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Abstract  

In this study, we analyze the propagation of an expanding triple flame in an axisymmetric counterflow 

of a fuel against an oxidizer. The problem is formulated as a thermo-diffusive model with one-step 

global reaction. An asymptotic analysis in the limit of large activation energy and weak strain rate is 

conducted. The study is supported and complemented by numerical simulations carried out for 

arbitrary values of the strain rate. In addition to the flame front curvature 1/𝑅௧ associated with the 

variation in the reactants concentrations transverse to the mixing layer, the propagation of the 

expanding triple flame also depends on the azimuthal curvature 1/𝑅௙ where 𝑅௙ is the front leading 

edge radial distance. As the triple flame expands to large radial distances, its propagation becomes 

quasi-steady. Under a quasi-steady state assumption, an explicit expression is derived for the 

displacement speed of the triple flame, which is found to be linearly proportional to the total curvature 

1/𝑅௙ ൅ 1/𝑅௧. Two-dimensional axisymmetric simulations are conducted to validate in particular the 

quasi-steady assumption. These include transient simulations of the expanding triple flame which are 

compared to the numerical solution of the steady eigenvalue problem obtained in a frame attached to 

the propagating front under a quasi-steady assumption. Following a transient ignition phase, the triple 

flame is found to propagate in a quasi-steady manner when 𝑅௙ (measured with the stoichiometric 

planar flame thickness) exceeds 5, approximately. Although the theoretical analysis is performed in 

the weak strain limit, the linear dependence of the triple flame speed on the curvature 1/𝑅௙ is found 

to be applicable over a wide range of strain rates. Besides, the analysis is extended for inwardly 

propagating triple flames (flame holes) and similar expressions describing the relationship between 

displacement speed of the triple flame and curvatures are obtained.   
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1. Introduction 

Non-premixed combustion occurs in most engines, such as gas turbine engines and direct 

injection engines [1]. During the combustion in these engines, unsteady local extinction and re-

ignition phenomena arise at certain locations depending on the local thermal conditions, mixture 

composition and flow parameters. Triple flame fronts are often observed as the separating boundary 

between the unburnt and burnt mixtures [2]. A triple flame may propagate or remain stationary, and 

is closely related to the flame flashback or blow-off in real combustors [3,4]. Given its critical role, a 

better comprehension of triple flame dynamics may lead to improved engine design. This study will 

assess the curvature effects on triple flame propagation speed. 

The triple flame propagation speed is larger than laminar flame speed of the corresponding 

stoichiometric mixture by a factor that scales with the square root of the fresh-to-burnt density ratio. 

The thermal expansion across the flame sheet and the flow redirection ahead the flame front were 

found to be responsible for the acceleration of triple flame [5]. Various regimes of triple flame were 

identified through extensive theoretical [6–12], numerical [3,13–17] and experimental [3,18–23] 

studies. Grib and Renfro [14] summarized the recent progress on triple flames and provided a 

descriptive triple/edge flame map based on an energy budget analysis. 

It is well known that the triple flame strongly depends on the local concentration gradient or 

mixing layer thickness. Daou and coworkers [7–10] have systematically analyzed the triple flame 

propagation in a planar counterflow, in which the mixing layer thickness is inversely proportional to 

the square root of strain rate. They derived an explicit formula for triple flame speed using large 

activation energy asymptotic analyses, and assessed the influence of various factors including 

preferential diffusion, heat loss and the reversibility of the chemical reaction. The correlations derived 

in theoretical analyses were verified by computational [3,14] and experimental studies [3,21–23].  

In turbulent combustion, the triple flame is always stretched and multi-dimensional, and it is 

subjected to spatially varying concentration gradients [2]. Therefore, there could exist another part of 

curvature, which is absent in planar counterflow or co-flow jet configuration [3,7–10,21]. A sketch 
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of an expanding triple flame in the axisymmetric counterflow configuration is depicted in Fig. 1. The 

triple flame is initiated by a hot spot or spark at the stagnation point, and it can propagate outwardly 

in a self-sustained manner if the ignition energy is above some critical value [24]. Figure 1 shows that 

the curvature of the expanding triple flame consists of two parts: the azimuthal curvature, 1/𝑅௙ , 

which is the inverse of the radial distance from the triple point to the origin and which decreases 

during the triple flame propagation; and the curvature, 1/𝑅௧, which is associated with the variation 

in the reactants concentrations transverse to the mixing layer and is therefore determined by the 

mixing layer thickness and thereby the stain rate of the counterflow.  

 

Fig. 1 Schematic of the expanding triple flame initiated by a hot spot or spark at the stagnation point 

of the counterflow of fuel against oxidizer. The radius 𝑅௙ refers to the distance from the triple flame 

to the axis of symmetry, and the radius 𝑅௧ depends on the stain rate of the counterflow. 

The effects of the curvature 1/𝑅௧ determined by the mixing layer thickness on triple flame 

propagation has been thoroughly discussed in the literature [3,7,9]. However, the effects of azimuthal 

curvature 1/𝑅௙ received little attention, which motivates the present work. Therefore, the objective 

of this study is to assess the effects of the curvature 1/𝑅௙ on the propagation speed of the expanding 

triple flame in a counterflow configuration. An asymptotic analysis in the limit of large activation 

energy and weak strain rate is conducted for the expanding triple flame, within a thermo-diffusive 
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model with one-step global reaction. An explicit expression is derived for the displacement speed of 

the expanding triple flame, which quantifies the effects of both curvatures on triple flame propagation.  

The paper is structured as follows. In Section 2, a model for the expanding triple flame in an 

axisymmetric counterflow is formulated. Section 3 presents a detailed asymptotic analysis and its 

theoretical results. To validate the theoretical analysis, two-dimensional simulations are conducted 

and the results are presented in Section 4. In addition to the expanding triple flame disc, the inwardly 

propagating flame hole with negative azimuthal curvature is also considered in Section 5 in order to 

extend the range of applicability of analytical results. Finally, the conclusions are summarized in 

Section 6.  

 

2. Model and formulation 

We consider an expanding triple flame in a two-dimensional axisymmetric counterflow 

configuration as shown in Fig. 1. A cylindrical coordinate system has its origin located at the 

stagnation point of the counterflow. Oxidizer and fuel streams are injected against each other from 

𝑧̃ ൌ േ∞, resulting in a mixing layer around the stagnation surface at 𝑧̃ ൌ 0. A hot spot at the 

stagnation point is used to ignite the triple flame [24]. Successful ignition results in an expanding 

triple flame propagating along the radial direction. The present model differs from that used by Daou 

and coworkers [7–9], in which the counterflow is planar and hence no azimuthal curvature affecting 

triple flame propagation is present.  

For mathematical simplicity, we adopt a thermal-diffusive model with constant density 

(denoted as 𝜌ሻ, which decouples the flow with combustion process due to the absence of thermal 

expansion. The ideal potential flow characterized by the strain rate 𝑎 is prescribed. The flow field is 

hence given as 𝑢෤௥̃ ൌ 𝑎𝑟̃ and 𝑢෤௭෤ ൌ െ2𝑎𝑧̃. We consider the one-step irreversible reaction with the fuel 

consumption rate following the Arrhenius law, 𝜔෥ி ൌ 𝐵𝜌ଶ𝑌ி𝑌ை expሺെ𝐸௔/𝑅଴𝑇ሻ, in which 𝐵 is the 

pre-exponent factor, 𝐸௔ the activation energy, 𝑅଴ the universal constant, 𝑌ி and 𝑌ை the mass fraction 

of fuel and oxidizer, and 𝑇 the temperature. The following non-dimensional variables are introduced 
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, (1) 

in which 𝑆௅
଴ is the laminar flame speed of a stoichiometric mixture, 𝛿௙ ൌ 𝐷்/𝑆௅

଴ the flame thickness 

of the corresponding premixed planar flame (in which 𝐷் is the thermal diffusivity), 𝑇௨ the unburnt 

temperature of incoming flow, and 𝑇௕ the adiabatic flame temperature. Here 𝑌ி,௦௧ and 𝑌ை,௦௧ represent 

the stoichiometric mass fraction of the fuel and oxidizer, respectively.  

For the axisymmetric counterflow with specified ideal potential flow, the non-dimensional 

governing equations for temperature and reactants’ mass fractions are 
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 (2) 

where 

 
𝜔 ൌ

𝛽ଷ

4
𝑦ி𝑦ை𝑒

ି 
ఉሺଵିఏሻ

ଵାఈ೓ሺఏିଵሻ, (3) 

is the non-dimensional consumption rate, with 𝛽 ൌ 𝐸ሺ𝑇௕ െ 𝑇௨ሻ/𝑅𝑇௕
ଶ being the Zel’dovich number, 

and 𝛼௛ ൌ ሺ𝑇௕ െ 𝑇௨ሻ/𝑇௕ the thermal expansion coefficient. The Lewis number is defined as 𝐿𝑒௜ ൌ

𝐷்/𝐷௜  ሺ𝑖 ൌ 𝐹,𝑂ሻ. The non-dimensional strain rate is 𝜆 ൌ 𝑎𝐷்/ሺ𝑆௅
଴ሻଶ. The higher strain rate, the 

shorter the residence time and thereby the weaker the flame. The Damköhler number is inversely 

proportional to the strain rate 𝜆.  

At 𝑟 ൌ 0, symmetry conditions of zero gradients for 𝜃, 𝑦ி and 𝑦ை should be satisfied. As 𝑟 →

൅∞ the conditions correspond to the steady frozen solution given by 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜃 ൌ 0,

𝑦ி ൌ
1 െ erf൫ඥ𝜆 𝐿𝑒ி𝑧൯

1 െ erf൫ඥ𝜆 𝐿𝑒ி𝑧௦௧൯
,

𝑦ை ൌ
1 ൅ erf൫ඥ𝜆𝐿𝑒ை𝑧൯

1 ൅ erf൫ඥ𝜆𝐿𝑒ை𝑧௦௧൯
,

 (4) 
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where 𝑧 ൌ 𝑧௦௧ represents the surface of stoichiometric mixture faction, and it is determined implicitly 

by the following expression 

 𝜙 erf൫ඥ𝜆𝐿𝑒ி𝑧௦௧൯ ൅ erf൫ඥ𝜆𝐿𝑒ை𝑧௦௧൯ ൌ 𝜙 െ 1, (5) 

where 𝜙 ൌ 𝑠𝑌ி௨/𝑌ை௨ is the global equivalence ratio for the inlet fuel and oxidizer streams and 𝑠 is 

the mass stoichiometric ratio. The governing equations subject to the boundary conditions will be 

solved using an asymptotic analysis in the next section.  

 

3. Asymptotic analysis  

We aim to investigate the expanding triple flame governed by equations (2). The triple flame 

propagation is expected to exhibit multiple regimes corresponding to positively propagating, 

retreating or non-propagating flame fronts, depending on the local thermal and chemical conditions 

[7,25]. By means of length scale analysis, Daou and Liñán [7] considered a set of meaningful length 

scales, e.g. the mixing layer thickness 𝛿௠, the local radius of the flame front 𝑅௧, the laminar flame 

thickness 𝛿௙, and the thickness of preheat zone 𝑙௛, to identify the triple flame regimes for large values 

of the Zel’dovich number 𝛽. 

Since we are concerned with the propagation of the expanding triple flame, it is convenient to 

choose a coordinate system attached to the moving flame front with radial position 𝑅௙ ൌ 𝑅௙ሺ𝑡ሻ. 

Accordingly, we introduce the coordinate transformation 

 𝜏 ൌ 𝜀𝑡, 𝜉 ൌ 𝜀൫𝑟 െ 𝑅௙൯, 𝜂 ൌ 𝜀ሺ𝑧 െ 𝑧௦௧ሻ, (6) 

in which 𝜀 is the length scale ratio defined by 𝜀 ൌ 𝛿௙/(𝛿௠/𝛽). We have 𝜀 ൌ 𝛽√𝜆 since 𝛿௙ ൌ 𝐷்/𝑆௅
଴ , 

𝛿௠ ൌ ඥ𝐷்/𝑎, and 𝜆 ൌ 𝑎𝐷்/ሺ𝑆௅
଴ሻଶ. The leading triple flame front along the stoichiometric surface in 

the new transformed coordinates is illustrated in Fig. 2.  
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Fig. 2 Schematic of the different length scales for the expanding triple flame along the 

stoichiometric surface (𝜂 ൌ 0 or 𝑧 ൌ 𝑧௦௧) in large activation energy limit and weak strain limit. 

 

Here, we consider two distinguished limits, the large activation energy limit and weak strain 

rate limit. Relevant length scales are schematically shown in Fig. 2. Under the large activation energy 

limit, the chemical reaction is confined to an infinite thin layer embedded in a thin preheat zone, i.e., 

𝛿௥ ≪ 𝑙௛. The weak strain limit is about the relative magnitude of flame thickness and mixing layer 

thickness, characterized by 𝛿௥  and 𝛿௠/𝛽 . The thermal mixing layer thickness is given by 𝛿௠ ൌ

ඥ𝐷்/𝑎, and here 𝛿௠/𝛽 represents the characteristic flame curvature 𝑅௧ within the mixing layer, as 

shown in Fig. 1. Under the weak strain limit, the flame front including the preheat zone is thin 

compared to the radius 𝑅௧ depicted in Fig. 1. Consequently, the flame can be considered as quasi-

planar. Following Daou and coworkers [7–9], we choose 𝛿௠/𝛽 as the characteristic length scale. The 

relative magnitudes of these three length scales, 𝛿௥, 𝑙௛ and 𝛿௠/𝛽, are described by 𝛽ିଵ ≪ 𝜀 ≪ 1. 

This separation of length scales enables us to seek an analytical description of the triple flame 

structure. 

In terms of the new coordinates in equation (6), the governing equations ሺ2ሻ become 
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 (7) 

where 𝑈௙ is the displacement speed of the expanding triple flame. Similar to premixed flames [26], 

the displacement speed quantifies the propagation speed of the triple flame front relative to the local 

flow, and it is equal to the flame front propagation speed minus the flow speed, i.e.,  

 
𝑈௙ ൌ

𝑑𝑅௙
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െ 𝜆𝑅௙ ൌ
𝑑𝑅௙
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െ
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𝑅௙ . (8) 

It is noted that in some previous studies (e.g., [3]), the displacement speed refers to the flame front 

propagation speed relative to the laboratory coordinate, i.e., 𝑑𝑅௙/𝑑𝑡, which is different from the one 

defined in this study. The definition of local triple flame speed in equation (8) is a rather simplified 

one and considered primarily for ease of theoretical analysis. The axial movement relative to the local 

flow field is neglected, which is only strictly suitable for symmetrical triple flames. Nevertheless, the 

triple flames in the present asymptotic analysis are almost symmetrical. The stoichiometric surface is 

very close to the stagnation plane. The weak strain limit assures that the local axial velocity, 𝜆𝑧௦௧, 

takes a very small value, which further justifies the usage of Eq. (8) throughout the asymptotic 

analysis. Under more asymmetrical conditions, e.g., very large (small) global equivalence ratios or 

very large difference between fuel and oxidizer Lewis numbers, the definition of Eq. (8) is no longer 

appropriate [3,27]. The alignment between tangential vector of mixture-fraction gradient and normal 

vector of temperature (product’s mass-fraction) iso-surface plays an important role in determining 

the local triple flame speed. Pantano [28] has proposed a more robust definition of local triple flame 

speed for more general contexts during the investigation of non-premixed edge flames in turbulent 

lifted flame. Karami et al. [29,30] showed that the local triple flame speed is a function of propagation 

velocities of mixture-fraction and temperature (product-mass fraction) iso-surfaces, and iso-surface 

orientations at the triple point. In order to capture the axial movement relative to the local flow field, 



9 
 
 

the definition in Eq. (8) should be modified accordingly for asymmetrical triple flames like Lu and 

Matalon [27].  

 

3.1 Large activation energy limit 

The expanding triple flame is similar to the diffusion flame disc/hole considered in previous 

studies [31–34]. Nayagam and coworkers [12,31,32] conducted theoretical analysis on flame disc in 

both premixed and diffusion flame regimes. They found that the flame disc expands at nearly constant 

speed at large radius. Transient simulations in the presence/absence of flow [34,35] were conducted, 

indicating that the propagation of triple flame can be described following quasi-steady approximation 

for 𝑅௙ ≫ 1 𝜀⁄ . In analogy to the transient formulation for expanding premixed spherical flames 

[36,37], the governing equations can be simplified by neglecting the time-dependent term and 

approximately writing 1 ൫𝜉 ൅ 𝜀𝑅௙൯⁄ ൎ 1 𝜀𝑅௙⁄ , i.e.,  
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, (9) 

where 𝜂̅௦௧ ൌ √𝜆 𝑧௦௧ is the rescaled stoichiometric surface location, and it is of order unity 𝑂ሺ1ሻ.  

Similar to the work of Daou and coworkers [7–9], here we consider the asymptotic limit of 

large activation energy and weak strain rate, 𝛽ିଵ ≪ 𝜀 ≪ 1. As shown in Fig. 2, the large activation 

energy restricts the reaction zone into an infinitely thin layer in the limit 𝛽 → ∞, and the weak strain 

results in the flame preheat layer thickness being 𝑂ሺ𝜀ሻ. A detailed length scale analysis can be found 

in the previous theoretical work of Daou and Liñán [7] and therefore is not repeated here. We first 

consider the large activation energy limit, 𝛽 → ∞, and obtain the solution outside the reaction sheet 

where diffusion is balanced by convection. With appropriate jump conditions, the problem is free 

from the presence of 𝛽.  
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In analogy to the analysis proposed by Daou and Liñán [7], we presume the Lewis number to 

be near unity, and thereby the quantities 𝑙ி ൌ 𝛽ሺ𝐿𝑒ி െ 1ሻ and 𝑙ை ൌ 𝛽ሺ𝐿𝑒ை െ 1ሻ are of order 1. The 

dependent variables are expanded in terms of 𝛽ିଵ, 

 𝜃 ൌ 𝜃ሺ଴ሻ ൅ 𝛽ିଵ𝜃ሺଵሻ ൅ ⋯, 

𝑦ி ൌ 𝑦ி
ሺ଴ሻ ൅ 𝛽ିଵ𝑦ி

ሺଵሻ ൅ ⋯, 

𝑦ை ൌ 𝑦ை
ሺ଴ሻ ൅ 𝛽ିଵ𝑦ை

ሺଵሻ ൅ ⋯. 

(10) 

Hence, the downstream boundary conditions are linearized accordingly, yielding  

 𝜃 ൌ 0, 𝑦ி ൌ 1 െ
𝛾ி𝜂
𝛽

, 𝑦ை ൌ 1 ൅
𝛾ை𝜂
𝛽

, (11) 

in the near flame front regime, where 𝛾ி and 𝛾ை are  

 
𝛾ி ൌ

2 expሺെ𝜂̅௦௧ଶ ሻ

√𝜋ሺ1 െ erfሺ𝜂̅௦௧ሻሻ
, 𝛾ை ൌ

2 expሺെ𝜂̅௦௧ଶ ሻ

√𝜋ሺ1 ൅ erfሺ𝜂̅௦௧ሻሻ
. (12) 

To the zeroth order, we have the conserved quantity in both upstream and downstream mixture, 

𝜃ሺ଴ሻ ൅ 𝑦ி
ሺ଴ሻ ൌ 𝜃ሺ଴ሻ ൅ 𝑦ை

ሺ଴ሻ ൌ 1 . We introduce the excess enthalpies ℎ  and 𝑘  to access the flame 

structure of order 𝛽ିଵ, 

 ℎ ൌ 𝜃ሺଵሻ ൅ 𝑦ி
ሺଵሻ, 𝑘 ൌ 𝜃ሺଵሻ ൅ 𝑦ை

ሺଵሻ. (13) 

Furthermore, we reformulate the problem in the flame-attached coordinate 𝜉መ ൌ 𝜉 െ 𝑓ሺ𝜂ሻ and 

𝜂̂ ൌ 𝜂 , where 𝑓ሺ𝜂ሻ represents the prescribed characteristic premixed flame sheet. The governing 

equations become 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧െቆ𝑈௙ ൅

1
𝑅௙
ቇ
𝜕𝜃ሺ଴ሻ

𝜕𝜉መ
ൌ 𝜀∆𝜃ሺ଴ሻ,

െቆ𝑈௙ ൅
1
𝑅௙
ቇ
𝜕ℎ

𝜕𝜉መ
െ
𝑙ி
𝑅௙

𝜕𝜃ሺ଴ሻ

𝜕𝜉መ
ൌ 𝜀∆ℎ ൅ 𝜀𝑙ி∆𝜃

ሺ଴ሻ,

െቆ𝑈௙ ൅
1
𝑅௙
ቇ
𝜕𝑘

𝜕𝜉መ
െ
𝑙ை
𝑅௙

𝜕𝜃ሺ଴ሻ

𝜕𝜉መ
ൌ 𝜀∆𝑘 ൅ 𝜀𝑙ை∆𝜃

ሺ଴ሻ,

 (14) 

where the operator Δ is defined as  
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∆ൌ ൫𝑓ᇱଶ ൅ 1൯

𝜕ଶ

𝜕𝜉መଶ
൅
𝜕ଶ

𝜕𝜂̂ଶ
െ 2𝑓ᇱ

𝜕ଶ

𝜕𝜉መ𝜕𝜂̂
െ 𝑓ᇱᇱ

𝜕

𝜕𝜉መ
 . (15) 

The solutions of the governing equations are subject to the jump conditions 

 ൣ𝜃ሺ଴ሻ൧ ൌ ሾℎሿ ൌ ሾ𝑘ሿ ൌ 0,  (16) 

 
ቈ
𝜕ℎ

𝜕𝜉መ
቉ ൅ 𝑙ி ቈ

𝜕𝜃ሺ଴ሻ

𝜕𝜉መ
቉ ൌ ቈ

𝜕𝑘

𝜕𝜉መ
቉ ൅ 𝑙ை ቈ

𝜕𝜃ሺ଴ሻ

𝜕𝜉መ
቉ ൌ 0, (17) 

 
𝜀ට1 ൅ 𝑓ᇱଶ ቈ

𝜕𝜃ሺ଴ሻ

𝜕𝜉መ
቉ ൌ െቆ1 ൅

1
2
ሺ𝜇 െ 𝜎ሻቇ

ଵ
ଶ

exp ቀ
𝜎
2
ቁ, (18) 

in which the notation ሾ𝜓ሿ= 𝜓൫𝜉መ ൌ 0ା,  𝜂̂൯ െ 𝜓൫𝜉መ ൌ 0ି, 𝜂̂൯ is used. These jump conditions are the 

same as those reported by Daou and Liñán [7]. Besides, 𝜎 and 𝜇 take the values of ℎ or 𝑘 depending 

on the local equivalence ratio, 

 
ቊ
𝜎 ൌ ℎ൫𝜉መ ൌ 0ା,  𝜂̂൯,   𝜇 ൌ 𝑘൫𝜉መ ൌ 0ା,  𝜂̂൯, 𝑘 ൒ ℎ,

𝜎 ൌ 𝑘൫𝜉መ ൌ 0ା,  𝜂̂൯,   𝜇 ൌ ℎ൫𝜉መ ൌ 0ା,  𝜂̂൯, 𝑘 ൏ ℎ.
 (19) 

 

3.2 Weak strain limit 

For large activation energy in the limit 𝛽 → ∞ , the reaction zone is an infinitely thin 

discontinuity surface. The parameter 𝜀 characterizes the ratio of the preheat zone thickness to the 

mixing layer thickness. In the limit of 𝜀 → 0, the flame front preheat zone is a thin region of order 

𝑂ሺ𝜀ሻ. Outside the preheat zone, both diffusion and convection are negligible. In this regime, the 

classical tri-branchial flame structure is observed both in numerical simulations [3,5] and experiments 

[6,21,38]. We conduct an asymptotic analysis in the weak strain limit and seek both the inner and 

outer solutions. For the outer solution, the asymptotic expansion for the temperature and excess 

enthalpies are written in the form 

 𝜃ሺ଴ሻ ൌ Θ଴ ൅ 𝜀Θଵ ൅ ⋯ , 

ℎ ൌ 𝐻଴ ൅ 𝜀𝐻ଵ ൅⋯ , 

𝑘 ൌ 𝐾଴ ൅ 𝜀𝐾ଵ ൅⋯. 

(20) 
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The flame shape function and flame propagation speed are expanded in analogous forms, 

 𝑓 ൌ 𝑓଴ ൅ 𝜀𝑓ଵ ൅ ⋯ , 𝑈௙ ൌ 𝑈௙଴ ൅ 𝜀𝑈௙ଵ ൅ ⋯. (21) 

After substituting the above quantities into the governing equations (14), we obtain the 

following outer solutions using the boundary conditions, 

 
Θ଴ ൌ ቄ

0,
1,        H଴ ൌ ൜

െ𝛾ி𝜂̂,
െ𝛾ி𝜂̂ ൅ 𝐴,         K଴ ൌ ൜

𝛾ை𝜂̂,
𝛾ை𝜂̂ ൅ 𝐵,         

for 𝜉መ ൐ 0,
for 𝜉መ ൏ 0.

 (22) 

The higher order solutions can also be determined and they are all essentially zero, i.e., Θଵ ൌ

Hଵ ൌ Kଵ ൌ Θଶ ൌ Hଶ ൌ Kଶ ൌ ⋯ ൌ 0. 

For the inner solution, we introduce the stretched coordinate 𝜁 ൌ 𝜉መ/𝜀, and the temperature 

and excess enthalpies are transformed into functions depending on 𝜁. The asymptotic expansions for 

the inner solution are written as 

 𝜃ሺ଴ሻ ൌ 𝜃଴ ൅ 𝜀𝜃ଵ ൅ ⋯ , 

ℎ ൌ ℎ଴ ൅ 𝜀ℎଵ ൅ ⋯ , 

𝑘 ൌ 𝑘଴ ൅ 𝜀𝑘ଵ ൅⋯. 

(23) 

Consequently, the equations for the leading order terms are  

 

⎩
⎪⎪
⎨

⎪⎪
⎧ െቆ𝑈௙଴ ൅

1
𝑅௙
ቇ
𝜕𝜃଴
𝜕𝜁

ൌ ℒ଴𝜃଴,

െቆ𝑈௙଴ ൅
1
𝑅௙
ቇ
𝜕ℎ଴
𝜕𝜁

െ
𝑙ி
𝑅௙

𝜕𝜃଴
𝜕𝜁

ൌ ℒ଴ሺℎ଴ ൅ 𝑙ி𝜃଴ሻ,

െቆ𝑈௙଴ ൅
1
𝑅௙
ቇ
𝜕𝑘଴
𝜕𝜁

െ
𝑙ை
𝑅௙

𝜕𝜃଴
𝜕𝜁

ൌ ℒ଴ሺ𝑘଴ ൅ 𝑙ை𝜃଴ሻ,

 (24) 

where ℒ଴ ൌ ൫𝑓଴
ᇱଶ ൅ 1൯ డమ

డ఍మ
. Using the jump and matching conditions in equations (16)-(18) and (22), 

The analytical solutions for temperature and components’ concentration are obtained as 

 
𝜃଴ ൌ ൜𝑒

ିఈ఍ , 𝜁 ൐ 0,
1 , 𝜁 ൏ 0,

 (25) 
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ℎ଴ ൌ

⎩
⎪
⎨

⎪
⎧
െ𝛾ி𝜂̂ ൅

𝑙ி ൬𝑈௙଴𝜁 െ
1
𝛼𝑅௙

൰

𝑓଴
ᇱଶ ൅ 1

𝑒ିఈ఍ , 𝜁 ൐ 0,

െ𝛾ி𝜂̂ െ
𝑙ி

𝑅௙𝑈௙଴ ൅ 1
, 𝜁 ൏ 0,

 (26) 

 

𝑘଴ ൌ

⎩
⎪
⎨

⎪
⎧
𝛾ை𝜂̂ ൅

𝑙ை ൬𝑈௙଴𝜁 െ
1
𝛼𝑅௙

൰

𝑓଴
ᇱଶ ൅ 1

𝑒ିఈ఍ , 𝜁 ൐ 0,

𝛾ை𝜂̂ െ
𝑙ை

𝑅௙𝑈௙଴ ൅ 1
, 𝜁 ൏ 0,

 (27) 

where 𝛼 ൌ ൫𝑅௙𝑈௙଴ ൅ 1൯/൫𝑅௙𝑓଴
ᇱଶ ൅ 𝑅௙൯. Using the jump relation (18) together with equations (25)-

(27) we have 

 

𝑈௙଴ ൅
1
𝑅௙

ට𝑓଴
ᇱଶ ൅ 1

ൌ

⎩
⎪
⎨

⎪
⎧
ඨ1 ൅

𝛾ை ൅ 𝛾ி
2

𝜂̂ ൅
1
2

𝑙ி െ 𝑙ை
𝑅௙𝑈௙଴ ൅ 1

𝑒
ିଵଶ൬ఊಷఎෝା

௟ಷ
ோ೑௎೑బାଵ

൰
, 𝑘 ൒ ℎ,

ඨ1 െ
𝛾ை ൅ 𝛾ி

2
𝜂̂ െ

1
2

𝑙ி െ 𝑙ை
𝑅௙𝑈௙଴ ൅ 1

𝑒
ଵ
ଶ൬ఊೀఎෝି

௟ೀ
ோ೑௎೑బାଵ

൰
, 𝑘 ൑ ℎ.

 (28) 

The local displacement speed of triple flames refers to the normal component of local 

propagation speed with respect to the unburnt mixture [39] and is given as 

 
𝑈ഥ௙଴ ൌ

𝑈௙଴

ට1 ൅ 𝑓଴
ᇱଶ

 
(29) 

and it is maximum when 𝑓଴
ᇱሺ𝜂̂∗ሻ ൌ 0, where 𝜂̂∗ denotes the leading edge position. Exploiting this 

condition, we find that 

 

𝜂̂∗ ൌ

⎩
⎪
⎨

⎪
⎧ 1
𝛾ை ൅ 𝛾ி

ቆ
𝛾ை െ 𝛾ி
𝛾ி

െ
𝑙ி െ 𝑙ை

𝑅௙𝑈௙଴ ൅ 1
ቇ , 𝜙 ൑ 1,

1
𝛾ை ൅ 𝛾ி

ቆ
𝛾ை െ 𝛾ி
𝛾ை

െ
𝑙ி െ 𝑙ை

𝑅௙𝑈௙଴ ൅ 1
ቇ , 𝜙 ൒ 1,

 (30) 

at which the local flame speed satisfies  
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𝑈௙଴ ൅
1
𝑅௙

ൌ

⎩
⎪
⎪
⎨

⎪
⎪
⎧
ඨ
𝛾ை ൅ 𝛾ி

2𝛾ி
exp൮

𝛾ி െ 𝛾ை െ
𝛾ை𝑙ி ൅ 𝛾ி𝑙ை
𝑅௙𝑈௙଴ ൅ 1

2ሺ𝛾ை ൅ 𝛾ிሻ
൲ , 𝜙 ൑ 1,

ඨ
𝛾ை ൅ 𝛾ி

2𝛾ை
exp൮

𝛾ை െ 𝛾ி െ
𝛾ை𝑙ி ൅ 𝛾ி𝑙ை
𝑅௙𝑈௙଴ ൅ 1

2ሺ𝛾ை ൅ 𝛾ிሻ
൲ , 𝜙 ൒ 1.

 (31) 

Substitute the equation (31) back into the equation (28), and the first order derivative of flame 

shape function 𝑓଴
ᇱሺ𝜂ሻ is therefore obtained. Then the shape of the flame front is readily obtained after 

integration of 𝑓଴
ᇱሺ𝜂ሻ.  

We consider the case of unity initial global equivalence ratio (i.e., 𝜙 ൌ 1), for which 𝑈௙଴ is 

readily obtained as 

 
𝑈௙଴ ൅

1
𝑅௙

ൌ expቆെ
𝑙ி ൅ 𝑙ை

4൫𝑅௙𝑈௙଴ ൅ 1൯
ቇ. (32) 

The above expression describes the change of the displacement speed 𝑈௙଴ with the azimuthal 

curvature 1/𝑅௙ and its dependence on Lewis numbers under the limit of weak strain rate. We fix the 

Lewis number of the oxidizer to be unity, and only change the fuel Lewis number. Equation (32) is 

solved numerically with for 𝛽 ൌ 10, and the results are depicted on Fig. 3 for different fuel Lewis 

numbers. It is seen that 𝑈௙଴ is linearly proportional to 1/𝑅௙  for large radius. The non-monotonic 

response of 𝑈௙଴  to 1/𝑅௙  are observed for sufficiently small fuel Lewis number. Similar non-

monotonic change with respect to strain rate was also observed in the literature [7]. 
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Fig. 3 Change of displacement speed 𝑈௙଴ with the azimuthal curvature 1/𝑅௙ for different fuel 

Lewis numbers but the same oxidizer Lewis number of 𝐿𝑒ை ൌ 1. Here we fix 𝛽 ൌ 10. 

In fact, for sufficiently large radius 𝑅௙ ≫ 1, equation (32) reduces to 

 
𝑈௙଴ ൎ 1 െ ൬1 ൅

𝑙ி ൅ 𝑙ை
4

൰
1
𝑅௙

൅ 𝑂 ቆ
1
𝑅௙
ቇ. (33) 

The second-order derivative 𝑓଴
ᇱᇱሺ𝜂̂∗ሻ is evaluated by differentiating the equation (28) at the 

leading edge for further use, providing 

 

𝑓଴
ᇱᇱሺ𝜂̂∗ሻ ൌ ൞

െ
γ୊
√2

, 𝜙 ൑ 1,

െ
γை
√2

, 𝜙 ൒ 1.
 (34) 

This quantity can be used to determine the transverse curvature 1/𝑅௧ . With proper coordination 

transformation from the flame attached coordinate ൫𝜉መ, 𝜂̂൯ to the original coordinate ሺ𝑟, 𝑧ሻ, we have 

1/𝑅௧ ൌ െ𝜀𝑓଴
ᇱᇱ. For the case 𝜙 ൌ 1, we have 𝛾ி ൌ 𝛾ை ൌ 2/√𝜋 according to equation (12), and hence 

1/𝑅௧ ൌ 𝜀ඥ2/𝜋. 

The influence of strain rate is absent in the zeroth-order approximation to the triple flame 

propagation speed, given in equation (33). This implies that higher order terms of 𝑂ሺ𝜀ሻ must be 

considered. The corresponding equations are given by, 

1/Rf

U
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⎩
⎪⎪
⎨

⎪⎪
⎧ െቆ𝑈௙଴ ൅

1
𝑅௙
ቇ
𝜕𝜃ଵ
𝜕𝜁

ൌ ℒ଴𝜃ଵ ൅ ℒଵ𝜃଴ ൅ 𝑈௙ଵ
𝜕𝜃଴
𝜕𝜁

,

െቆ𝑈௙଴ ൅
1
𝑅௙
ቇ
𝜕ℎଵ
𝜕𝜁

െ
𝑙ி
𝑅௙

𝜕𝜃ଵ
𝜕𝜁

ൌ ℒ଴ሺℎଵ ൅ 𝑙ி𝜃ଵሻ ൅ ℒଵሺℎ଴ ൅ 𝑙ி𝜃଴ሻ ൅ 𝑈௙ଵ
𝜕ℎ଴
𝜕𝜁

,

െቆ𝑈௙଴ ൅
1
𝑅௙
ቇ
𝜕𝑘ଵ
𝜕𝜁

െ
𝑙ை
𝑅௙

𝜕𝜃ଵ
𝜕𝜁

ൌ ℒ଴ሺ𝑘ଵ ൅ 𝑙ை𝜃ଵሻ ൅ ℒଵሺ𝑘଴ ൅ 𝑙ை𝜃଴ሻ ൅ 𝑈௙ଵ
𝜕𝑘଴
𝜕𝜁

,

 (35) 

in which the operator ℒଵ is defined as 

 
ℒଵ ൌ 2𝑓଴

ᇱ𝑓ଵ
ᇱ 𝜕

ଶ

𝜕𝜁ଶ
െ 2𝑓଴

ᇱ 𝜕ଶ

𝜕𝜁𝜕𝜂̂
െ 𝑓଴

ᇱᇱ 𝜕
𝜕𝜁

. (36) 

These equations are valid except for the flame surface. The jump condition at 𝜁 ൌ 0  is 

determined based on equation (16)-(18), 

 ሾ𝜃ଵሿ ൌ ሾℎଵሿ ൌ ሾ𝑘ଵሿ ൌ 0, (37) 

 
൤
𝜕ℎଵ
𝜕𝜁

൨ ൅ 𝑙ி ൤
𝜕𝜃ଵ
𝜕𝜁

൨ ൌ ൤
𝜕𝑘ଵ
𝜕𝜁

൨ ൅ 𝑙ை ൤
𝜕𝜃ଵ
𝜕𝜁

൨ ൌ 0, (38) 

 
൤
𝜕𝜃ଵ
𝜕𝜁

൨ ൌ ቌ
𝜎ଵ
2
െ

𝑓଴
ᇱ𝑓ଵ

ᇱ

𝑓଴
ᇱଶ ൅ 1

൅

𝜇ଵ െ 𝜎ଵ
4

1 ൅
𝜇଴ െ 𝜎଴

2
ቍ ൤
𝜕𝜃଴
𝜕𝜁

൨. (39) 

Upstream of the flame surface, the flame temperature is bounded, which eliminates the 

exponential terms. Meanwhile, to match with the outer solution in equation (25), the upstream 

solution for 𝜃ଵ  is 𝜃ଵ ൌ 0 for 𝜁 ൒ 0. Solving the equation (35) in the unburnt gas with the jump 

conditions in equations (37)-(38), and matching with the high order outer solutions, i.e., Θଵ ൌ Hଵ ൌ

Kଵ ൌ 0, it is readily obtained that 

 
𝜃ଵ ൌ

1

𝑓଴
ᇱଶ ൅ 1

ቆ
2𝛼𝑓଴

ᇱଶ𝑓଴
ᇱᇱ

𝑓଴
ᇱଶ ൅ 1

𝜁 െ 𝑈௙ଵ ൅ 𝑓଴
ᇱᇱ ൅ 2α𝑓଴

ᇱ𝑓ଵ
ᇱቇ 𝜁𝑒ିఈ఍ , (40) 
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ℎଵ ൌ

𝑙ி𝑅௙𝑒ିఈ఍

𝑅௙𝑈௙଴ ൅ 1
ቆ
𝑈௙ଵ ൅ 𝑅௙𝑈௙଴𝑓଴

ᇱᇱ

𝑅௙𝑈௙଴ ൅ 1
ቇ ൅

𝑙ி𝜁𝑒ିఈ఍

𝑓଴
ᇱଶ ൅ 1

ቆ
𝑈௙ଵ െ 𝑓଴

ᇱᇱ

𝑅௙𝑈௙଴ ൅ 1
൅ 𝑈௙ଵ െ 2𝛼𝑓଴

ᇱ𝑓ଵ
ᇱቇ

൅
𝑙ி𝜁ଶ𝑒ିఈ఍

൫𝑓଴
ᇱଶ ൅ 1൯

ଶ ቆ2𝛼𝑓଴
ᇱ𝑓ଵ

ᇱ𝑈௙଴ ൅ 2𝛼𝑓଴
ᇱᇱ െ 𝑈௙଴𝑈௙ଵ െ 𝑓଴

ᇱᇱ𝑈௙଴ െ
2𝑓଴

ᇱᇱ

𝑅௙
ቇ

൅
2𝑙ி𝛼𝑓଴

ᇱଶ𝑓଴
ᇱᇱ𝑈௙଴𝜁ଷ𝑒ିఈ఍

൫𝑓଴
ᇱଶ ൅ 1൯

ଷ , 

(41) 

 
𝑘ଵ ൌ

𝑙ை𝑅௙𝑒ିఈ఍

𝑅௙𝑈௙଴ ൅ 1
ቆ
𝑈௙ଵ ൅ 𝑅௙𝑈௙଴𝑓଴

ᇱᇱ

𝑅௙𝑈௙଴ ൅ 1
ቇ ൅

𝑙ை𝜁𝑒ିఈ఍

𝑓଴
ᇱଶ ൅ 1

ቆ
𝑈௙ଵ െ 𝑓଴
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(42) 

We now consider the remaining jump condition (39) and determine the next order 

approximation for triple-flame speed 
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. (43) 

Despite the flame shape function in equation (43) being unknown, it is still possible to 

determine the flame propagation speed at the leading edge, where 𝑓଴
ᇱሺ𝜂̂∗ሻ ൌ 0. Accordingly, we have,  
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 (44) 

In the limit of unity global equivalence ratio (i.e., 𝜙 ൌ 1), equation (44) can be simplified to 
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The asymptotic form for the triple flame displacement speed, for the case of 𝜙 ൌ 1, are 

defined as 𝑈௙ ൌ 𝑈௙଴ ൅ 𝜀𝑈௙ଵ. Substituting the results for the leading and first order terms in equations 

(33) and (45), we have, for 𝑅௙ ≫ 1, 

 
𝑈௙ ൌ 1 െ ൬1 ൅

𝑙ி ൅ 𝑙ை
4

൰ ቆ
1
𝑅௙

൅
1
𝑅௧
ቇ ,        with  

1
𝑅௧

ൌ ඨ
2
𝜋
𝜀, (46) 

where 1/𝑅௧ ൌ 𝜀ඥ2/𝜋 is obtained from equation (34) as mentioned before. 

The present formulation extends that given by Daou and coworkers [7–9] by considering the 

effect of the flame radius, 𝑅௙ . The present theory is consistent with that obtained by Daou and 

coworkers [7–9] in the limit of large triple flame radius. Equation (46) implies that the azimuthal 

flame curvature 1/𝑅௙  has considerable impact on the displacement speed of the triple flame in 

addition to the local flame curvature 1/𝑅௧ , and that the resulting 𝑈௙  depends on the total flame 

curvature, 1/𝑅௙ ൅ 1/𝑅௧, at the leading edge (which is equal to twice the mean curvature). The Lewis 

number also affects the triple flame speed since it changes the excess enthalpy near the flame edge.  

 

4. Numerical study  

To validate the theoretical analysis under the quasi-steady assumption and large-activation-

energy limit, two-dimensional simulations considering finite activation energy are conducted. Two 

types of simulations are carried out: one is the transient simulation of the propagation of the expanding 

triple flame induced by a hot spot at the stagnation point, and the other is the steady solution for the 

triple flame in a coordinate system fixed on the propagating flame front in which the displacement 

speed is obtained by numerically solving an eigenvalue problem. These two types of simulations and 

corresponding results are addressed in subsection 4.1 and 4.2. In all simulations, we use for the 

parameters the fixed values 𝛽 ൌ 10, 𝛼௛ ൌ 0.85, 𝐿𝑒ை ൌ 1.0 and 𝜙 ൌ 1.0. 
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4.1 The transient propagation of the expanding triple flame 

We first simulate the initiation and propagation of an expanding triple flame induced by a hot 

spot in a counterflow as depicted in Fig. 1. The propagation speed of the expanding triple flame can 

be determined in terms of the parameters 𝛽, 𝛼௛, 𝐿𝑒ி, 𝐿𝑒ை and 𝜆. The numerical methods are the same 

as those in our previous work [24]. The governing equations are solved using finite difference 

methods within a two-dimensional computation domain of ሾ0, 𝑟௠ሿ ൈ ሾെ𝑧௠ି , 𝑧௠ାሿ . The first- and 

second-order spatial derivatives in the governing equations are discretized using the sixth-order 

compact scheme for the internal grids. As for grids near the boundaries, the third-order one-sided 

compact scheme is adopted. The discretized governing equations are first-order ordinary differential 

equations with respect to time, which is integrated using the explicit second-order Runge–Kutta 

method. For ease of boundary treatment, we adopt a slightly different scaling for the mass fraction of 

fuel and oxidizer, 𝑦തி ൌ 𝑌ி/𝑌ி௨  and 𝑦തை ൌ 𝑌ை/𝑌ை௨  respectively. The triple flame position is 

determined as the radial location of the maximal of the reaction rate. The displacement speed of the 

expanding triple flame is equal to the difference between the flame front speed, 𝑑𝑅௙/𝑑𝑡, and the local 

flow velocity, 𝜆𝑅௙, i.e., 𝑈௙ ൌ 𝑑𝑅௙/𝑑𝑡 െ 𝜆𝑅௙. 

The transient evolution of the expanding triple flame is shown in Fig. 4 for the strain rate of 

𝜆 ൌ 0.01  and fuel Lewis number of 𝐿𝑒ி ൌ 1 . The hot spot has the initial radius 𝑅௜ ൌ 1.4  and 

temperature 𝜃௜ ൌ 1. Intense chemical reactions are induced by the hot spot, and an expanding triple 

flame is established around 𝑅௙ ൌ 2. As the flame propagates outwards, the influence of the initial 

ignition kernel decays and the propagation becomes self-sustained in the case of successful ignition. 

Figure 4 shows that the flame structure remains nearly the same for 𝑅௙ ൌ 5, 10 and 20, indicating 

that the expanding triple flame propagates in a quasi-steady manner for 𝑅௙ ൐ 5. 
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Fig. 4 Evolution of the (a) reaction rate 𝜔 and (b) temperature 𝜃 contours during the initiation and 

propagation of the expanding tripe flame induced by a spherical hot spot with radius 𝑅௜ ൌ 1.4 and 

temperature 𝜃௜ ൌ 1. The strain rate is 𝜆 ൌ 0.01 and the fuel Lewis numbers is 𝐿𝑒ி ൌ 1. Note that 

𝑟 െ 𝑅௙ instead of 𝑟 is used for the horizontal axis when 𝑅௙ ൒ 5. 

   

Fig. 5 (a) Change of temperature 𝜃௙ and reaction rate 𝜔௙ at the triple point and (b) change of the 

absolute propagation speed, 𝑑𝑅௙/𝑑𝑡, and displacement speed, 𝑈௙, of the expanding triple flame 

with the flame radius 𝑅௙ for 𝜆 ൌ 0.01 and 𝐿𝑒ி ൌ 1. The symbols denote results from the steady 

solution of the eigenvalue problem obtained in a frame attached to the flame front as described in 

section 4.2.  

Different ignition parameters are considered to test the universality of the above quasi-steady 

propagation behavior. Figure 5(a) compares the change of temperature 𝜃௙ and reaction rate 𝜔௙ at the 

triple point with the flame radius for three sets of ignition parameters. The ignition parameters are 

seen to have significant impacts on the triple flame temperature and reaction rate at small radius. As 
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the triple flame expands to large radius, the temparature and reaction rate practically approach 

constant values around the flame front regardless of the ignition parameters. The flame temperature 

is shown to remain constant for 𝑅௙ ൐ 5, while the reaction rate is more sensitive to initial conditions 

due to its exponential dependence on temperature according to the Arrhenius law. All curves are seen 

to collapse together onto a single curve for 𝑅௙ ൐ 10, indicating the generality of the quasi-steady 

propagation. The absolute propagation speed and displacement speed of the expanding triple flames 

are compared in Fig. 5(b). It’s observed that the solutions are independent of the ignition conditions 

for large radius. Therefore, regardless of the initial ignition conditions leading to successful ignition, 

the expanding triple flame eventually propagates in a quasi-steady manner. 

 

4.2 The steady triple flame in a frame attached to the propagating flame front 

To further validate the quasi-steady assumption, we simulate the steady triple flame in a frame 

fixed to the propagating flame front. This allows the displacement speed to be obtained by solving 

numerically an eigenvalue problem. The eigenvalue problem is governed by the time independent 

version of equations (7). The convection and diffusion terms are discretized with upwind scheme and 

central difference scheme respectively, forming a system of algebraic equations. We seek the 

numerical solution of equations (7) with a straightforward relaxation method. Appropriate guessed 

temperature and reactants profiles (typically from the transient simulation) are chosen as initial 

conditions to accelerate the iterations. We employ the flame-controlling technique [40] to fix the 

flame front location. The eigenvalue, 𝑈௙, is updated at the controlling point at each iteration. 

The importance of the unsteady effects can be quantified by comparing the steady solution 

with the transient simulation results for the same flame radius 𝑅௙. Figure 6 shows the temperature 

and reaction rate fields and iso-lines from both the steady solution of the eigenvalue problem and the 

transient simulation when 𝑅௙ ൌ 5 and 𝜆 ൌ 0.01. Almost identical results are obtained from the steady 

solution and the transient simulation, indicating that the neglect of the unsteady terms is appropriate. 
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This lends reasonable justification to the quasi-steady state assumption used in the asymptotic 

analysis.  

 

Fig. 6 Temperature (left) and reaction rate (right) fields and iso-lines from the steady solution of the 

eigenvalue problem (top) and the transient simulations (bottom) for 𝑅௙ ൌ 5, 𝜆 ൌ 0.01 and 𝐿𝑒ி ൌ

𝐿𝑒ை ൌ 1.  

Besides the typical case shown in Fig. 5, steady solutions for different flame radii and different 

strain rates are obtained and compared with transient simulation results. For example, the symbols in 

Fig. 5(b) denote results from steady solution with relative error below 10ି଺. It’s seen that the steady 

solutions agree well with those from the transient simulations. This further demonstrates that the 

quasi-steady assumption used in the asymptotic analysis is plausible.  

Following a similar procedure, the displacement speeds of the triple flame can be determined 

for different strain rates. A comparison between the asymptotic results and those computed 

numerically from equations (7) for the case 𝐿𝑒ி ൌ 1 is shown in Fig. 7. The asymptotic results use 

the two-term expansion for unity Lewis numbers, 𝑈௙ ൅ 1/𝑅௙ ൌ 1 െඥ2/𝜋𝜀, given by equation (46) 

with 𝑙ி and 𝑙ை equal to zero. Qualitative agreement is observed at weak strain rates and large flame 

radius, e.g., 𝑅௙ ൌ 5, 10 and ∞. For larger values of the strain rates, the linear dependence on 𝜀 no 

longer applies as expected. We also note that for 𝑅௙ above 10, the numerical results are identical 

regardless of the flame radius, corresponding to the solution of equation (9). The triple flame displays 

then a quasi-planar structure, which lends support to the quasi-planar assumption adopted in the 

asymptotic analysis.  
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Fig. 7 𝑈௙ ൅ 1/𝑅௙ versus 𝜀 for 𝐿𝑒ி ൌ 1.0. The black, red and blue lines with symbols are obtained 

by solving equations (7) without the unsteady terms, while the green line corresponds to the 

propagation speed 𝑈௙ of the two-dimensional planar triple flame as in Daou and Liñán [7]. The 

coordinates are normalized by the planar stoichiometric flame speed which is determined 

numerically to be equal to 0.793. 

 

The two-dimensional triple flame, addressed in detail by Daou and coworkers [7–9], is also 

shown as the green line in Fig. 7. It is seen that the green curve is a good approximation to the curves 

𝑈௙ ൅ 1/𝑅௙ versus 𝜀 for all values of 𝜀 up to near extinction values, provided 𝑅௙ ൐ 5 approximately. 

It is worth pointing out that in the limit of large 𝑅௙, the main difference between the two-dimensional 

triple flame (green curve) and the axisymmetric triple flame considered in this paper is associated 

with the local radial flow, the term 𝜀/𝛽ଶሺ𝜕/𝜕𝜉ሻ in equation (9). These terms are expected to play a 

role only near extinction conditions. Although the verification is conducted only for unity Lewis 

number, the general quasi-steady and quasi-planar assumptions are expected to apply at least for 

mixtures with near-unity Lewis numbers. 
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4.3 Effects of stain rate and Lewis number on the triple flame propagation 

In this subsection, we further investigate the effects of the curvature 1/𝑅௙ on the displacement 

speed of the expanding triple flame through transient simulation. Different strain rates and fuel Lewis 

numbers are considered. To be consistent with the asymptotic analysis, low strain rate and near-unity 

Lewis numbers are considered in the transient simulations. Figure 8(a) depicts the change of the 

displacement speed 𝑈௙ with the azimuthal flame curvature 1/𝑅௙ at selected values of the strain rates 

of 𝜆 ൌ 0.01, 0.05 an 0.10 for unity fuel Lewis number. The transient flame evolution process can be 

roughly classified into two regimes: the unsteady transition regime and the quasi-steady propagation 

regime. The flame is subjected to the influence of the initial ignition kernel during the first stage. 

Similar flame deceleration phenomena are also identified in the forced ignition in a non-premixed 

couterflow [24]. The quasi-steady propagation regime is analyzed in this wok. Regardless of the 

values of the strain rate, 𝑈௙ changes linearly with 1/𝑅௙ in the quasi-steady propagation regime and 

the slopes are nearly independent of the strain rate. These normalized slopes are evaluated at later 

stage using the least square method, yielding 0.99, 1,00 and 1.05 respectively.  

The results for different fuel Lewis numbers but the same strain rate 𝜆 ൌ 0.01 are plotted in 

Fig. 8(b). It’s noted that for the case of unequal fuel and oxidizer Lewis number, the triple flame 

becomes asymmetrical. The relative movements along the axial direction are evaluated accordingly, 

yields axial flame speed of the order of 𝑂ሺ10ିଶሻ. The axial movement is negligible compared to the 

radical flame movement. Therefore, it’s a good approximation to use equation (8) to evaluate the 

triple flame speed in this work. It is seen in Fig. 8(b) that the triple flame is greatly influence by the 

initial conditions (or namely ignition conditions) at initial stage. For mixtures with smaller fuel Lewis 

number, successful ignition is more easily achieved by smaller initial ignition radius, and the triple 

flame may propagate faster, leaving a shorter residual time for the influence of the initial conditions 

to decay. As shown in Fig. 8(b), a non-linear response is still observed after the inflection point 

(1/𝑅௙ ൌ 0.75) for the case of 𝐿𝑒ி ൌ 0.8. Similar trends are observed in the forced ignition of 

premixed flames in a static mixture [41-43].  
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Fig. 8 Change of the displacement speed, 𝑈௙, with the flame curvature, 1/𝑅௙, for (a) different strain 

rates but the same fuel Lewis number of 𝐿𝑒ி ൌ 1 and (b) different fuel Lewis numbers but the same 

strain rate of 𝜆 ൌ 0.01. 

 

The flame propagates to a large radius and then enter the quasi-steady regime. For 1/𝑅௙ ൏

0.2, the linear dependence of triple flame speed on azimuthal curvature is observed regardless of the 

fuel Lewis number. The preferential diffusion, quantified with Lewis number, acts as an amplifier of 

the impact of curvature. It is seen that the displacement speed is more sensitive to azimuthal curvature 

at relatively larger fuel Lewis number such as for 𝐿𝑒ி ൌ 1.2, which is consistent with the theoretical 

formula (46). The normalized slopes are also evaluated using the least square method for 𝐿𝑒ி equal 

to 0.8 and 1.2, yielding 0.43 and 1.81 respectively. There do exist quantitative differences between 

numerical simulations and theoretical predictions, which is possibly due to the deviation of Lewis 

number from unity. However, the main conclusion in predicting the general trend for Lewis number 

still holds qualitatively. 

 

5. Inwardly propagating triple flames with negative azimuthal curvature  

The above analysis is performed for expanding triple flames with positive azimuthal curvature. 

There also exists a shrinking flame holes, in which the triple flame propagates inwardly with negative 

azimuthal curvature [34,35]. Here we also derive the relationship between triple flame speed and 
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curvature for the inwardly propagating triple flames. In contrast to the expanding triple flame, the 

local triple flame speed of the inwardly propagating triple flame takes an opposed sign, i.e., 

 
𝑈௙ ൌ െ

𝑑𝑅௙
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൅ 𝜆𝑅௙ ൌ െ
𝑑𝑅௙
𝑑𝑡

൅
𝜀ଶ

𝛽ଶ
𝑅௙ . (47) 

Detailed theoretical derivation procedure is similar to that presented in Sec. 3, and hence not 

repeated here. Analytical expressions for local triple flame speeds of inwardly propagating triple 

flames can be obtained as  
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 (49) 

Similar expressions for expanding triple flame discs are described by equations (31) and (44) 

in Section 3. The leading order solution of triple flame speed, 𝑈௙଴, represents the role of azimuthal 

curvature, and is identical to that for expanding triple flame discs when the sign of 𝑈௙଴ is changed. 

The first order solution of triple flame speed, 𝑈௙ଵ, represents the effects of mixing layer thickness, 

and is essentially same as that for expanding triple flame discs. 

In the limit case of unity initial global equivalence ratio (i.e., 𝜙 ൌ 1) and sufficiently large 

radius 𝑅௙ ≫ 1, the local triple flame speed is hence simplified into 
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The above expression is equivalent to the that for expanding triple flame discs with positive the 

azimuthal curvature. Equations (46) and (50) imply that the propagating characteristics of triple flame 

depend on the total curvature at leading edge. Coupling with preferential diffusion, the positive and 

negative azimuthal flame curvatures lead to the excess enthalpy across the flame front and hence 

affect the triple flame speed in the same manner. Therefore, the sign of azimuthal curvature does not 

change the linear relationship between total curvature and triple flame speed. 

 

6. Conclusion  

We have carried out an asymptotic analysis addressing triple flame propagation in an 

axisymmetric counterflow of fuel against oxidizer. To make the analysis tractable we have adopted a 

thermo-diffusive model with a one-step irreversible reaction. The analysis has been performed in the 

limit of large activation energy and weak strain rate. An explicit formula for the displacement speed 

of the expanding triple flame has been derived. The formula quantifies the effects of both the flame 

front curvature 1/𝑅௧ associated with the variation in the reactant concentrations transverse to the 

mixing layer and the azimuthal curvature 1/𝑅௙ where 𝑅௙ is the front leading edge radial distance 

from the origin. As the triple flame expands to moderately large values of 𝑅௙, the quasi-steady state 

is reached and the flame displacement speed is found to be linearly proportional to 1/𝑅௙ ൅ 1/𝑅௧ 

(equal to twice the front mean curvature). In the limit of large values of 𝑅௙, the present theory is 

consistent with previous work by Daou and Liñán [7].  

Two-dimensional axisymmetric numerical simulations have been performed to validate the 

quasi-steady asymptotic analysis and to extend the study to arbitrary values of the strain rate. The 

results from transient simulations of the expanding triple flame are compared to the steady solution 

of the eigen boundary value problem obtained in a frame attached to the propagating front under a 

quasi-steady assumption. Following a transient ignition phase which depends on the initial conditions, 

the expanding triple flame is found to propagate in a quasi-steady manner independent of the latter 

when 𝑅௙ ൐ 5, approximately. Although the theoretical analysis is performed in the weak strain limit, 
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the linear dependence of the triple flame speed on the curvature 1/𝑅௙ is found to be applicable over 

a wide range of strain rates. The inwardly propagating triple flame holes with negative azimuthal 

curvature are also considered and an explicit analytical expression for local triple flame speed is 

derived. The triple flame speed depends primarily on the overall curvature at triple point, which 

further extends the applicability of present analysis. 

Here we have considered the case of unity initial global equivalence ratio (i.e., 𝜙 ൌ 1) for 

simplicity. For practical applications involving undiluted hydrocarbon-air mixtures, we have typically 

𝜙 ≫ 1, for which the diffusion flame branch merges with the lean premixed branch and thereby the 

partially premixed flame loses its tri-brachial structure [44]. In future works, it would be interesting 

to examine the influence of stoichiometry on the displacement speed of the expanding triple flame. 

Furthermore, it would be interesting in future simulations to take into account momentum equations 

and variable density so that the effects of thermal expansion on expanding triple flames can be 

assessed. The quasi-steady assumption may not hold for large the azimuthal curvature and the 

transient effect (or memory effect) [45] on initial ignition kernel development in a counterflow needs 

to be assessed in future analysis.  
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