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A B S T R A C T

Mechanical insight into the packing of slender objects within confinement is essential for
understanding how polymers, filaments, or wires organize and rearrange in limited space.
Here we combine theoretical modeling, numerical optimization, and experimental studies to
reveal spherical packing behavior of thin elastic rod loops of homogeneous or inhomogeneous
stiffness. Across varying loop lengths, a rich array of configurations including circle, saddle,
figure-eight, and more intricate patterns are identified. A theoretical framework rooted in the
local equilibrium of force and moment is proposed for the rod loop deformation, facilitating
the determination of internal and contact forces experienced by the rods during deformation.
For the confined homogeneous rod loops, their stable and metastable configurations are well
described using proposed Euler rotation curves, which offer a concise and effective approach
for configuration prediction. Moreover, formulated analysis on the stability and critical force
for homogeneous rod loops on great circles of the spherical confinement are performed. For
inhomogeneous rod loops with two segments of differing stiffness, the stiffer segment exhibits
less deviation from the great circle, while the softer segment undergoes more pronounced
deformation. These findings not only enhance our understanding of buckling and post-buckling
phenomena but also offer insights into filament patterning within confining environments.

. Introduction

Geometrical confinement, arising from physical boundaries such as walls, membranes, and fluid interfaces, generally imposes
eometric incompatibility for confined objects undergoing complex spatial rearrangements. Understanding how surface confinement
hapes filamentary objects is not only of fundamental interest but also holds relevance for a multitude of biological, medical, and
ndustrial applications spanning various length scales. Microscale examples include DNA packaging in viral capsids and bacterial
nvelopes (Purohit et al., 2003; Coshic et al., 2024), as well as the organization of actin filaments within vesicles, droplets, and
ell-sized confinement (Limozin and Sackmann, 2002; Jiang and Sun, 2010; Diagouraga et al., 2014; Tsai and Koenderink, 2015;
hi et al., 2023; Graham et al., 2024). At larger length scales, primary examples encompass fiber coiling in or around droplets (Chen
nd Zhang, 2022; Sannyamath et al., 2024), ordered and disordered packing of wires in cavities or flexible confinement (Stoop et al.,
011; Vetter et al., 2014; Shaebani et al., 2017; Lombardo et al., 2018), guidewire navigation in endovascular surgery, and buckling
f fibers embedded in a matrix (Slesarenko and Rudykh, 2017; Huang et al., 2024).

In the realm of the aforementioned examples, investigations into spherical confinement hold paramount significance. Firstly,
his significance stems from the fact that structures such as droplet surfaces, cell membranes, and viral capsids impose a form of
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Fig. 1. Schematic of an inextensible rod loop of total length 𝐿 confined within a rigid spherical confinement of radius 𝑅. In a spherical coordinate system with
its origin located at the center of the spherical confinement, every rod curve point has spherical coordinates (𝜌, 𝜃, 𝜑) with radial distance 𝜌(≤𝑅), polar angle 𝜃,
and azimuthal angle 𝜑. Along the rod curve, the Frenet–Serret frame {𝐭,𝐧,𝐛} is defined, where the vectors 𝐭, 𝐧, and 𝐛 represent the unit tangent, unit principal
normal, and unit binormal vectors, respectively. The arclength 𝑠 is measured in the direction of 𝐭.

confinement that approximates a spherical shape. Secondly, the sphere’s inherent high degree of symmetry plays an essential role
in simplifying numerous geometric problems, thus establishing it as a cornerstone for comprehending spatial relationships.

In this work, we delve into the packing of thin elastic rod loops in spheres, with a particular focus on rod deformation,
shape transformations, and stability. Modeling the spherical surface-constrained rod loops as closed elastic curves, early theoretical
investigations on this subject garnered attention primarily from a mathematical perspective. For example, pioneering studies
employed variational techniques, both with and without constraints on curve length, yielding governing equations of curvature,
torsion, and geodesic curvature of these constrained elastic curves (Langer and Singer, 1984; Brunnett and Crouch, 1994; Arroyo
et al., 2006). At specified values of the Lagrange multiplier associated with the constrained curve length, wavelike, orbitlike, and
borderline curve profiles were unveiled (Langer and Singer, 1984; Brunnett and Crouch, 1994; Arroyo et al., 2006). Effects of intrinsic
curvature of the elastic curves have also been analyzed (Arroyo et al., 2006). While these studies primarily emphasized mathematical
variations and geometry, the mechanical interaction between the elastic curve and the confining surface received less attention. More
recently, the surface confinement constraint has been incorporated into variational frameworks to explore transmitted forces arising
from rod-surface contact (Guven and Vázquez-Montejo, 2012; Huynen et al., 2016). However, these frameworks predominantly
yield complex mathematical solutions rather than comprehensive mechanical treatments, limiting their utility for engineers and
practical applications. Additionally, the effect of rod inhomogeneity on packing remains unexplored. Moreover, despite theoretical
advancements, experimental demonstrations on the packing of elastic loops within spheres are lacking. There exists a pressing
need for theoretically derived, mechanically grounded approaches to predict the deformation of slender rod loops confined within
spherical enclosures. Such approaches not only offer insights into theoretical mechanisms but also serve as a valuable resource for
practical applications.

In the present study, we gain mechanical insight into the packing of elastic rod loops within spherical confinement. After
introducing theoretical modeling and numerical methods in Section 2, a diverse spectrum of stable and metastable configurations
of the confined homogeneous rod loops are elucidated theoretically and experimentally in Section 3, displaying a wide variety
of symmetries as the relative length of the rod varies. Predictions on the rod configurations are carried out based on the Euler
rotation curve approximation proposed in Section 3 and analytical solutions derived from local equilibrium equations in Section 4.
Stability and force analysis for homogeneous rod loops on great circles are also performed. Section 5 examines the effects of rod
inhomogeneity on packing. Finally, Sections 6 and 7 offer further discussion and conclude the study.

2. Theoretical modeling and numerical methods

Consider an inextensible thin elastic prismatic rod loop confined within a rigid spherical confinement of radius 𝑅, and frictionless
contact between the rod and the confinement is assumed. The thin rod of total length 𝐿(≥2𝜋𝑅) and bending stiffness 𝐷 has the same
circular cross section along its centerline. Here 𝐷 = 𝐸𝐼 with 𝐸 as the Young’s modulus and 𝐼 as the moment of inertia of the circular
cross section. In the adopted spherical coordinate system (Fig. 1), the equilibrium configuration of the confined rod is characterized
via the centerline, modeled as an arclength parameterized space curve of position vector

𝐫(𝑠) = 𝜌(𝑠) sin 𝜃(𝑠) cos𝜑(𝑠)𝐞𝑥 + 𝜌(𝑠) sin 𝜃(𝑠) sin𝜑(𝑠)𝐞𝑦 + 𝜌(𝑠) cos 𝜃(𝑠)𝐞𝑧, (1)

where 𝑠 is the arclength, (𝜌, 𝜃, 𝜑) denotes the spherical coordinates of the curve point at 𝐫(𝑠) with 𝜌(𝑠) as the radial distance, 𝜃(𝑠)
the polar angle, and 𝜑(𝑠) the azimuthal angle, and 𝐞 , 𝐞 , and 𝐞 denote unit vectors along the 𝑥−, 𝑦−, and 𝑧− axes of a Cartesian
2
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coordinate system sharing the same origin with the spherical coordinate system. In our analysis, the reference point for 𝑠 = 0 is
defined as an arbitrarily selected point of contact between the confined rod and the sphere inner surface. Inextensible constraint of
the rod requires |𝐫′(𝑠)| = 1, where the prime represents derivative with respect to the arclength 𝑠 hereinafter (e.g., 𝐫′′(𝑠) = d2𝐫∕d𝑠2).
or an inhomogeneous rod, the Young’s modulus 𝐸 could vary along the centerline and one has 𝐷 = 𝐷(𝑠).

The continuity and smoothness of the rod loop require continuities of 𝐫 and tangent vector 𝐭(= 𝐫′). Meanwhile, in the free
nd contact portions of the rod, the function 𝐫(𝑠) is assumed to have four continuous derivatives 𝐫(𝑖)(𝑠) (𝑖 = 1, 2, 3, 4) to ensure the
ontinuities of the curvature, torsion, bending moment, contact force, and internal forces.

Adopting the wormlike chain model for the thin elastic rod (Kratky and Porod, 1949; Doi and Edwards, 1986), the elastic energy
el of the system is the pure bending energy with the twist energy neglected and is given by

𝐸el =
1
2 ∫

𝐿

0
𝐷𝜅2d𝑠, (2)

where 𝜅(𝑠) = |𝐫′′(𝑠)| is the local curvature of the rod centerline.
In numerical studies, the spherical coordinate functions 𝜌(𝑠), 𝜃(𝑠), and 𝜑(𝑠) are approximated using sextic B-spline functions as

(𝑠) =
∑𝑛

𝑗=1 𝑎𝑗𝑁𝑗 (𝑠), 𝜃(𝑠) =
∑𝑛

𝑗=1 𝑏𝑗𝑁𝑗 (𝑠), and 𝜑(𝑠) =
∑𝑛

𝑗=1 𝑐𝑗𝑁𝑗 (𝑠), where 𝑎𝑗 , 𝑏𝑗 , and 𝑐𝑗 are coefficients of basis functions 𝑁𝑗 (𝑠)
defined recursively on a uniform knot vector of 𝑠. The polynomial functions 𝑁𝑗 (𝑠) can be derived by means of the Cox–de Boor
ecursion formula (Farin, 2002). Through the geometric relationship in Eq. (1), the elastic deformation energy 𝐸el in Eq. (2) at a
iven rod length 𝐿 becomes 𝐸el = 𝐸el(𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 ) as a function of the undetermined coefficients 𝑎𝑗 , 𝑏𝑗 , and 𝑐𝑗 . Here, 𝑎𝑗 , 𝑏𝑗 , and 𝑐𝑗 are

not independent and are required to satisfy the local inextensible constraint of the rod |𝐫′(𝑠)| = 1, which preserves d𝑠 as the local
arclength element. Additionally, the spherical confinement imposes 0 < 𝜌(𝑠) ≤ 𝑅. The closure conditions of the rod loop read

𝐫(0) = 𝐫(𝐿) = 𝑅𝐞𝑥 and 𝐫(𝑖)(0) = 𝐫(𝑖)(𝐿) (𝑖 = 1, 2, 3, 4). (3)

Eq. (3) leads to 𝜌(0) = 𝜌(𝐿) = 𝑅, 𝜌(𝑖)(0) = 𝜌(𝑖)(𝐿), 𝜃(0) = 𝜃(𝐿), 𝜃(𝑖)(0) = 𝜃(𝑖)(𝐿), 𝜑(𝐿) − 𝜑(0) = 2𝜋𝑝 with 𝑝 as an integer, and
𝜑(𝑖)(0) = 𝜑(𝑖)(𝐿). These requirements provide input parameters and equality or inequality constraints in the numerical optimization.

Given the energy function 𝐸el = 𝐸el(𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗 ) and its first derivatives with respect to the coefficients 𝑎𝑗 , 𝑏𝑗 , and 𝑐𝑗 , the minimum
energy 𝐸el at a given rod length 𝐿 and the corresponding values of 𝑎𝑗 , 𝑏𝑗 , and 𝑐𝑗 are determined using the sequential quadratic
programming method for constrained optimization (Fletcher, 1987). Consequently, the three functions 𝜌(𝑠), 𝜃(𝑠), and 𝜑(𝑠), or the
rod configuration 𝐫(𝑠), are obtained.

3. Numerical results on configurations of confined rod loops with uniform bending stiffness

For a homogeneous rod, 𝐷 is uniform. In this section, we investigate how the spherical confinement shapes the inextensible thin
elastic rod loop of uniform 𝐷. We first examine the case that the rod loop is constrained to the spherical surface (i.e., |𝐫(𝑠)| = 𝑅) in
Section 3.1, and then investigate the case that the rod loop is capable of detaching from the surface (i.e., |𝐫(𝑠)| ≤ 𝑅) in Section 3.2.

3.1. Numerical results on rod configurations and Euler rotation curve approximations

For the homogeneous rod loop confined on the spherical surface of radius 𝑅, the radial distance in Eq. (2) is 𝜌(𝑠) = 𝑅, and only
the coefficients associated with the polar angle function 𝜃(𝑠) and the azimuthal angle function 𝜑(𝑠) are determined via numerical
optimization. Selected configurations and corresponding energy profiles of the constrained rod with normalized length 𝐿̄ ≡ 𝐿∕(2𝜋𝑅)
ranging from 1 to 5 are shown in Figs. 2 and 3, respectively. Several sharp configurational transitions are observed between
configuration branches in Fig. 2. Each sharp transition corresponds to a critical normalized rod length 𝐿̄𝑖cr (Fig. 3 with 𝑖 = 1 to 9),
whose value is numerically determined from the intersection of different energy profiles (represented in different colors in Fig. 3).

Different configuration branches in Fig. 2 are distinguished so that configurational evolution within each branch is continuous,
as indicated by the smoothness of each energy profile in Fig. 3, while the transition between different branches is discontinuous,
reflected by the energy profile kinks in Fig. 3. By comparing the deformation energy between different branches at the same
rod length, stable and metastable states are identified. At a given rod length, the metastable state corresponds to a local energy
minimum, whereas the stable state corresponds to a global energy minimum. Each branch comprises both stable and metastable
states. Depending on initial configurations of the confined rod loops, both states can be observed in simulations and experiments.

At 𝐿̄ ≤ 1, the rod loop maintains a planar circular shape with the bending energy 𝐸el = 𝜋𝐷∕(𝐿̄𝑅) (black line in Fig. 3). At the
first critical length of 𝐿̄1cr = 1, the rod loop coincides with a great circle of the spherical confinement, and beyond 𝐿̄1cr the planar
circular loop undergoes out-of-plane buckling into stable saddle-like spatial configurations, oscillating about a great circle (Fig. 2,
branch 1 with 𝐿̄1cr < 𝐿̄ ≤ 𝐿̄2cr ≈ 1.38). As the rod length exceeds the second critical length of 𝐿̄2cr , stable figure-eight-shaped
configurations arise with one self-intersection point (Fig. 2, branch 2 with 𝐿̄2cr ≤ 𝐿̄ ≤ 𝐿̄3cr = 2), which has a lower bending energy
in comparison with the metastable saddle-shaped configurations in branch 1 in Fig. 2 (Fig. 3). The value of 𝐿̄2cr is determined from
the intersection of energy profiles of saddle- and figure-eight-shaped loops. With increasing 𝐿̄, the upper and lower portions of the
figure-eight-shaped loop approach to each other. At the third critical length (𝐿̄3cr = 2), these two portions of the figure-eight-shaped
loop collapses together onto a great circle, and the rod loop circumscribes the great circle twice. Once 𝐿̄ exceeds 𝐿̄3cr , the rod buckles
into a stable orbitlike configuration with three self-intersection points (Fig. 2, branch 3 with 𝐿̄3cr < 𝐿̄ ≤ 𝐿̄4cr ≈ 2.426), which has a
lower bending energy in comparison with the deep saddle-shaped and orbitlike configurations (Fig. 3 and branch 1 in Fig. 2). As
̄ ̄ ̄ ̄ ̄
3

𝐿 exceeds 𝐿4cr , stable orbitlike configurations arise with four self-intersection points (Fig. 2, branch 1 with 𝐿4cr ≤ 𝐿 ≤ 𝐿5cr = 3),
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Fig. 2. Selected stable and metastable configurations of a homogeneous rod loop of length 𝐿 on the spherical confinement of radius 𝑅. The normalized rod
length is 𝐿̄ ≡ 𝐿∕(2𝜋𝑅). Experimental results (green profiles, see Note 1 in Supplementary materials for experimental procedures), numerical optimization solutions
(yellow solid profiles), and Euler rotation curves (superposed red dashed profiles based on Eq. (4)) are in good agreement. The stable rod configurations have
lower energy compared to the metastable configurations of the same rod loop length (see Fig. 3 for energy profiles).
4
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Fig. 3. Numerical results and Euler rotation curve approximations on (a) the normalized elastic energy 𝐸el𝑅∕(𝜋𝐷) and (b) its two components 𝐸n
el and 𝐸g

el versus
the normalized rod length 𝐿∕(2𝜋𝑅). Stable states, thin solid lines; metastable states, dash-dotted lines; Euler rotation curves, thick gray solid lines. Blue, red,
green, and pink lines correspond to branches 1 to 4 in Fig. 2, respectively.

which has a lower bending energy in comparison with the metastable orbitlike configurations in branch 2 in Fig. 2 (Fig. 3). The
value of 𝐿̄4cr is determined from the intersection of energy profiles of saddle-shaped and orbitlike loops. At the fifth critical length
of 𝐿̄5cr = 3, the complex orbitlike configuration collapses onto a great circle, circling it three times. More complex stable and
metastable configurations of tangled loops are observed as 𝐿̄ further increases (Fig. 2), and the corresponding energy profiles are
shown in Fig. 3a. It is worth noting that mathematicians have demonstrated that the rods configurations in branch 1 in Fig. 2 are
profile curves of 2-lobed constrained Willmore Hopf-tori (Pinkall, 1985; Bohle et al., 2008; Heller, 2014).

The rod loop can achieve a mechanically stable geodesic only when its length is equal to 2𝑚𝜋𝑅 with 𝑚 as a positive integer
(𝐿̄(2𝑚−1)cr = 𝑚), and the rod loop adopts a circular configuration, encircling a great circle 𝑚 times. Considering point groups and
symmetry, the stable rod configurations at 𝐿̄ = 𝑚 are axisymmetric and have 𝐷∞ℎ symmetry with a center of inversion in Schönflies
notation (Fig. 2). The stability of the loop configurations on great circles is further analyzed in Section 4.2.

Apart from these axisymmetric configurations, each system configuration in branch 1 demonstrates three perpendicular twofold
rotational symmetry axes and two mirror planes, belonging to 𝐷2d symmetry. The configurations in branch 2 are with two
mirror planes containing a twofold axis and have 𝐶2v symmetry. Branch 3 configurations showcase 𝐷3h symmetry, and branch
4 configurations exhibit 𝐷4d symmetry.

Fig. 2 demonstrates that each rod loop configuration has at least two mirror planes, and the value of 𝜂, denoting the 𝜂-fold
onfigurational symmetry, appears in the order 𝜂 = 2, 3,… with the increasing branch index (branches 1 and 2 exhibiting twofold
ymmetry). A closer analysis reveals that the spherically isotropic nature of the spatial confinement and the periodic nature of
he rod loops are the foundational physical prerequisites for multiple-fold configurational symmetry. For a surface confinement
f an arbitrary shape, no configurational symmetry for the constrained rod loop is expected. The effects of the loop’s periodic
ature on the constrained rod configuration are more clearly visualized by considering an open thin rod on a sphere. Without the
ntrinsic smoothness everywhere in closed rod loops, the behavior of surface-constrained open rods is more dependent on boundary
onditions. For a constrained open rod with free ends, it stays on a great circle of the spherical confinement, losing length-dependent
ultiple-fold symmetry. With arbitrarily prescribed end positions and tangent directions, or even free tangent directions at the rod

nds, an open rod on a sphere generally loses multiple-fold symmetry (Brunnett and Crouch, 1994).
Introducing the geodesic curvature 𝜅g and normal curvature 𝜅n of the surface-constrained rod centerline, one has the relationship

2 = 𝜅2
n + 𝜅2

g . For the constrained rod loop here as a spherical curve, 𝜅2
n = 𝑅−2 (see Appendix A). Then the bending energy 𝐸el can

be decomposed into two components, the energy 𝐸n
el associated with the normal curvature as 𝐸n

el = ∫ 𝐿
0 (𝐷𝜅2

n∕2)d𝑠 = 𝜋𝐷𝐿̄∕𝑅 and the
energy 𝐸g

el from the geodesic curvature as 𝐸g
el = ∫ 𝐿

0 (𝐷𝜅2
g∕2)d𝑠. The normalized energy 𝐸n

el𝑅∕(𝜋𝐷) is linearly proportional to 𝐿̄. At
large values of 𝐿̄, the energy contribution from 𝐸n

el dominates (Fig. 3b), suggesting that long rod loops tend to adopt configurations
consisting of portions slightly deviating from great circles (geodesic). Furthermore, the energy difference in 𝐸g

el between different
branches diminishes as 𝐿̄ increases, indicating that the metastable (stable) configurations in branch 𝑖 and the stable (metastable)
configurations in branch 𝑖 + 1 become increasingly indistinguishable in energy at extremely large 𝐿̄.

Similar circle- and saddle-shaped loops predicted in branch 1 in Fig. 2 have also been observed in a wide range of cell activities.
In actin-containing vesicles, circular rings of actin bundles linked by muscle filamin can form, and the introduction of Mg2+ triggers
actin polymerization, resulting in an increase in bundle length and subsequent buckling of the flat ring structures into saddle-shaped
loops (Limozin and Sackmann, 2002). Similarly, actin filaments bundled by fascin in stiffened vesicles and protein condensate
droplets exhibit similar saddle-shaped configurations (Tsai and Koenderink, 2015). During platelet activation, the marginal band–a
peripheral ring structure–buckles from a circle- or oval-shaped loop into a saddle shape, leading to a transition in the spherical cell
shape (Diagouraga et al., 2014). The alteration in the morphology of the marginal band loop has been linked to an increase in the
5
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normalized loop length 𝐿̄, achieved through either an extension of the marginal band length (increasing 𝐿) (Diagouraga et al., 2014)
or a reduction in cell size (decreasing 𝑅) (Dmitrieff et al., 2017). This aligns with the morphological transition from circle to saddle
observed in branch 1 (Figs. 2 and 3). Recent theoretical studies indicate that the filament–vesicle system could showcase a variety
of morphologies, featuring straight or curved open filaments, as well as crisp, saddle, circle, oval, or twisted saddle-shaped filament
loops, depending on the relative stiffness and size of the confined filaments to vesicles (Zou et al., 2018; Shi et al., 2023; Zhang
et al., 2024). The evolutionary trajectory from a circular form to a saddle shape and eventually to complex orbit-like configurations
with self-intersection has also been observed for loops within evaporating droplets (Sannyamath et al., 2024).

The rod loop configurations in Fig. 2 or the trajectories of the origin of the Frenet–Serret frame, evoke thoughts of the gyroscopic
motion which can be described by the Euler rotation. Drawing inspiration from the structure of the rotation matrix for Euler angles,
the packing configurations of the confined rod loops in Fig. 2 are well described by the Euler rotation curve approximation, defined
by the following parametric equations

𝑥(𝑡) = 𝑅[− cos 𝛼 cos 𝑡 cos(𝑙𝑡) + sin 𝑡 sin(𝑙𝑡)],

𝑦(𝑡) = 𝑅[cos 𝛼 sin 𝑡 cos(𝑙𝑡) + cos 𝑡 sin(𝑙𝑡)], 𝛼 ∈ [0, 𝜋], 𝑡 ∈ [0, 2𝜋],

𝑧(𝑡) = 𝑅 sin 𝛼 cos(𝑙𝑡),

(4)

where the parameter 𝑙 is a positive integer governing the periodicity of the rod configuration. Eq. (4) can be geometrically interpreted
as the path traced by the origin of the Frenet–Serret frame during uniform motion along a particular great circle of a rotating
sphere. Parameterization variants of the tangent vector 𝐭 could also give combinations of the trigonometric functions in Eq. (4). The
prescribed rod length 𝐿 is given as

𝐿 = 𝑅𝑙 + cos 𝛼
𝑙

E

(

2𝑙𝜋,

√

−1 sin 𝛼
𝑙 + cos 𝛼

)

, (5)

where E(𝜙,𝐾) = ∫ 𝜙
0

√

1 −𝐾2 sin2 𝜈d𝜈 denotes the incomplete elliptic integral of the second kind, and 𝐿̄ ∈ [(𝑙 − 1), (𝑙 + 1)]. In the
limiting case of 𝑙 → ∞, lim

𝑙→∞
𝐿̄ = 𝑙 + cos 𝛼 and lim

𝑙→∞
𝐸g
el∕𝐸

n
el = 0. Fig. 4 shows the 𝐿̄–𝛼 relationship at given 𝑙.

With the analytical expression in Eq. (4), the curvature 𝜅 and torsion 𝜏 of the rod configuration approximated by the Euler
rotation curve are respectively obtained as

𝜅 =
|𝐫,𝑡 × 𝐫,𝑡𝑡|

|𝐫,𝑡|3
and 𝜏 =

𝐫,𝑡 ⋅ (𝐫,𝑡𝑡 × 𝐫,𝑡𝑡𝑡)

|𝐫,𝑡 × 𝐫,𝑡𝑡|2
. (6)

ubstituting 𝜅 in Eq. (6) into Eq. (2), the elastic energy of the rod can be obtained.
While the Euler rotation curve in Eq. (4) is not an exact solution to the problem of minimizing the total squared curvature of a

losed spherical curve, it offers a simple analytical expression of the rod configuration, proving valuable for quick estimations and
alculations, and demonstrating strong predictive capabilities (Figs. 2 and 3). Comparison of additional rod configurations between
umerical results and the Euler rotation curve approximations can be found in Figs. S2–S5 in Supplementary materials.

At 𝑙 = 1, Eq. (4) reduces to the parameterization of a hippopede, a figure-eight-shaped curve of intersection between the spherical
onfinement and a tangent circular cylinder of radius 𝑅sin2(𝛼∕2). At 𝑙 = 1 and 𝛼 = 𝜋∕4, the figure-eight-shaped curve reduces to
he Viviani curve. The hippopede approximates the (meta)stable equilibrium configuration of the elastic rod loop constrained to a
pherical surface very well in the range of 𝐿̄ ∈ [1, 2] (Fig. 2 and the gray line covering the red line in Fig. 3).

At 𝑙 = 2, by introducing 𝑎 = 𝑅(1 − cos 𝛼)∕2 and 𝑏 = 𝑅(1 + cos 𝛼)∕2, the Euler rotation curve describe by Eq. (4) turns into the
eam line curve of a tennis ball with radius 𝑅 = 𝑎 + 𝑏, which can be expressed equivalently as (Rogers and Adams, 1990)

𝑥 = 𝑎 cos 𝑡 − 𝑏 cos(3𝑡), 𝑦 = 𝑎 sin 𝑡 + 𝑏 sin(3𝑡), 𝑧 = 2
√

𝑎𝑏 cos(2𝑡), 𝑡 ∈ [0, 2𝜋]. (7)

Fig. 4. The 𝐿̄–𝛼 relationship at given 𝑙 given by Eq. (5). Here, 𝑙 = 1, 2, 3, and 4 correspond to configurations in branches 2, 1, 3, and 4 in Fig. 2, respectively.
6
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Fig. 5. Numerical optimization results and Euler rotation curve approximations on the configuration coordinates 𝑥∕𝑅, 𝑦∕𝑅, 𝑧∕𝑅, normalized curvature 𝜅𝑅, and
normalized torsion 𝜏𝑅 of the surface-constrained rod loops with 𝐿̄ ≡ 𝐿∕(2𝜋𝑅) = 1.2 (branch 1), 1.7 (branch 2), 2.2 (branch 3), and 2.8 (branch 1). To ensure
alignment, possible rigid body rotations and mirror symmetry are applied to the Euler rotation curve approximations and numerical results to match them
together. Here the reference point of 𝑠 = 0 is chosen such that the curvature of the constrained rod, 𝜅(𝑠 = 0), attains its maximum value. Numerical results
(solid profiles) and Euler rotation curves (superposed red dash-dotted profiles) are in good agreement. Red arrows in numerical configurations denote 𝐭(𝑠 = 0).

The prescribed rod length 𝐿 based on Eq. (7) is

𝐿 = 4(3𝑅 − 2𝑎)E

(

𝜋
2
,
2
√

𝑎(𝑎 − 𝑅)
3𝑅 − 2𝑎

)

. (8)

The tennis-ball seam line closely approximates the (meta)stable equilibrium configuration of the confined rod loop on the sphere,
with the total length ranging from one to three times that of the great circle (𝐿̄ ∈ [1, 3], Fig. 2 and the gray line covering the blue line
in Fig. 3). For a rod loop constrained to an elastic spherical confinement, the rod loop configuration deviates from the tennis-ball
curve, since both the elastic loop and confinement deform. In the case of packing flexible filaments in vesicles, additional terms
such as cos(2𝑡) in 𝑥 and cos 𝑡 in 𝑧 are introduced to characterize the crisp- and saddle-shaped filament loops (Shi et al., 2023).
7
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Further examinations of higher-order geometric properties, curvature 𝜅 and torsion 𝜏, of the rod configurations based on the
uler rotation curve approximations (Eqs. (4) and (6)) are depicted in Fig. 5, showing good agreement with numerical results. The
orsion profiles in Fig. 5 further validate classical theorems in differential geometry, including that total torsion of a closed spherical
urve vanishes (∮ 𝜏(𝑠)d𝑠 = 0) (Geppert, 1941; Millman and Parker, 1977) and that the torsion of a simple closed convex space curve
n the three-dimensional Euclidean space R3 must change sign at least four times (Thorbergsson and Umehara, 1999; Ghomi, 2019).

.2. Homogeneous rod loops enclosed within the spherical confinement

In Section 3.1, the rod loop is constrained to the inner surface of the spherical confinement. If the homogeneous rod is enclosed
ithin the spherical confinement but not constrained to the surface–meaning the radial motion of the rod is unrestricted toward

he sphere center–it is interesting to observe that identical stable rod configurations to those in Section 3.1 can be achieved (for
≤ 𝐿̄ ≤ 3 we have numerically checked). It is hypothesized that enclosed homogeneous rod loops of 𝐿̄ ≥ 1 remain fully attached to

the spherical surface without any detachment. Therefore, the analysis in the following section on homogeneous loops is concentrated
on the spherical surface-constrained loops, with the conclusions applicable to rod loops confined within the spherical enclosures.

A related yet distinct phenomenon involves two-dimensional packing of elastic rings within rigid or elastic confinement. In this
scenario, out-of-plane deformation is prohibited, necessitating the folding of long confined rings away from the confinement. This
folding can result in the formation of multiple discrete or continuous self-contact regions, as well as regions of contact with the
confinement. Both symmetric and asymmetric equilibrium configurations are observed (Boué et al., 2006; Lombardo et al., 2018).

4. Analytical solutions for configuration and force properties of surface-constrained rod loops

To gain a deep, clear and insightful understanding of mechanical principles governing the packing behavior of surface-constrained
rod loops, analytical solutions and asymptotic analysis are sought. Based on the local equilibrium of force and moment, we adopt
a theoretical framework proposed for elastic rods constrained to general surfaces to model rod loop deformation (Wang and Yi,
2024). This approach allows us to determine the internal and contact forces experienced by the rods, which cannot be obtained
from the numerical optimization method described in Section 2. Compared to general confining surfaces, the inherent high degree
of symmetry of the spherical confinement simplifies geometric problems, enabling the analytical determination of the forces and
equilibrium configurations of the enclosed rod loops. Our analysis shows that the internal and contact forces experienced by the
rod loops constrained to spherical surfaces can be characterized by the geodesic curvature, which further leads to analytical results,
including stability analysis and solutions for the configurations and experienced forces of the rod loops.

4.1. Theoretical framework with consideration of rod inhomogeneity

Equilibrium equations articulating the balance of forces and moments for the inhomogeneous rod of 𝐷(𝑠), respectively,
re (Landau and Lifshitz, 1986; Audoly and Pomeau, 2010)

𝐅′ + 𝐪 = 𝟎, (9)

𝐌′ + 𝐫′ × 𝐅 = 𝟎, (10)

where 𝐅(𝑠) and 𝐌(𝑠) are the internal force and internal moment, respectively, acting on the cross-section at arclength 𝑠, and 𝐪(𝑠)
enotes the line load on the rod (e.g., here the contact force per unit length due to the spherical confinement). For the rod devoid
f torsional strain energy, 𝐌 acting as the bending moment is given by (Landau and Lifshitz, 1986; Audoly and Pomeau, 2010)

𝐌 = 𝐷𝜅𝐛, (11)

here 𝐛(𝑠) is the unit binormal vector of the rod centerline curve and obeys 𝐛 = 𝐭 × 𝐧 with the unit tangent vector 𝐭 = 𝐫′ and unit
rincipal normal vector 𝐧 = 𝐭′∕|𝐭′| = 𝐭′∕𝜅. The contact force, normal to the spherical surface, is expressed as

𝐪 = −𝜆𝐞𝑟, (12)

where 𝐞𝑟 is the outward-pointing unit normal vector of the spherical surface (Appendix A).
Substituting Eqs. (11) and (12) into Eqs. (9) and (10) gives

𝐅′ − 𝜆𝐞𝑟 = 𝟎 and (𝐷′𝜅 +𝐷𝜅′)𝐛 −𝐷𝜅𝜏𝐧 + 𝐭 × 𝐅 = 𝟎, (13)

where 𝐛′ = −𝜏𝐧 has been used, and the torsion of the rod centerline is 𝜏 = −𝐧 ⋅ 𝐛′ = 𝐫′ ⋅ (𝐫′′ × 𝐫′′′)∕|𝐫′′|2.
Projecting Eq. (13) onto the basis vectors 𝐭, 𝐧, and 𝐛 of the Frenet–Serret frame {𝐭,𝐧,𝐛} and introducing componential forms

= 𝐹t 𝐭 + 𝐹n𝐧 + 𝐹b𝐛, one has five independent equations (Wang and Yi, 2024)

𝐹 ′
t − 𝜅𝐹n = 0, (14)

𝐹 ′
n + 𝜅𝐹t − 𝜏𝐹b − 𝜆𝜅n∕𝜅 = 0, (15)

𝐹 ′
b + 𝜏𝐹n − 𝜆𝜅g∕𝜅 = 0, (16)

𝐹b = −𝐷𝜅𝜏, (17)

𝐹n = −𝐷′𝜅 −𝐷𝜅′, (18)
8
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where relations 𝐞𝑟 ⋅ 𝐧 = 𝜅n∕𝜅 and 𝐞𝑟 ⋅ 𝐛 = 𝜅g∕𝜅 have been used, with 𝜅g as the geodesic curvature and 𝜅n as the normal curvature of
the rod centerline (see Appendix A). The moment balance along 𝐭 holds spontaneously. For a spherical curve, 𝜅n = −1∕𝑅. Then 𝐹t
and 𝜆 can be solved in terms of geometric parameters 𝜅 and 𝜏 from Eqs. (14)–(18).

For a rod loop staying on the great circle of the spherical confinement, one has 𝜅g = 0, 𝜅 = −𝜅n = 1∕𝑅, and 𝜏 = 0. In this case,
Eqs. (15), (17), and (18) reduce to

𝐹t = 𝐷′′ − 𝜆𝑅, 𝐹b = 0, and 𝐹n = −𝐷′∕𝑅. (19)

Eq. (16) holds spontaneously. Substituting Eq. (19) into Eq. (14) gives a governing equation for 𝜆, 𝐷′∕𝑅2 +𝐷′′′ = 𝜆′𝑅, solved as

𝜆 = 𝐶 + ∫

𝑠

0

(

𝐷′

𝑅3
+ 𝐷′′′

𝑅

)

d𝑠, (20)

here 𝐶 is a constant of integration. For the case of uniform bending stiffness, one has a uniform contact force 𝜆 = 𝐶 for the rod
oop staying on the great circle.

In the following analysis, we focus on the case of 𝜅g ≠ 0. From Eqs. (15)–(18), 𝜆 and 𝐹t are solved as

𝜆 = − 𝜅
𝜅g

(2𝐷′𝜅𝜏 + 2𝐷𝜅′𝜏 +𝐷𝜅𝜏′), (21)

𝐹t = 𝐷′′ + 2𝐷′ 𝜅′

𝜅
+𝐷𝜅′′

𝜅
−𝐷𝜏2 + 2𝐷′𝜅𝜏 + 2𝐷𝜅′𝜏 +𝐷𝜅𝜏′

𝜅g𝜅𝑅
. (22)

For the rod centerline on the spherical surface (a spherical curve), one has

𝜅g = 𝜅 cos𝜔, 𝜅n = −𝜅 sin𝜔 = −1∕𝑅, 𝜏g = 0, and 𝜏 = 𝜏g − 𝜔′ = −𝜔′, (23)

where 𝜏g is the geodesic torsion of the rod centerline, and 𝜔 is the angle between the unit binormal vector 𝐛 and the unit normal
vector 𝐞𝑟 to the confining surface (Appendix A). In Appendix A, for a curve on a surface, the unit normal vector 𝐧S to the confining
surface is introduced in the context of the Darboux frame. For the spherical surface considered in this work, 𝐞𝑟 = 𝐧S.

Then these three internal force components 𝐹b, 𝐹n, and 𝐹t given by Eqs. (17), (18), and (22), respectively, together with contact
force 𝜆 in Eq. (21), are expressed as functions of 𝜅g with the help of Eqs. (A.1)–(A.3) as

𝐹b = −
𝐷𝜅′

g
√

1 + 𝑅2𝜅2
g

, (24)

𝐹n = −𝐷′

√

1 + 𝑅2𝜅2
g

𝑅
−𝐷

𝑅𝜅g𝜅′
g

√

1 + 𝑅2𝜅2
g

, (25)

𝐹t = 𝐷′′ + 2𝐷′
𝜅′
g

𝜅g
+𝐷

𝜅′′
g

𝜅g
=

(𝐷𝜅g)
′′

𝜅g
, (26)

𝜆 = −
2𝐷′𝜅′

g +𝐷𝜅′′
g

𝜅g𝑅
. (27)

Substituting Eqs. (25) and (26) into Eq. (14) gives a governing differential equation for 𝜅g as

𝐷′′′ +𝐷′
⎛

⎜

⎜

⎝

1
𝑅2

+
𝜅4
g − 2𝜅′

g
2 + 3𝜅g𝜅′′

g

𝜅2
g

⎞

⎟

⎟

⎠

+
𝜅′
g[2𝐷

′′𝜅g +𝐷(𝜅3
g − 𝜅′′

g )] +𝐷𝜅g𝜅′′′
g

𝜅2
g

= 0. (28)

.2. Stability and force analysis for homogeneous rod loops on great circles

As suggested by Eq. (20), the contact force applied by the spherical confinement onto the constrained loop staying on the great
ircle is uniform, but its value is not determined. In comparison with classical results on the buckling load of unconstrained circular
ings under different types of loading pressure (Timoshenko and Gere, 1961; Singer and Babcock, 1970), there remains a notable
bsence of formulated analysis or clarity regarding the buckling behavior of surface-constrained loops, even when subjected to
pherical confinement. In this section, we focus on the buckling and force analysis for homogeneous rod loops staying on great circles.

Substituting Eqs. (17) and (18) into Eq. (16) and taking 𝐷′ = 0 give

𝐷𝜅(𝜅𝜏)′ +𝐷𝜅𝜅′𝜏 + 𝜆𝜅g = 0. (29)

With the aid of Eqs. (A.2) and (A.3), along with the relationships 𝜅n = −1∕𝑅 and 𝜏g = 0, Eq. (29) simplifies to

𝜅′′
g + 𝜆𝑅

𝐷
𝜅g = 0 or 𝜅′′

g + 𝛽2𝜅g = 0, (30)

with the notation 𝛽2 = 𝜆𝑅∕𝐷 under the assumption of a positive value of 𝜆 (indicating an inward-pointing compressive contact
force). The solution to Eq. (30) is

𝜅g = 𝐴 cos(𝛽𝑠) + 𝐵 sin(𝛽𝑠), (31)

where 𝐴 and 𝐵 denote constants determined through boundary conditions.
9
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For a buckled loop just deviating slightly from a great circle of vanishing geodesic curvature, there are certain points where
g = 0 still holds. To simplify the analysis in this section, one of these points with vanishing geodesic curvature is selected as 𝑠 = 0.

The continuity condition 𝜅g(𝑠 = 0) = 𝜅g(𝑠 = 𝐿) = 0 necessitates 𝐴 = 0 and sin(𝛽𝐿) = 0, and then the smoothness condition
𝜅′
g(𝑠 = 0) = 𝜅′

g(𝑠 = 𝐿) leads to cos(𝛽𝐿) = 1. Combining these conditions yields 𝐴 = 0 and 𝛽𝐿 = 2𝑛𝜋 with positive integer 𝑛 = 1, 2, 3,…,
and

𝜅g = 𝐵 sin 2𝑛𝜋𝑠
𝐿

. (32)

Here trivial cases of circular configurations without out-of-plane deformation (𝜅g(𝑠) = 0 with 𝐴 = 𝐵 = 0 or 𝐴 = 𝛽 = 0) are excluded.
The analysis above indicates that for the rod loop with a length of 𝐿 = 2𝑚𝜋𝑅 (𝑚 as a positive integer) and adopting an 𝑚-tuple

cover of a great circle, the relation 𝑛 = 𝑚,𝑚 ± 1,… is required. A careful examination of the profile of 𝜅g(𝑠) in Eq. (32) suggests
that 𝑛 = 𝑚 corresponds to the buckled rod loop crossing the sphere equator (a specified geodesic circle) 2𝑚 times, with each rod
portion covering the great circle undergoing rotation about a shared axis passing through the sphere center and the great circle.
Such deformation with biased rotation disrupts the system symmetrical properties stemming from the spherical confinement, and
renders the rod configuration inherently unstable. Consequently, 𝑛 = 𝑚 corresponds to unstable buckled configurations.

Then 𝑛 = 𝑚 ± 1 is adopted, as the nearest integer of 𝑚, for stable buckled loops of 𝑚-tuple covers of a great circle (𝐿 = 2𝑚𝜋𝑅)
with 𝛽 = 2(𝑚 ± 1)𝜋∕𝐿. At 𝑛 = 𝑚 + 1, the buckled loops oscillate about the great circle with 𝜅g = 𝐵 sin[(𝑚 + 1)𝑠∕(𝑚𝑅)], and gradually
deviate from the great circle as the rod length increases. The corresponding critical load 𝜆cr is given as

𝜆cr =
𝐷𝛽2

𝑅
= 𝐷

𝑅3
(𝑚 + 1)2

𝑚2
(𝑚 = 1, 2, 3,…). (33)

At 𝑛 = 𝑚 − 1, the buckled loops oscillate about the great circle with 𝜅g = 𝐵 sin[(𝑚 − 1)𝑠∕(𝑚𝑅)], and gradually collapse onto the
great circle as the rod length increases. The corresponding critical load 𝜆cr is

𝜆cr =
𝐷𝛽2

𝑅
= 𝐷

𝑅3
(𝑚 − 1)2

𝑚2
(𝑚 = 2, 3, 4,…). (34)

Both Eqs. (33) and (34) indicate that 𝜆cr → 𝐷∕𝑅3 as 𝑚 → ∞. Using perturbative analysis with approximation of 𝜅g ∼ cos(𝑛𝜑∕𝑚)
or 𝜅g ∼ cos[(𝑚 + 1)𝜑∕(𝑚 + 2)], the results in Eqs. (33) and (34) have been obtained (Guven and Vázquez-Montejo, 2012).

4.3. Formulated analysis on force and configurations of constrained homogeneous rod loops

We now seek theoretical derivations on force and configurations of constrained homogeneous rod loops. Eq. (28) of 𝜅g for the
inhomogeneous rod loops is too complex to be solved analytically. Fortunately, an analytical solution of 𝜅g is found for homogeneous
rod loops. For the homogeneous rod (𝐷′ = 0), Eq. (28) reduces to

𝜅g𝜅
′′′
g + 𝜅′

g(𝜅
3
g − 𝜅′′

g ) = 0,

and a solution is (Langer and Singer, 1984; Guven and Vázquez-Montejo, 2012)

𝜅g = ±2𝑐𝑘cn(𝑐𝑠, 𝑘), (35)

where parameters 𝑐 and 𝑘 can be determined by closure conditions of the rod loop, and sn(𝑐𝑠, 𝑘), cn(𝑐𝑠, 𝑘), and dn(𝑐𝑠, 𝑘) are three most
popular Jacobi elliptic functions defined via the inverse of the incomplete elliptic integral of the first kind as sn(𝑢, 𝑘) = sin(am(𝑢, 𝑘)),
cn(𝑢, 𝑘) = cos(am(𝑢, 𝑘)), and dn(𝑢, 𝑘) =

√

1 − 𝑘2sn2(𝑢, 𝑘) with the Jacobi amplitude am(𝑢, 𝑘) satisfying 𝑢 = ∫ am(𝑢,𝑘)
0 (1 − 𝑘2 sin2 𝜃)−1∕2d𝜃.

The dimension of 𝑐 is reciprocal length and 𝑘 is dimensionless. The positive and negative signs in Eq. (35) signify two equivalent
solutions, each corresponding to rod loop configurations that are mirror images of each other. Hereinafter 𝜅g = −2𝑐𝑘cn(𝑐𝑠, 𝑘) is taken
for further discussion. Then the curvature 𝜅 and torsion 𝜏 of the rod centerline are obtained, respectively, as

𝜅 =
√

𝜅2
n + 𝜅2

g = 1
𝑅

√

1 + 4𝑐2𝑘2𝑅2cn2(𝑐𝑠, 𝑘) and 𝜏 =
2𝑐2𝑘𝑅dn(𝑐𝑠, 𝑘)sn(𝑐𝑠, 𝑘)
1 + 4𝑐2𝑘2𝑅2cn2(𝑐𝑠, 𝑘)

. (36)

At 𝐷′ = 0, the internal force components are expressed as

𝐹t = 𝑐2𝐷[1 − 2dn2(𝑐𝑠, 𝑘)], 𝐹n =
4𝑐3𝐷𝑘2𝑅cn(𝑐𝑠, 𝑘)dn(𝑐𝑠, 𝑘)sn(𝑐𝑠, 𝑘)

√

1 + 4𝑐2𝑘2𝑅2cn2(𝑐𝑠, 𝑘)
, and 𝐹b = −

2𝑐2𝐷𝑘dn(𝑐𝑠, 𝑘)sn(𝑐𝑠, 𝑘)
√

1 + 4𝑐2𝑘2𝑅2cn2(𝑐𝑠, 𝑘)
, (37)

nd the contact force 𝜆 is

𝜆 = 𝑐2𝐷
𝑅

[2dn2(𝑐𝑠, 𝑘) − 1]. (38)

Eq. (38) can also be obtained using the calculus of variations (Guven and Vázquez-Montejo, 2012).
So far parameters 𝑐 and 𝑘 in Eq. (35) are unknown and yet to be determined using closure conditions of angles 𝜃 and 𝜑 as follows.
As 𝐫 is parallel to the contact force 𝐪, one has 𝐫 × 𝐅′ = 𝟎 based on Eq. (9). Combining 𝐫 × 𝐅′ = 𝟎 and Eq. (10), the relation

′ + (𝐫 × 𝐅)′ = 𝟎 holds, which means that the vector  = 𝐌+ 𝐫 × 𝐅 is conserved along the arclength 𝑠. Here  can be interpreted
s the resultant moment per unit length about the sphere center. Aligning  along a given direction enables the specification of
he orientation of the confined rod loops.
10
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In the Darboux frame {𝐫; 𝐭, 𝐠,𝐧S} of the rod curve (Appendix A), 𝐧S(= 𝐞𝑟) is the unit normal vector to the confining surface and
𝐠 is the unit tangent normal vector or conormal vector with 𝐠 = 𝐧S × 𝐭. Then 𝐌 = 𝐷𝜅𝐛 can be rewritten by projecting 𝜅𝐛 onto the
{𝐭, 𝐠,𝐧S} basis as

𝐌 = 𝐷𝜅g𝐧S −𝐷𝜅n𝐠. (39)

Using 𝐅 = 𝐹t 𝐭 + 𝐹nS𝐧S + 𝐹g𝐠, 𝐫 = 𝑅𝐧S, and Eq. (39),  is expressed as

 = −𝐹g𝑅𝐭 +𝐷𝜅g𝐧S − (𝐷𝜅n − 𝐹t𝑅)𝐠, (40)

where 𝐹t = 𝐷𝜅′′
g ∕𝜅g from Eq. (26) and 𝐹g = 𝐅 ⋅ 𝐠 = (𝐹n𝜅g − 𝐹g𝜅n)∕𝜅. The relation 𝐹nS = 𝐅 ⋅ 𝐧S = (𝐹n𝜅n + 𝐹b𝜅g)∕𝜅 = 0 has also been

used. Combining Eqs. (24)–(26),  in Eq. (40) can be expressed as a function of 𝜅g

 = 𝐷𝑅𝜅′
g𝐭 +𝐷𝜅g𝐧S +𝐷

(

1
𝑅

+
𝑅𝜅′′

g

𝜅g

)

𝐠. (41)

Substituting Eq. (35) into Eq. (41), the magnitude of  is obtained as

 = 𝐷
𝑅

√

(𝑐2𝑅2 − 1)2 + 4𝑘2𝑐2𝑅2. (42)

As the system can always be rotated such that  aligns along 𝑧-axis,  = −𝐞𝑧 is taken (Guven and Vázquez-Montejo, 2012).
hen one has

 ⋅ 𝐧S = −𝐞𝑧 ⋅ 𝐞𝑟 = − cos 𝜃, (43)

 ⋅ 𝐠 = −𝐞𝑧 ⋅ 𝐠 = −𝑅𝜑′ sin2 𝜃. (44)

ombining Eqs. (35), (42), and (43) with  ⋅ 𝐧S = 𝐷𝜅g from Eq. (41), one can obtain

cos 𝜃 =
2𝑐𝑅𝑘cn(𝑐𝑠, 𝑘)

√

(𝑐2𝑅2 − 1)2 + 4𝑘2𝑐2𝑅2
. (45)

Combining Eq. (44) with  ⋅ 𝐠 = 𝐷(𝜅g + 𝑅2𝜅′′
g )∕(𝑅𝜅g) from Eq. (41), one has

−𝑅𝜑′ sin2 𝜃 =
𝐷(𝜅g + 𝑅2𝜅′′

g )

𝑅𝜅g
. (46)

Substituting Eqs. (35) and (45) into Eq. (46), the azimuthal angle 𝜑 obeys

𝜑′ = 𝐷
𝑅2

×
1 + 𝑐2𝑅2 − 2𝑐2𝑅2dn2(𝑐𝑠, 𝑘)
2 − 4𝑐2𝐷2𝑘2cn2(𝑐𝑠, 𝑘)

. (47)

Integrating Eq. (47) with 𝜑(0) = 0, the azimuthal angle 𝜑(𝑠) can be expressed as

𝜑(𝑠) = −

√

(𝑐2𝑅2 − 1)2 + 4𝑘2𝑐2𝑅2

2𝑐𝑅

[

𝑐𝑠 − 𝑐2𝑅2 + 1
𝑐2𝑅2 − 1

𝛱
(

− 4𝑘2𝑐2𝑅2

(𝑐2𝑅2 − 1)2
; am(𝑐𝑠, 𝑘), 𝑘

)]

, (48)

where 𝛱(𝜈;𝜙, 𝑘) = ∫ 𝜙
0 (1−𝜈 sin2 𝜍)−1(1−𝑘2 sin2 𝜍)−1∕2d𝜍 is the incomplete elliptic integral of the third kind. The rod configuration can

be characterized by 𝜃(𝑠) and 𝜑(𝑠) given by Eqs. (45) and (48), which indicate independence of the homogeneous bending stiffness 𝐷.
Values of 𝑐 and 𝑘 in Eqs. (45) and (48) are determined using closure conditions of the rod loop. With cos 𝜃 ∼ cn(𝑐𝑠, 𝑘) seen from

Eq. (45) and the periodicity relation cn(𝑢, 𝑘) = −cn[𝑢 + 2K(𝑘), 𝑘], the periodicity of the polar angle function 𝜃(𝑠) requires

𝑐 = 𝜂
4K(𝑘)
𝐿

, (49)

where 𝜂 is a positive integer denoting the number of complete periods of 𝜃(𝑠) (e.g., 𝜂 = 1 for rod configurations in branch 2, 𝜂 = 2
for branch 1; 𝜂 = 3 for branch 3; 𝜂 = 4 for branch 4) and K(𝑘) = ∫ 𝜋∕2

0 (1 − 𝑘2 sin2 𝜃)−1∕2d𝜃 is the complete elliptic integral of the first
kind. Taking 𝜑(0) = 0, the periodicity of the azimuthal angle function 𝜑(𝑠) requires

𝜑(𝐿) = 𝜑(0) + 2𝜋𝑝 = 2𝜋𝑝, (50)

where 𝑝 is a positive (negative) integer representing the count of times the rod loop encircles 𝑧-axis in the positive (negative)
azimuthal direction (e.g., 𝑝 = −2 for rod configurations at 𝐿̄ = 1.55, 1.7, and 1.99 in branch 2; 𝑝 = −3 for 𝐿̄ = 2.45, 2.8, and 2.99
in branch 1; 𝑝 = −4 for 𝐿̄ = 3.5, 3.7, and 3.99 in branch 3). At 𝑝 = 0, metastable figure-eight-shaped configurations in branch 2 in
Fig. 2 are observed (e.g., 𝐿̄ = 1 and 1.3 in branch 2).

In general, values of parameters 𝑐 and 𝑘 can be numerically obtained from Eqs. (49) and (50) at a given rod length 𝐿. In cases
where the constrained rod has a slight deviation away from the great circle, 𝑘2 is small (Fig. 11 in Appendix B) and its analytical
approximation could be obtained (Eq. (B.4) in Appendix B). It is shown that geometric quantities 𝜅 and 𝜏, as well as the contact
force 𝜆, can all be well approximated by employing Eq. (B.4) (Fig. 11 in Appendix B).

The analytical solution derived from the local force and moment balance equations in Section 4.3 leads to results akin to those
obtained through the previous variational framework (Guven and Vázquez-Montejo, 2012). However, a notable distinction lies in the
11
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a

Fig. 6. The normalized contact force 𝜆𝑅3∕𝐷 versus the normalized arclength 𝑠∕𝐿 at 𝐿̄ ≡ 𝐿∕(2𝜋𝑅) = 1.2, 1.7, 2.2, and 2.8. Analytical findings (Eqs. (38), (49),
nd (50)) and numerical optimization solutions yield identical results. Values of (𝑛, 𝑝) sets from (a) to (d) are (2, 1), (1,−2), (3, 2), and (2,−3), respectively.

Fig. 7. Maximum and minimum values of the normalized contact force 𝜆𝑅3∕𝐷 for stable solutions (thick solid and dotted lines) and metastable solutions (thin
dashed lines). Color lines correspond to cases in Fig. 3. Analytical findings and numerical optimization solutions yield identical results. Solid square and triangle
symbols denote results from Eqs. (33) and (34), respectively.

absence of introducing any constant of integration in the current analysis. This deviation arises from circumventing the integration
of the tangential force balance equation.

Eq. (27) indicates that the contact force magnitude 𝜆 is determined by local geometric and material properties. For the
homogeneous rod loop, 𝜆 = −(𝐷𝜅′′

g )∕(𝑅𝜅g). Using Eqs. (38), (49), and (50) or via numerical optimization, the contact force
distributions for the stable configurations in Fig. 5 of different loop lengths are evaluated in Fig. 6. The configurations in cases (a)
and (d) have 𝐷2d symmetry, while the configuration in case (b) displays 𝐶2v symmetry, and that in case (c) exhibits 𝑇d symmetry.
The progression of configurational symmetry from 𝐷2d to 𝐶2v and then to 𝑇d is reflected in periods of 𝜆 profiles, transitioning from
𝑠∕(4𝐿) to 𝑠∕(2𝐿) and then to 𝑠∕(6𝐿).

By extracting the maximum and minimum values of the normalized contact force 𝜆𝑅3∕𝐷 at various 𝐿̄ values, the upper and
lower bounds of the contact force are obtained (Fig. 7). Extreme values of 𝜆 show features of nonmonotonicity and discontinuity
due to the configurational transitions with increasing 𝐿̄. With the exception of the minimum values of 𝜆 at 𝐿̄ around 1.5, which are
negative, all other minimum values and all maximum values of 𝜆 are positive. This indicates that, in most instances, the contact
12
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force exerted by the spherical surface onto the rods tends to push the loops inward radially, impeding the loop expansion. In a few
instances of branch 2, the contact force brings partial regions of the confined loops to attach to the inner surface.

The critical contact force presented in Fig. 7 agree with Eqs. (33) and (34). At 𝐿̄ approaches 1, the normalized contact force
pplied on the circular loop tends to 𝜆1cr𝑅3∕𝐷 = 4. In contrast, the critical external pressure 𝑃ext for an elastic ring of length
𝜋𝑅 undergoing planar buckling conforms to distinct relations: 𝑃 I

ext𝑅
3∕𝐷 = 3 under hydrostatic pressure (case I) (Boresi, 1955;

imoshenko and Gere, 1961), 𝑃 II
ext𝑅

3∕𝐷 ≈ 3.27 under constant directional pressure (case II) (Chwalla and Kollbrunner, 1938; Singer
nd Babcock, 1970), and 𝑃 III

ext𝑅
3∕𝐷 = 4.5 under centrally directed pressure (case III) (Boresi, 1955). The anticipation of 𝜆1cr > 𝑃 I

ext
nd 𝜆1cr > 𝑃 II

ext arises due to the exclusion of planar deformation of the spherical surface-constrained loop, whereas the expectation
f 𝜆1cr < 𝑃 III

ext stems from the availability of out-of-plane deformation of the spherical loop.

. Effects of bending stiffness inhomogeneity on packing of surface-constrained rod loops

The surface-constrained inhomogeneous rod loop comprises a softer segment and a stiffer segment. A hyperbolic tangent function
s employed to specify the inhomogeneity of the bending stiffness function 𝐷 (𝑠) as

𝐷(𝑠) = 𝐷0 −
𝐷0 −𝐷1

2

[

tanh
𝛾(𝑠 − 𝑠∗0)

𝐿
− tanh

𝛾(𝑠 − 𝑠∗1)
𝐿

]

, (51)

where 𝐷0 and 𝐷1 denote the bending stiffness of the stiffer and softer segments, respectively, and 𝑠 ∈ (𝑠∗0 , 𝑠
∗
1) represents the softer

ortion arclength. Fig. 8 shows the profile of 𝐷(𝑠) in Eq. (51) with 𝐷1∕𝐷0 = 0.5, 𝛾 = 200, 𝑠∗0∕𝐿 = 0.3, and 𝑠∗1∕𝐿 = 0.8. The parameter
is introduced to adjust the sharpness of the transition, with a larger 𝛾 resulting in a sharper stiffness transition.

To demonstrate effects of the rod inhomogeneity on the packing behavior, case studies of 𝐷1∕𝐷0 = 0.001, 0.1, and 0.5 at
∗
0∕𝐿 = 0.3 and 𝑠∗1∕𝐿 = 0.8 are examined via numerical optimization. Fig. 9 shows various configurations of the constrained rod
oops with the extremely soft segment of 𝐷1∕𝐷0 = 0.001. To minimize the bending energy of the entire rod, the stiffer segment
dopts a configuration resembling a geodesic arc, while the softer segment undergoes more pronounced deformation to match the
eometric constraint. As the rod length increases, the geodesic stiffer segment coils up (𝐿̄ > 2), and the extremely soft segment
volves from a saddle- to a figure-eight-shaped configuration. As the total elastic energy 𝐸el of the rod loop here mainly comes from
he bending deformation of the stiffer segment, 𝐸el is well approximated as 𝐸el ≈ (𝐷0∕2) ∫

(𝑠∗1−𝑠
∗
0 )𝐿

0 𝑅−2d𝑠 = 𝐷0(𝑠∗1 − 𝑠∗0)𝐿∕(2𝑅
2). This

pproximation is supported by numerical results which are not presented here.
In Fig. 10, we depict the configurations of the constrained rod loops with 𝐷1∕𝐷0 = 0.5. As the normalized rod length 𝐿̄ exceeds 1,

he rod loop undergoes buckling, transitioning from a great-circle- to saddle-shaped configurations. The difference in the bending
tiffness between the two segments leads to the loss of 𝐷2d symmetry and the maintenance of only mirror symmetry in the saddle-
ike configurations (first row in Fig. 10). In comparison with the stiffer segment, the softer segment undergoes more pronounced
eformation. With a further increase in 𝐿̄, the rod loop transforms into a figure-eight-shaped configuration, comprising two unequal
vals joined together (second row in Fig. 10), where the softer segment forms the smaller oval. At 𝐿̄ = 2, the rod loop circumscribes
he great circle twice. As 𝐿̄ continues to rise, the configurations become more complex, yet they consistently exhibit the tendency
or the stiffer segment to bend less away from the great circle in comparison to the softer segment (third and fourth rows in Fig. 10).
t 𝐿̄ = 3, the rod loop encircles the great circle three times. The energy profile 𝐸el∕(𝐷0∕𝑅) in the bottom right corner of Fig. 10
hows a similar trend to that of the homogeneous rod loop.

Fig. S6 illustrates the configurational evolution of the constrained rod loops with 𝐷1∕𝐷0 = 0.1, a pattern closely resembling that
bserved for 𝐷1∕𝐷0 = 0.5 in Fig. 10. The corresponding energy profile is depicted in Fig. S7. Given that 𝐷1∕𝐷0 = 0.1 in Fig. S6 falls
etween 𝐷1∕𝐷0 = 0.001 in Fig. 9 and 𝐷1∕𝐷0 = 0.5 in Fig. 10, the stiffer segment in Fig. S6 exhibits a bending extent away from the
reat circle that lies between those observed in Figs. 9 and 10.

Fig. 8. Profile of the hyperbolic tangent function used to characterize the inhomogeneity of the rod bending stiffness.
13
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Fig. 9. Selected configurations of surface-constrained inhomogeneous rod loops with 𝐷1∕𝐷0 = 0.001, 𝑠∗0∕𝐿 = 0.3, and 𝑠∗1∕𝐿 = 0.8 at different rod lengths. The
color bar indicates the distribution of 𝐷(𝑠)∕𝐷0.

6. Further discussion

This work employs the wormlike chain model for confined thin elastic rods, neglecting the twist energy. While this offers a good
starting point, a more comprehensive model would include both bending and twisting components (Landau and Lifshitz, 1986;
Audoly and Pomeau, 2010). For open thin rods, when the rods experience zero end-twist or the confinement does not restrict
twisting, the twist energy vanishes in equilibrium (Manning, 2015). However, this does not apply to closed rod loops, necessitating
further theoretical investigation into the effects of twisting on confined rod loops.

Our current analysis is restricted to rigid spherical confinement. Another important case is flexible or deformable confinement,
such as elastic thin shells, biological membranes, or fluid interfaces. Packing flexible slender rods in these deformable confinement
leads to mutual deformation, resulting in more complex configurations. For example, in a filament–vesicle system, depending on the
relative stiffness and size of the confined filaments to vesicles, various filament configurations such as saddle, circle, oval, or twisted
saddle shapes are observed (Shi et al., 2023; Zhang et al., 2024). Moreover, the deformable confinement alters system symmetry.
As Figs. 5 and 6a indicate, within the rigid spherical confinement, the rod loop of normalized length 𝐿̄ = 1.2 (saddle shape with
𝐷2d symmetry) shows maximum (minimum) inward-pointing contact force 𝜆 at the rod points of maximum (minimum) curvature.
When replacing the rigid confinement with flexible confinement, such as a vesicle membrane, the rod expands anisotropically and the
flexible confinement loses its axial symmetry. Consequently, the filament–vesicle system with a saddle-shaped filament loop exhibits
𝐶2v symmetry (Shi et al., 2023), losing two axes of twofold rotational symmetry in comparison with 𝐷2d symmetry of the saddle-
shaped rod loop within a rigid sphere. In comparison with recent numerical simulations on the filament–vesicle morphology (Shi
et al., 2023; Zhang et al., 2024), analytical predictions on the interplay between flexible rods and deformable confinement are
lacking. This includes stability analysis and the shape equation at the rod–confinement contact boundary. Potential approaches
might involve variational methods incorporating differential geometry and surface-based constraints.

In reality, friction between the rod and confinement may exist, hindering their relative sliding, redistributing forces along the
rod, and altering the onset of rod buckling and its post-buckling behavior. Unlike the frictionless case where a normal contact force
acts on the rod, frictional contact can introduce the rod to experience lateral and tangential frictional forces. Consequently, Eqs. (9)
and (10) for the force and moment balance would need modifications to incorporate static or kinetic friction. Additionally, frictional
contact might lead to history-dependent packing behavior, meaning the rod’s configuration depends on its past interaction.
14
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Fig. 10. Configurations and energy profile 𝐸el∕(𝐷0∕𝑅) of constrained inhomogeneous rod loops with 𝐷1∕𝐷0 = 0.5, 𝑠∗0∕𝐿 = 0.3, and 𝑠∗1∕𝐿 = 0.8. Color bar, 𝐷(𝑠)∕𝐷0.
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7. Conclusions

Combining analytical approaches, numerical optimization, and experimental inquiries, we study the packing behavior of thin
lastic rod loops in spherical confinement, where the loop length exceeds confinement circumference. Investigating surface-
onstrained homogeneous rod loops yields a spectrum of stable and metastable configurations. By leveraging the Euler rotation
urve approximation, formalized solutions are obtained, offering a concise yet potent means for predicting rod configurations swiftly
nd accurately. Various configurations such as circle, saddle, figure-eight, and more intricate patterns emerge across varying loop
engths. Based on the local balancing of force and moment, analytical solutions for rod configurations concerning internal and
ontact forces are also obtained, eliminating the need for analytically elusive constants of integration. Theoretical analysis on the
lastic buckling of homogeneous rod loops on great circles are performed. Further numerical results indicate that the homogeneous
od loops within the spherical confinement adopt identical configurations to surface-constrained rod loops of the same lengths,
hereby precluding detachment of stable rod configurations from the spherical surface. Additionally, we explore configurations of
nhomogeneous rod loops comprising two stiffness segments, revealing distinct bending behavior–the stiffer segment exhibiting less
eviation from the great circle, while the softer segment undergoes more pronounced deformation. The elucidation of fundamental
echanical principles governing these packing behavior holds broad relevance to filament organization within cells, cell shaping,

nd the fabrication of artificial cellular structures.
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Appendix A. Curves on a surface and spherical curves

Introduce a vector function 𝐒(𝑢1, 𝑢2) as a parametric representation of an oriented confining surface S, where 𝑢1 and 𝑢2 are
coordinates on S. Then components of the surface metric tensor are 𝑔𝛼𝛽 = 𝐒,𝛼 ⋅ 𝐒,𝛽 , where 𝐒,𝛼 ≡ 𝜕𝐒∕𝜕𝑢𝛼 (𝛼, 𝛽 = 1, 2). The unit normal
vector 𝐧S to the surface S is defined as 𝐧S = (𝐒,𝛼 × 𝐒,𝛽 )∕

√

det𝑔𝛼𝛽 . On the surface-constrained rod curve, its unit tangent vector 𝐭, the
nit normal vector 𝐧S, and the unit tangent normal vector 𝐠 = 𝐧S × 𝐭 together form the Darboux frame {𝐫(𝑠); 𝐭(𝑠), 𝐠(𝑠),𝐧S(𝑠)} of the
od curve. Using orthogonality and parallelity relations of 𝐭, 𝐠, 𝐧S and the Frenet–Serret formulas, one has (Guggenheimer, 1977)

⎛

⎜

⎜

⎝

𝐭′
𝐠′
𝐧′S

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

0 𝜅g 𝜅n
−𝜅g 0 𝜏g
−𝜅n −𝜏g 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝐭
𝐠
𝐧S

⎞

⎟

⎟

⎠

,

here 𝜅g denotes the geodesic curvature, 𝜅n is normal curvature, and 𝜏g represents the geodesic torsion of the rod centerline curve
mbedded on the surface S. These three geometric parameters can be expressed as (Guggenheimer, 1977)

𝜅g = 𝐭′ ⋅ 𝐠 = 𝜅𝐧 ⋅ 𝐠 = 𝜅 cos𝜔, 𝜅n = 𝐭′ ⋅ 𝐧S = 𝜅𝐧 ⋅ 𝐧S = −𝜅 sin𝜔, and 𝜏g = −𝐧′S ⋅ 𝐠 = 𝜏 + 𝜔′,

here 𝜔 denotes the angle between the unit binormal vector 𝐛 of the rod curve and the unit normal vector 𝐧S to the surface S,
y which the Frenet–Serret frame {𝐭,𝐧,𝐛} rotates around vector 𝐭 to coincide with the Darboux frame {𝐭, 𝐠,𝐧S}. With these three
xpressions above, one can obtain the derivatives of 𝜅g, 𝜅n, and 𝜏 with respect to arclength 𝑠 as

𝜅′
g = 𝜅′

𝜅g
𝜅

+ 𝜅n(𝜏g − 𝜏), (A.1)

𝜅′
n = 𝜅′ 𝜅n

𝜅
− 𝜅g(𝜏g − 𝜏), (A.2)

𝜏′ =
−2𝜅g𝜅′

n
2 + 𝜅2[2𝜅g(𝜏 − 𝜏g)2 + 𝜅n𝜏′g] − 𝜅2

n𝜅
′′
g + 𝜅n(2𝜅′

g𝜅
′
n + 𝜅g𝜅′′

n )

𝜅2𝜅n
. (A.3)
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Eqs. (A.1)–(A.3) are derived based on general surfaces and can be further simplified for spherical surfaces. With the help of
qs. (A.1)–(A.3), the internal force components 𝐹b, 𝐹n, and 𝐹t given by Eqs. (17), (18), and (22), respectively, and the contact force
in Eq. (21) can be presented as functions of 𝜅g for spherical surfaces (see Eqs. (24)–(27)).

Introducing the polar angle 𝜃 and the azimuthal angle 𝜙 in Fig. 1 (e.g., 𝑢1 = 𝜃 and 𝑢2 = 𝜑), the spherical surface of radius 𝑅 is
parameterized as 𝐒(𝜃, 𝜑) = 𝑅𝐞𝑟(𝜃, 𝜑) with 𝐞𝑟 as the surface outward unit normal vector (𝐞𝑟 = 𝐧S). A spherical curve with the arclength
𝑠 is parameterized as 𝐫(𝑠) = 𝑅𝐞𝑟(𝑠). The unit normal vector 𝐞𝑟 satisfies

𝐞𝑟(𝑠) ⋅ 𝐞𝑟(𝑠) = 1. (A.4)

The inextensible of the spherical curve requires 𝐫′(𝑠) ⋅ 𝐫′(𝑠) = 1 or

𝐞′𝑟(𝑠) ⋅ 𝐞
′
𝑟(𝑠) = 1∕𝑅2. (A.5)

Differentiating Eq. (A.4) twice with respect to 𝑠 leads to 𝐞′𝑟(𝑠) ⋅ 𝐞
′
𝑟(𝑠) + 𝐞𝑟(𝑠) ⋅ 𝐞′′𝑟 (𝑠) = 0. With Eq. (A.5), one has 𝐞𝑟(𝑠) ⋅ 𝐞′′𝑟 (𝑠) = −1∕𝑅2.

The normal curvature 𝜅n and the geodesic torsion 𝜏g of the spherical curve are, respectively,

𝜅n = 𝐭′ ⋅ 𝐞𝑟 = 𝑅𝐞′′𝑟 (𝑠) ⋅ 𝐞𝑟(𝑠) = −1∕𝑅 and 𝜏g = −𝐞′𝑟(𝑠) ⋅ 𝐠 = −𝐞′𝑟(𝑠) ⋅ (𝐞𝑟(𝑠) × 𝐭) = −𝐞′𝑟(𝑠) ⋅ (𝐞𝑟(𝑠) × 𝑅𝐞′𝑟(𝑠)) = 0.

Another relationship for a spherical curve is (Brunnett and Crouch, 1994)

𝜏2𝜅4 =
(𝜅′

g)
2

𝑅2
.

Appendix B. Results for rod loops slightly deviating away from the great circle (𝒌𝟐 ≪ 𝟏)

Recalling the relation am[4𝜂K(𝑘), 𝑘] = 2𝜋𝜂 and using a Maclaurin series of 𝛱(𝜂;𝜋∕2, 𝑘) at 𝑘2 ≪ 1 as

𝛱(𝜂;𝜋∕2, 𝑘) ≈ 𝜋
2
√

1 − 𝜂
+ 𝜋

4𝜂

(

1
√

1 − 𝜂
− 1

)

𝑘2,

𝜑(𝐿) from Eq. (48) is then approximated as

𝜑(𝐿) ≈ − 𝛤
2𝑐𝑅

{

𝑐𝐿(𝑐2𝑅2 − 1) − 2𝜋𝜂(𝑐2𝑅2 + 1)
[

1
𝛤

+
(𝑐2𝑅2 − 1)2

8𝑐2𝑅2

(

1 − 1
𝛤

)

]}

, (B.1)

here 𝛤 = [1 + 4𝑘2𝑐2𝑅2∕(𝑐2𝑅2 − 1)2]1∕2.
At 𝑘2 ≪ 1, K(𝑘) ≈ 𝜋(1 + 𝑘2∕4)∕2 and then 𝑐 given in Eq. (49) is approximated by

𝑐 ≈
2𝜋𝜂
𝐿

(

1 + 𝑘2

4

)

. (B.2)

Substituting Eq. (B.2) into Eq. (B.1), a Maclaurin series of 𝜑(𝐿) with terms of 𝑘 up to degree 2 in Eq. (B.1) reads

𝜑(𝐿) ≈ −𝐿
𝑅
sgn(𝐿̄ − 𝜂) −

𝐿𝜂2

𝑅|𝐿̄2 − 𝜂2|
𝑘2. (B.3)

Recalling 𝜑(𝐿) = 2𝜋𝑝 in Eq. (50), from Eq. (B.3) one has

𝑘2 = −
(𝐿̄2 − 𝜂2)

𝐿̄𝜂2
[𝐿̄ + 𝑝sgn(𝐿̄ − 𝜂)]. (B.4)

In cases where the constrained rod has a slight deviation away from the great circle, 𝑘2 is small. Fig. 11 shows that in these
ases Eq. (B.4) agrees well with the fully nonlinear solutions obtainable through numerical evaluation using Eq. (50).

Substituting Eq. (B.4) into Eq. (49), parameter 𝑐 can be analytically obtained, and then geometric properties such as 𝜅 and 𝜏
and contact force 𝜆 can be directly accessed using Eqs. (36) and (38), respectively. Again, in cases where the confined rod slightly
deviates away from the great circle, 𝜅, 𝜏, and 𝜆 based on 𝑘2 given by Eq. (B.4) agree well with the fully nonlinear solutions (Fig. S8).

Fig. 11. 𝑘2 versus 𝐿̄ at selected sets of (𝜂, 𝑝). Solid lines, numerical evaluation based on Eq. (50); dash-dotted lines, Eq. (B.4).
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Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2024.105771.
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Note 1. Experiments
The rigid spherical confinement in Fig. 2 within the main text consists a commercially available transparent Acrylic

spherical shell comprising two hemispherical parts, each with a radius of 4 cm. The elastic rod loops are commercial
Nylon fishing lines, treated as inextensible due to the high Young’s modulus around 2.7 GPa. For homogeneous rod
loops, the fishing lines have a diameter of 0.47 mm. In the case of two-phase inhomogeneous rod loops with a bending
stiffness ratio of 0.5, the stiffer segment has a diameter of 0.32 mm and the softer segment has a diameter of 0.27 mm.
For two-phase inhomogeneous rod loops with a bending stiffness ratio of 0.1, the stiffer portion has a diameter of
0.27 mm and the softer portion has a diameter of 0.15 mm. The fishing lines are pre-stretched overnight to ensure a
straight initial state. The fishing lines of prescribed lengths are connected using glue to form the elastic loops, which
are then packed into the spherical shells. Equilibrium configurations of the confined rod loops could be achieved by
gently shaking the Acrylic shells, if necessary.

Note 2. Supplementray numerical results for homogeneous rod loops

Figure  S1.  Comparison  of  configurations  and  corresponding  coordinates  between  numerical  optimization  results  and  the  Euler  rotation  curve 
approximations  with  l  =  2  at  the  rod  length  L̄  ≡  L/(2πR)  =  1.1,  1.24,  and  1.32.  The  locations  with  s  =  0  is  designated  by  blue  dots  in  the  rod
configurations.

S1



Figure  S2.  Comparison  of  configurations  and  corresponding  coordinates  between  numerical  optimization  results  and  Euler  rotation  curve  approxi-
mations  with  l  =  1  at  the  rod  length  L̄  ≡  L/(2πR)  =  1.67,  1.86,  and  1.96.  Blue  dots,  s  =  0.

Figure  S3.  Comparison  of  configurations  and  corresponding  coordinates  between  numerical  optimization  results  and  Euler  rotation  curve  approxi-
mations  with  l  =  3  at  the  rod  length  L̄  ≡  L/(2πR)  =  2.07,  2.15,  and  2.33.  Blue  dots,  s  =  0.
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Figure  S4.  Comparison  of  configurations  and  corresponding  coordinates  between  numerical  optimization  results  and  Euler  rotation  curve  approxi-
mations  with  l  =  2  at  the  rod  length  L̄  ≡  L/(2πR)  =  2.55,  2.8,  and  2.95.  Blue  dots,  s  =  0.

Figure  S5.  Comparison  of  configurations  and  corresponding  coordinates  between  numerical  optimization  results  and  Euler  rotation  curve  approxi-
mations  with  l  =  4  at  the  rod  length  L̄  ≡  L/(2πR)  =  3.05,  3.2,  and  3.4.  Blue  dots,  s  =  0.
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Note 3. Supplementray numerical results for inhomogeneous rod loops
The confined inhomogeneous rod loop comprises a softer segment and a stiffer segment. whose bending stiffness

distribution can be described by Eq. (51) in the main text. In Eq. (51), D0 and D1 denote the bending stiffness of
the stiffer and softer segments, respectively, and s ∈ (s∗0, s

∗
1) represents the softer portion arclength. Fig. S6 shows

configurations of confined inhomogenous rod loops with D1/D0 = 0.1, s∗0/L = 0.3 and s∗1/L = 0.8, and the
corresponding energy profile is depicted in Fig. S7.

∗
0/L = 0.3 and s∗1/L = 0.8 at different rod lengths. ColorFigure  S6.  Configurations  of  confined  inhomogeneous  rod  loops  of  D1/D0  =  0.1,  s

bar,  D(s)/D0.
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Figure  S7.  Energy  profile  Eel/(D0/R)  of  the  stable  configurations  of  the  confined  inhomogeneous  rod  loops  with  D1/D0  =  0.1,  s

Figure  S8.  Normalized  curvature  κR,  torsion  τR,  and  contact  force  λR3/D  versus  the  normalized  arclength  s/L  at  (a)  and  1.2  (b).  Here  η  =  2
and  p  =  1  in  branch  1  are  taken.
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