrathin electronic and optoelectronic devices [1–4]. It has
been well established that mechanical strain can strongly
perturb the band structure of thesematerials, giving rise to the
possibility of using mechanical deformation to tune their
electronic and photonic performance dramatically [5–9]. In
fact, this principle, termed strain engineering, is now rou-
tinely used in manufacturing traditional semiconductor
devices [10]. The strain engineering of 2D materials is
particularly exciting because an individual atomic sheet is
intrinsically capable of sustaining much larger mechanical
strain compared to either their bulk counterparts or conven-
tional electronicmaterials [11,12].Also, the atomic thickness
of 2Dmaterials allows them to be easily poked or pressurized
from the third dimension (i.e., perpendicular to their plane of
atoms) [13–17]. The resulting configurations including
nanoscale bubbles and tents can be called by a unified name,
2D material blisters [13–20]. Recently, the considerable
strain associated with these nanoblisters has created oppor-
tunities for the study of new fundamental physics and
applications such as enormous pseudomagnetic fields,
large-scale quantum emitters, and so on [21–23].
A major challenge in these systems is to find out or even

control the strain in the blisters deterministically, calling for

understanding and validating how the blister geometry
intertwines with mechanics in these atomic sheets [24,25].
So far, self-similar profiles of the 2D material bubbles
have been widely discovered in experiments [15,17,26,27].
However, it remains challenging to analytically relate the
bubble and tent shape characteristics to the full-field strain
distributions and experimentally prove the relation. Con-
sequently, accurate strain tuning through blister shape
adjustments is still elusive [21,22,24]. One difficulty comes
from the intrinsically nonlinear coupling between in-plane
strain and out-of-plane deformations predicted by the mem-
brane theory [28].More fundamental concern arises from the
subtle nature of 2D materials, where the material thickness
approaches the atomic scale and the surface is atomically
smooth [29]. These features even challenge the applicability
of continuum theories from a perspective of deformation
physics [30–34]. As a result, the prevailing analysis of the
strain distribution and strain-coupled physics and chemistry
in 2D material blisters relies heavily on numerical tech-
niques, such as case-by-case molecular dynamics (MD)
simulations [22,24,35–37]. To deal with these concerns, a
combination of continuum theories with microscale experi-
ments is highly needed and yet to emerge so far.
Herein, we experimentally explore the strain field in

nanoblisters formed by 2D materials accounting for
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different natures of 2D materials interfaces. Using tapping
mode atomic force microscopy (AFM), we experimentally
characterized a variety of bubbles and tents formed by
graphene and MoS2 layers. Their shapes were empirically
found to follow a simple power law, enabling closed-form
analytical solutions to the Föppl–von Kármán equations at
the membrane limit. Our results show that the strain
distribution in the 2D material can be estimated by simply
measuring the height and radius of the bubbles and tents,
and that the strain highly depends on the interfacial
interaction between the 2D material and the underlying
substrate. To validate our analytical solutions, we exper-
imentally carried out Raman mapping on pressurized
graphene nanobubbles with strong (graphene-SiO2) and
weak (graphene-graphene) shear interfaces. The measured
and analytically predicted Raman shifts have found good
matches for both types of interfaces.
We first investigate the shape characteristics of both

nanobubbles and nanotents of 2Dmaterials, which can form
spontaneously or be created in a controllable manner. For the
spontaneous case, nanometer-scale bubbles and tents form
when monolayer or few-layer 2D materials are exfoliated or
transferred on a target substrate. The formationmechanism is
typically attributed to the inevitably trapped water, hydro-
carbon, and/or nanoparticles at the 2D material-substrate
interface during sample preparation [15,17]. The sponta-
neously formed nanobubbles and nanotents analyzed in this
study were made by mechanically exfoliating few- and
monolayer graphene and MoS2 from their bulk crystals on
silicon substrate, or transferringCVD-grownMoS2 on a gold
or Al2O3 substrate [38]. Details on the transfer process for
different types of samples are provided in the methods
section of the Supplemental Material [39]. Figure 1(a)
displays typical examples of nanobubbles formed by mono-
layer graphene on SiO2. When nanoparticles were trapped,
2D materials can drape around the nanoparticle, forming
micro- or nanotents as shown in Figs. 1(b) and 1(c). To form
controllable bubbles, we transferred monolayer graphene
and a 4-layer MoS2 to cover prepatterned microcavities in
SiO2 to form suspendeddrumheads and then followed awell-
established gas diffusion procedure to bulge the drumheads
[16]. In this case, the bubbles can be pressurized controllably
[Fig. 1(d) [39]].
The out-of-plane profiles of all the different types of

bubbles and tents prepared by us and collected from the
literature are summarized in Fig. 2. Although the radii of
the 2D material blisters range from tens to thousands of
nanometers, we realized that the height profiles of bubbles
and tents collapse onto two master curves if we normalize
the out-of-plane deflection (w) of each blister by its central
height (h), and the radial positions (r) by its radius (a). We
discovered that the collapsed height profiles can be
described by a unified power form,

w
h
¼ 1 −

�
r
a

�
α

; ð1Þ

where α is 2 for bubbles or 2=3 for tents. Note that Fig. 2
summarizes graphene and MoS2 bubbles and tents with
aspect ratios ranging from 0.05 to 0.20. Remarkably,
regardless of the aspect ratios, the types of 2D material,
the supporting substrates (silicon, alumina, or atomically
flat 2D material flakes), the content in the bubble (liquid or
gas), or the fabrication methods, all bubble profiles can
collapse to Eq. (1) with α ¼ 2 [Fig. 2(a)]. We also found
that for profiles of graphene and MoS2 tents, data obtained
from MD simulations or coarse-grained (CG) modeling
[22,24,36] can also collapse to Eq. (1) with α ¼ 2=3
[Fig. 2(b)]. In fact, the empirical conclusion of α ¼ 2 is

FIG. 1. From top to bottom: Atomic force microscopy (AFM)
phase andheight imagesof spontaneously formedgraphenebubbles
on SiO2 (a), a multilayer graphene tent on SiO2 (b), and a CVD-
MoS2 tent on gold film (c). (d) From left to right: optical image of
graphene flakes exfoliated onprepatternedSiO2withmicrocavities,
AFM height images of a monolayer graphene bubble, and a four-
layerMoS2 bubble. Note that (S) represents bubbles or tents formed
spontaneouslywhile (P) represents those formed by controllable air
pressurization.

(a) (b)

FIG. 2. Universal shape characteristics of 2D material bubbles
and tents. (a) Normalized bubble profiles measured by our
experiments and collected from literature. Note that samples
from Ref. [17] feature atomically smooth interfaces, are labeled
by *. (b) Normalized tent profiles measured by our experiments
and simulation results in the literature. The simulation data about
graphene and MoS2 is from Refs. [36,24], respectively.
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a widely adopted simple membrane solution for blisters
[48,49] and α ¼ 2=3 is well matched with the analytical
solution to an indented blister in the literature [28,50]. We
thus conclude that this simple power form can be a good
approximation for describing the profiles of 2D material
bubbles and tents.
Now that the out-of-plane displacement of 2D material

blisters is readily available as given in Eq. (1), we can try to
solve the in-plane displacement and then calculate strains
out of displacements. Attributing to the atomic thinness of
2D materials, it is sufficient to simply use the membrane
limit of the Föppl–von Kármán equations [28,48]. The in-
plane equilibrium equation in terms of displacements is
therefore

d2u
dr2

þ 1

r
du
dr

− u
r2

¼ − 1 − ν

2r

�
dw
dr

�
2 − dw

dr
d2w
dr2

; ð2Þ

where u is the in-plane displacement of the 2D material and
ν is the Poisson’s ratio. Plugging Eq. (1) into this equation
and solving the 2nd order ODE using the finite condition
when r → 0 can yield an analytical solution to the in-plane
displacement:

u ¼ ζðνÞ h
2

a

�
r
a
−
�
r
a

�
2α−1�

þ us
r
a
; ð3Þ

where ζðνÞ ¼ f½αð2α − 1 − νÞ�=½8ðα − 1Þ�g and us is a
constant related to the slippage at the edge of the blister
(r ¼ a). This explicit displacement field allows for the
direct solutions for both the radial and circumferential
strain fields:

εr ¼
8<
: ζðνÞ h2a2

h
1 − 1þν−2αν

2α−1−ν ðraÞ2α−2
i
þ us

a ; r ≤ a

− aus
r2 ; r > a

; ð4aÞ

εθ ¼
8<
:ζðνÞh2a2

h
1− ðraÞ2α−2

i
þ us

a ; r≤ a
aus
r2 ; r > a

: ð4bÞ

Clearly, the sliding of the 2D material-substrate interface
ðus ≠ 0Þ can induce nonzero strain in the supported zone
ðr > aÞ, which is important for strain engineering appli-
cations of 2D materials [35]. Typically, the edge of the 2D
material blister is assumed to be fully clamped due to
adhesion and strong shear interactions with the supporting
substrate outside of boundary [11,22.16]. However, the
atomically smooth surfaces of 2D materials make inter-
facial sliding particularly easy. Recent experiments on gas-
pressurized graphene bubbles revealed that the shear
interactions between graphene and its substrate can be
fairly weak, leading to nonlinear, deflection-dependent
interface sliding displacements [14,51]. It has also been

discovered that well-established theories assuming clamped
conditions offer good approximations only when the deflec-
tion is small (h=a < 0.1), while experimental measurements
deviated from theories with clamped boundaries in samples
with large deflection [14]. Recent studies on 2D material
interface further highlighted the so-called superlubrication
(near-zero friction) when a 2D material sits on atomically
smooth substrates, including itself, which is very common in
2D materials devices [52].
Considering that the graphene and MoS2 blisters in

Fig. 2 encompass either relatively strong interfaces with
small deflections or atomically lubricated interfaces, our
prime interest of this study is in two limits: strong-shear
limit (clamped, fully bonded interface) and weak-shear
limit (sliding, frictionless interface). For the former, we can
apply clamped boundary at the edge of the blister. For the
latter, the stress and displacement in the outer supported
region can be obtained as the classical Lamé problem in
linear elasticity [53]. The stress and displacement continu-
ity then leads to [39]

us ¼
(
0; strong-shear limit

− αð1þvÞ
8

h2
a ; weak-shear limit

: ð5Þ

Now Eqs. (4) and (5) combined offer the complete
analytical solutions to the strain field in 2D materials
forming blisters, with either strong or weak interaction
with their substrates. After appropriately choosing the α
and us according to the specific blister shape and 2D
material-substrate interface, one can easily compute the
strain distribution inside and outside of a 2D blister by
simply measuring its height and radius. We note that a
generalized analysis may be performed by accounting for
the detailed frictional resistance (e.g., the stick-slip behav-
ior) at the 2D material-substrate interface [54].
In Fig. 3, we plot the strain distributions of the 2D

material blister as solid curves using our equations. The
strain is normalized by h2=a2 such that the distribution will
only depend on the interface conditions and material
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FIG. 3. Normalized strain distribution curves predicted by our
analytical solution (solid lines) and solved by numerical analysis
(markers) in bubbles (a) and tents (b), subjected to both clamped
(strong interface) and frictionless (sliding interfaces) boundary
conditions. The strain is normalized by h2=a2, giving rise to
deflection-independent curves. The numerical results are solved
for a monolayer graphene with aspect ratios ranging from
0.02 < h=a < 0.2.
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properties, i.e., the Poisson’s ratio. Comparing Fig. 3(a) for
bubbles and Fig. 3(b) for tents, it is clear that the strain
gradients are much larger in tents, with strain divergence
towards the center of the tents due to the assumed point
load. Note that under the same aspect ratio, interface sliding
can considerably reduce the strain level in 2D material
blisters in comparison with blisters with strong-shear
interfaces. This highlights the importance of accounting
for the ultralubricated interface in the case that the 2D
material is supported by an atomically smooth substrate.
Next, we try to verify our analytical solutions numeri-

cally. We solved the nonlinear Föppl–von Kármán equa-
tions with clamped and slipping boundaries, where the
bending behavior is also considered for generality [39]. The
numerical solutions are plotted as markers in Fig. 3 for
monolayer graphene with aspect ratios ranging from 0.05 to
0.20, to directly compare with the analytical solutions
(solid curves). Since analytically solved strains are strictly
proportional to h2=a2, after normalization, the solid curves
are no longer dependent on the aspect ratio. However, the
numerically solved strains show more complicated depend-
ence on the aspect ratio, because the markers for different
aspect ratios do not fully collapse. Despite this small
discrepancy, the overall good agreement between the two
solutions indicates that for our experimentally observed
blisters with aspect ratios ranging from 0.05 to 0.20, bending
effects are negligible. Thus, the numerical results have
verified that our analytical solution given by Eq. (4) is a
reasonable estimation for strains in both bubbles and tents
under both clamped and slipping boundary conditions.
Our analytical solution, though verified numerically, is

still challenged by a widespread concern on the breakdown
of classical membrane theories at the atomic limit [30–34].
To examine the applicability of our analytical solutions, we
performed graphene bulging experiments with intentionally
designed strong- and weak-shear interfaces. Monolayer
graphene sealed microcavities were fabricated by micro-
mechanical cleavage of graphene over SiO2 substrate with
prepatterned 2.5-micron-radius holes [Fig. 4(a)]. Following
a well-developed gas diffusion method [16], we can create a
pressure difference across the monolayer and bulge it in a
controlled manner.
The strong-shear-interface graphene bubble was gener-

ated by pressurizing a graphene monolayer on SiO2 with
the maximum deflection less than 150 nm. Under this
condition, the interface sliding was found to be minimal;
thus it is compatible with the clamped interface assumption
[14]. To experimentally study the weak-shear case, we
assembled a graphene-SiO2 supporting substrate for the
graphene bubble [Fig. 4(b)]. First, few-layer graphene was
transferred over a SiO2 microhole. The suspended portion
of the multilayer graphene was then etched to open up the
microhole. After creating an atomically flat region around
the microhole, a monolayer graphene was precisely trans-
ferred to cover this microhole, resulting in a graphene

drumhead supported by few-layer graphene [39]. Applying
a differential pressure across the suspended graphene
membrane, this graphene bubble was expected to bulge
under weak-shear interface as the graphene-graphene inter-
face can be considered as superlubricated.
We performed multiple AFM and Raman characteri-

zations on the graphene bubbles with well-controlled
interfaces [39]. For an axisymmetric graphene bubble,
the G band shifts in the Raman spectrum are related to
the strain components through the following equation [55]:

ΔωG

ω0

¼ −γðεr þ εθÞ �
β

2
ðεr − εθÞ; ð6Þ

where εr and εθ are analytically expressed in Eq. (4), γ is
the Grüneisen parameter, and β is the shear deformation
potential that details the amount of splitting in the G bands,
which were experimentally calibrated for monolayer gra-
phene (γ ¼ 1.99 and β ¼ 0.99) [56]. Therefore, analytical
prediction for strain fields can be readily converted to
analytical prediction for the G band shifts using Eq. (6).
Particularly, at the center of the bubble where εr ¼ εθ, theG
band shifts are predicted by Eqs. (4) and (6) to take a very
simple form:

ΔωG ¼ −cγω0

h2

a2
ð7Þ

where the constant c is ½ð3 − νÞ=2� for bubbles supported
by strong shear interfaces and is (1 − ν) by weak shear
interfaces.
Because of space limitations, we present the details of

the experimental Raman characterizations in the Supple-
mental Material, Note 2 [39]. Here, we first show the

(a)

(c) (d)

(b)

FIG. 4. Schematics of the graphene drumheads formed on a
SiO2 substrate (a) and on a graphene-covered SiO2 substrate (b).
(c) Raman shifts of the G band at the center of graphene bubbles
predicted by our analytical solution (solid curves) and measured
by our experiments (markers). (d) Normalized Raman shifts of
the G band (ΔωGa2=ω0h2) as functions of the normalized radial
position (r=a) for monolayer graphene bubbles.
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Raman G band shifts at the center of graphene bubbles as a
function of h2=a2 in Fig. 4(c), which is predicted to be
linear by our analytical solution in Eq. (8). The markers
represent experimental data for both SiO2- (brown) and
graphene-supported (green) graphene bubbles and the solid
curves correspond to predicted G band shifts for strong-
(green) and weak-shear-interfaced (brown) 2D material
bubbles. By setting the Poisson’s ratio of graphene to be
0.165 in Eq. (7), we find good agreement between our
theoretical predictions and experimental measurements.
This may confirm the applicability of our simplified
membrane theory in relating the out-of-plane deformations
to in-plane strains for 2D material blisters.
In Fig. 4(d), we further normalize both the measured and

predictedG band shifts by h2=a2 and plot them as functions
of the normalized radial position r=a. Our weak-shear and
strong-shear model can partially capture the full-field strain
distribution in graphene-on-graphene and graphene-on-
SiO2 bubbles, respectively. However, deviation between
predicted and measured G band shifts occurs and enlarges
towards the edge of the bubble, especially for SiO2-
supported graphene bubbles. We attribute such edge
deviation in Fig. 4(d) to the limited spatial resolution of
Raman spectroscopy (∼1 μm) and the possible doping
effect by the substrate [57,58], which are further elucidated
in Figs. S9 and S10 [39]. As for 2D material tents, a recent
study reported the Raman 2D band shifts for a SiN=Si-
supported graphene drumhead subjected to nanoindenta-
tion [59]. The experimental results can be well captured by
our analytical solution to a 2D material tent with strong-
shear interface (Fig. S11 [39]). We thus claim that our
analytical solutions in Eq. (5), enabled by the shape
characteristics in Fig. 2, can offer valid estimation for
the in-plane strain in 2D material bubbles and tents simply
by knowing their height and radius. It is especially true at
the center of bubbles by Eq. (7), which may, in turn, be used
to measure the Grüneisen parameter for the broadly
extended 2D material family.
The 2D material bubble and tent structures have been

exploited in many recent studies [17–22,27,60–64] where
people typically use prepatterned micropillars or interface-
confined contents to produce a single or an array of 2D
material blisters. Our findings show that the strain in
blisters highly hinges on their aspect ratio (h=a). We note
that a balance between adhesion (which favors large areas
of contact) and stretching energy (which diminishes in
blisters of large radius) dictates a constant aspect ratio:

h=a ¼ ðϕΔγ=E2DÞ1=4: ð8Þ

whereΔγ is energy change per unit area, E2D is the in-plane
stiffness of the 2D material, and ϕ is a constant prefactor.
Equation (8) implies that the aspect ratio or ultimately the
strain of a 2D material bubble or tent is dominated by the
ratio of the 2D material-substrate adhesion to the in-plane

stiffness of the 2D material. In fact, this interface- and
stiffness-dependent out-of-plane deformation characteristic
has been observed at a variety of length scales—from
graphene to polymer films with thicknesses ranging from
1 nm to 1 mm [50]. Here, we determine ϕ for 2D material
bubbles and tents of both strong- and weak-shear interfaces
in Table I [39]. Notably, recent experimental discovery of
the constant aspect ratio of 2D material bubbles for a given
2D material-substrate system provided a good validation
[17], and there is no available experimental data for 2D
material tents so far.
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