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A B S T R A C T   

Protrusion induced by cylindrical tubes against cell membranes plays essential roles in numerous 
biological processes, including filopodia growth, cellular packing or entry of one-dimensional 
nanomaterials, and indentation of cells by needle-like probes. Though the mechanical interac-
tion between the cell membrane and a perpendicular tube has been widely investigated, little is 
known about how an inclined protruding tube interacts with the cell membrane. Here, we 
theoretically investigate the angle-dependent protrusion of cylindrical tubes against cell mem-
branes. It is found that perpendicular protrusion is stabilized by the elastic deformation of cell 
membranes. Increasing the angle between the protrusion direction and perpendicular direction or 
increasing membrane tension leads to an increasing peak force for the membrane tubulation and 
increasing plateau resistive force for the maintenance of membrane tubules. Moreover, two 
fundamental protruding modes leading to the tip-roof and finial-roof system configurations are 
identified. Inclined protrusion retards the configurational transition from the tip-roof to the finial- 
roof configuration, and causes possible bending and buckling of protruding tubes due to a large 
membrane resistive force. Our results offer fundamental insights into the interaction between cell 
membranes and one-dimensional nanomaterials, and contribute to the understanding and control 
of membrane protrusion in biological systems.   

1. Introduction 

The mechanical interplay between cell membranes and one-dimensional nanomaterials is ubiquitous in biological activities and 
strongly affects morphologies and functions of cells. For example, it is reported that carbon nanotubes, asbestos fibers, and gold 
nanowires adopt a perpendicular entry into living cells through a tip recognition and body rotation mechanism (Shi et al., 2011). 
Further theoretical investigations indicate that membrane wrapping of one-dimensional nanomaterials is dominated by normalized 
membrane tension with a perpendicular entry prevailing at small membrane tension and parallel adhering at a large membrane tension 
(Yi et al., 2014). The mutual interaction between vesicles and encapsulated of flexible filaments, such as nucleoid DNAs, actin fila-
ments, and microtubules, results in the shaping of vesicles to dumpling-, sausage-, pebble-, droplet-, or racket-like morphologies (Shi 
et al., 2023). The adhesive interaction between lipid membranes and adsorbed nanoparticles could lead to cooperative wrapping of 
multiple nanoparticles in long tubular membrane structures enclosing nanoparticle chains (Raatz et al., 2014; Yue et al., 2014; Raatz 
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and Weikl, 2017; Wu and Yi, 2020). 
Among different modes of interaction between cell membranes and one-dimensional nanomaterials, protrusion of cell membranes 

is widely encountered. Long and stiff carbon nanotubes shape the confining intracellular vesicles to a configuration with long 
membrane protrusions or protruding tips, and lead to length- and stiffness-dependent cytotoxicity (Zhu et al., 2016). Streaming tubular 
protrusions are observed in active nematic vesicles encapsulating microtubules and molecular motors (Keber et al., 2014). The for-
mation of filopodia, vital for cellular sensing of the local environment, cell motility, and cell–cell communications, is driven by the 
protrusion of actin filament bundles against cell membranes via polymerization (Mattila and Lappalainen, 2008; Jacquemet et al., 
2015; Chang et al., 2022). The initiation, maintenance, and retraction of the filopodia can be viewed as a mechanical interplay between 
one-dimensional actin filament bundles and cell membranes (Mogilner and Rubinstein, 2005; Atilgan et al., 2006). An interesting 
phenomenon is that one-dimensional nanomaterials usually protrude perpendicularly from cell membranes. For instance, filopodia 
grow perpendicularly with respect to the membrane edge with the actin filaments enclosed by a membrane tube (Atilgan et al., 2006; 
Liu et al., 2008). Experimental studies show that during spread the infecting rod-shaped bacterial parasite Listeria monocytogenes with a 
long actin tail protrudes against the cell membrane more or less perpendicularly (Tilney and Portnoy, 1989). However, fundamental 
questions about why the perpendicular protrusion is dominant in biological systems and how the tube protrusion angle regulates the 
interaction remain unanswered. 

So far most theoretical works on the cellular interaction with one-dimensional nanomaterials are restricted to cases in which one- 
dimensional nanomaterials protrude against cell membranes perpendicularly due to axisymmetric system advantage (Mogilner and 
Rubinstein, 2005; Atilgan et al., 2006; He and Ji, 2017). The mechanical interaction of an inclined tube with the cell membrane, which 
is of more general significance, has rarely been explored theoretically due to the lack of high symmetry of the tube–membrane 
configuration. A general continuum model capable of revealing the role of tube protrusion direction is called for at a fundamental level 
and can provide implications in the protrusion angle-dependent biological activities. For instance, the filopodia sweep with the tip 
rotating around the fixed base to explore a larger space while sensing the local environment (Zidovska and Sackmann, 2011; Leijnse 
et al., 2015). Inclined microindentation, a versatile and unobstructive tool to explore cell mechanical properties, exerts controllable 
compressive nanonewton forces on cells with the indenter approaching the cells with a inclined angle (Gonzalez-Rodriguez et al., 
2016). In this work, the protrusion of an inclined tube against the lipid membrane is investigated. It is found that the perpendicular 
protrusion is always accompanied by a minimal membrane deformation energy and suffers a minimal resistive force, suggesting the 
perpendicular protrusion is stabilized by the elastic deformation of the lipid membrane. Two characteristic configurations are iden-
tified and the effects of the protrusion angle, protrusion depth, and membrane tension on the force–protrusion depth relation and 
configurational transition are investigated. Analytical predictions on the resistive force and the membrane profile are provided. Im-
plications of our results on biological processes, such as filopodial orientation, invasion of the rod-shaped bacteria, and instability of 
confined filaments, are discussed. 

2. Theoretical modeling and numerical methods 

2.1. Theoretical modeling 

Consider a rigid cylindrical tube of radius R protruding against an initially flat cell membrane patch of radius ρmem at a protrusion 
angle θ (Fig. 1a). There is no adhesive interaction between the tube and membrane, and the size of the membrane patch is significantly 
larger than the tube radius (ρmem = 500R). A Cartesian coordinate system is adopted with the tube axis in the xz plane and the remote 
boundary of the membrane at z = 0. The protrusion depth h is defined as the z-coordinate of the tube tip. According to the Can-
ham–Helfrich theory (Helfrich, 1973), the elastic energy Eel of the deformed membrane is 

Eel = 2κ
∫

M2dA + σΔA (1) 

Fig. 1. (a) Schematic plot of a rigid tube protruding against a lipid membrane at a protrusion angle θ and protrusion depth h. The yellow part 
represents the tube, and the orange and gray parts denote the contact region and free region of the membrane, respectively. (b) The triangulated 
mesh of the membrane. Steps of improving mesh quality by flipping diagonals and refining long edges are shown on the top panel in (b). 
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where κ is the membrane bending rigidity and M is the mean curvature of the membrane surface. On the right-hand side of Eq. (1), the 
first term accounts for the membrane bending energy Eb and the second term describes the tension energy Et with σ as the membrane 
tension and ΔA representing the excess membrane area induced by the protrusion. A short-ranged hard-core repulsive interaction Urep 
between the membrane and tube is applied to avoid possible penetration between the membrane and tube, that is, 

Urep =

⎧
⎪⎨

⎪⎩

ϵ
3

[

2
(

dc

d

)10

− 5
(

dc

d

)4
]

+ ϵ, d < dc,

0, d ≥ dc.

(2) 

Here d is the distance between the membrane and tube surface, dc is a small cutoff distance only within which the repulsive po-
tential exists, and ϵ is the strength of the repulsive interaction. In our simulations, dc = 0.05R and ϵ = 1 are taken. 

2.2. Numerical methods 

To obtain the equilibrium system configuration at a given set (θ, h/R), the membrane surface is described as a triangulated surface 
using Surface Evolver (Brakke, 1992). The mean curvature M of the membrane surface at the triangle vertex i is given by 

M =
3∇Ai ⋅ ∇Vi

2(∇Ai ⋅ ∇Ai)
(3)  

where Ai and Vi are the area and volume associated with vertex i, respectively, and ∇Ai and ∇Vi are the corresponding gradients at 
vertex i, which can be calculated based on the vertex coordinates. The volume associated with vertex i of n neighboring vertices can be 
calculated by 

Vi =
1
6

r ⋅ (r1 × r2 + r2 × r3 +⋯ + rn × r1) (4)  

where r is the position vector of vertex i and r1, r2, …, rn are the position vectors of the neighboring vertices. Thus, the gradient ∇Vi is 

∇Vi =
1
6
(r1 × r2 + r2 × r3 +⋯ + rn × r1) (5) 

For a triangulated membrane with N vertices, the bending energy is then given by 

Eb = 2κ
∑N

i

Ai

3
⋅
(

3∇Ai ⋅ ∇Vi

2∇Ai ⋅ ∇Ai

)2

(6) 

Fig. 2. Variations of the total elastic energy Eel (a), membrane bending energy Eb = 2κ
∫

M2dA (b), and membrane tension energy Et= σΔA (c) as a 
function of the protrusion depth h at σR2/κ = 1 and different values of the protrusion angle θ. (d) The bending energy density 2κM2 of the deformed 
membrane at σR2/κ = 1, θ = 0.25π and h = 7R (top panel) and h = 18R (bottom panel). (e, f) Configurational evolution for σR2 /κ = 1 with 
increasing protrusion depth h at θ = 0 (e) and 0.25π (f). 
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The equilibrium configuration at a given protrusion depth is obtained by minimizing the total energy of the tube–membrane system 
with respect to the vertex coordinates. A combination of the gradient descent, conjugate gradient, and Hessian methods is employed to 
minimize the total energy until the relative energy change between two minimization steps is less than (1 × 10− 6) κ. To mimic the 
protrusion process, we gradually increase the protrusion depth h with a small increment Δh starting from a flat membrane (h = 0). In 
our calculations, a sufficiently small value of Δh = 0.1R is taken to capture configurational transitions. Having knowledge of Eel(h), the 
resistive force inhibits the perpendicular motion of the enclosed tube can be determined as f(h) = dEel/dh. 

The triangulated mesh can be severely deformed as the protrusion depth increases, especially in the contact region between the 
membrane and tube, reducing the numerical accuracy. To address this issue, the triangulated membrane is remeshed every few 
minimization steps to ensure the size of each triangle edge l falling in a range lmin < l < lmax by flipping diagonals and refining long 
edges (Fig. 1b). In our simulations we set lmax = 0.01R and lmin = 0.002R to ensure the fine description of the membrane at an 
affordable computational cost. Specifically, each edge is examined with respect to the angles of the quadrilateral formed by two 
adjoining triangles. If the summation of the opposite angles off the diagonal is larger than π (e.g., ∠124 + ∠134 > π in Fig. 1b), the 
diagonal is switched to form a new pair of triangles. As the interested triangles further elongate, flipping the diagonals alone does not 
lead to an improvement in the equiangulation, and new vertices are introduced in the middle of the edge with a length longer than lmax 
(e.g., vertices 7 and 8 are added in the middle of lines 3-4 and 2-4, respectively, in Fig. 1b). No subdivision is performed for the edge 
with a length shorter than 2lmin (e.g., line 2-3 in Fig. 1b). Then, these new added vertices are connected to form new triangles. The 
flipping diagonal and refining procedures are repeated several times over the whole membrane surface to improve the mesh quality. 

3. Numerical and theoretical results 

3.1. Elastic deformation energy 

Profiles of the total elastic energy Eel/κ of the membrane and its two components Eb and Et versus the normalized protrusion depth h 
/R at σR2/κ = 1 and different values of the protrusion angle θ are shown in Fig. 2a–c. Eel/κ increases with increasing θ at a given h/R, 
indicating that the perpendicular protrusion mode is energetically favorable. Experiments show that the membrane tubule formed on 
the axon is perpendicular to the membrane surface, and the tubule becomes inclined by applying a lateral displacement on the tubule 
tip while the tubule would later slide back to maintain the perpendicular orientation (Datar et al., 2015), consistent with our results 
that the perpendicular protrusion is more energetically stable over inclined protrusion. The profile Eel(h) shows cubic nonlinearity at 
relatively small protrusion depth but a linear feature at large protrusion depth (Fig. 2a). The difference in order corresponds to kinks in 
the profile Eel(h), which result from discontinuities in profiles of Eb(h) and Et(h) (Fig. 2a–c), signifying discontinuous configurational 
transition (Fig. 2d–f). The clarity of the appearance of the energy kinks in Eel(h) hinges on the disparity between the energy jumps in Eb 
and the energy drops in Et. Magnitudes of the energy jumps in Fig. 2b and energy drops in Fig. 2c are quite similar, resulting in unclear 
kinks in Fig. 2a. 

3.2. Configurational transitions during the protrusion 

As demonstrated in Fig. 2e,f for the evolution of equilibrium configurations with increasing protrusion depth h /R for σR2 /κ = 1 at 
θ=0 and 0.25π, two distinct configurations can be identified. At a small value of the protrusion depth h, the membrane forms contact 
with a part of the spherical tube cap and a very small part of the tube wall (Fig. 2d). The inner membrane having contact with the tube 
forms a protruding tip and the outer free membrane undergoing small deformation adopts a catenoidal roof-like shape with very small 
mean curvature, as indicated by the low bending energy density in Fig. 2d. Therefore, the membrane configuration at small h is 
referred to as the tip-roof configuration, and no membrane overhangs exist. At a large protrusion depth, the tube tip is fully covered by 
the membrane and membrane overhangs could occur for an inclined protruding tube. As h further increases, a clear finial-like tubular 
membrane protrusion forms. Therefore, the membrane configuration at large h is referred to as the finial-roof configuration. Fig. 2b,c 
indicates that both Eb and Et increase nonlinearly with increasing h/R for the tip-roof configuration and they further increase linearly 
with increasing h/R for the finial-roof configuration, suggesting that the energy variation for the finial-roof configuration mainly arises 

Fig. 3. Contact area between the membrane and tube versus the protrusion depth at the protrusion angle θ = 0.25π and membrane tension σR2 /κ 
= 1. 
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from the membrane tubule elongation with constant bending and tension energy per axial length. Moreover, the membrane tension 
energy Et exceeds the bending energy Eb during the tube protrusion (Fig. 2b,c with σR2/κ = 1), together with the variation of slopes 
dEb/dh and dEt/dh, indicating that the tension dominates in the outer region of the membrane and the bending deformation becomes 
increasingly important in the inner membrane region. Upon the transition from the tip-roof configuration to the finial-roof configu-
ration, the slope dEt/dh becomes smaller (Fig. 2c), indicating that the configurational transition results in a decrease in the membrane 
area. One can then deduce that a larger membrane tension favors the configurational transition at a smaller protrusion depth. 

3.3. Evolution of the tube–membrane contact region 

To gain a more detailed understanding of the protrusion process, we evaluate the contact area between the membrane and tube as a 
function of the protrusion depth with θ = 0.25π and σR2/κ = 1 (Fig. 3), and contact morphologies corresponding to diamond symbols 
in Fig. 3 are shown in Fig. 4. The evolution of the contact area and contact morphologies at θ = 0 and σR2/κ = 1 are shown in Figs. S1 
and S2 for comparison. At a small protrusion depth (e.g., h=2R, 5R, 7R, and 8R), the membrane interacts with the spherical cap of the 
tube. The contact lines are circles parallel to the x-y plane and the base radii of the cap gradually increase with the protrusion depth. As 
the protrusion depth h further increases (e.g., h=9R, 9.5R, 10R, 12R, and 15R), the contact region extends to the tube wall region 
before the spherical tube cap is fully wrapped by the membrane. For the protrusion at an inclined angle, the upper region of the tube 
tends to contact with the membrane first and impede the membrane deformation. The contact region on the tube wall is of slender 
shape with the width gradually decreasing along the tube axis. In this stage, the length of the tube contact region increases with the 
protrusion depth, and the contact region on the spherical cap expends until the cap is fully wrapped (e.g., h=15.5R). After that, the 
membrane starts to shrink and forms a tubular structure near the hemispherical end contacting with the lower part of the tube (e.g., 
h=16R and 16.5R), resulting in a sharp increase of the contact area in Fig. 3. Further increase of the protrusion depth leads to the 
elongation of the tubular structure while the overall shape of contact region keeps unchanged, consistent with the linear increase of the 
contact area with the protrusion depth (Fig. 3). For the perpendicular protrusion (Fig. S1), the contact area first nonlinearly increases 
with the protrusion depth as the membrane contacts and fully wraps the spherical cap of the tube (Fig. S2). After that, the membrane 
forms a tubular structure enclosing the tube (Fig. S2), and the contact area increases linearly with the protrusion depth (Fig. S1). 
Overall, the evolution of the contact area can be divided into two stages. One stage is the nonlinear growth stage with the 
tube–membrane contact region expanding on the cap and upper part of the tube, followed by the other stage, a linear growth stage with 
the protrusion proceeding with the elongation of the tubular structure. 

Fig. 4. Evolution of the tube–membrane contact region at various protrusion depths with θ = 0.25π and σR2/κ = 1. The contact regions (orange) 
are shown in the x-z (upper panels) and x-y (lower panels) views with the Cartesian coordinate of the tube cap center reset to be (0, 0, 0) 
for comparison. 

H. Tang et al.                                                                                                                                                                                                           



Journal of the Mechanics and Physics of Solids 183 (2024) 105500

6

For a free cylindrical membrane tubule of bending rigidity κ and tension σ, it has an equilibrium radius r0 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κ/(2σ)

√
(Derényi 

et al., 2002; Powers et al., 2002; Harmandaris and Deserno, 2006; Tian et al., 2018; Tang et al., 2019). Therefore, at small membrane 
tension of σR2/κ < 1/2, the radius of the tubular membrane protrusion adopts a radius of r0, larger than the tube radius R. Fig. S3 
demonstrates that, in this scenario of a small membrane tension, a transition occurs from the tip-roof to the finial-roof configuration, 
resulting in the formation of a membrane tubule of radius r0 > R as the protrusion depth increases. Furthermore, a more detailed 
examination of the configurations in Fig. S3, when coupled with measurements of the contact area shown in Figs. S4 and S5, indicates 
that the membrane tubule primarily makes contact with the upper portion of the enclosed tube, even in the finial-roof configuration. 
This leads to substantial gaps between the membrane and the lower part of the tube, in contrast to the tight contact observed between 
the tubule and the enclosed tube at higher membrane tension. 

3.4. Configurational transitions regulated by the membrane tension 

To further demonstrate the role of the membrane tension on the configurational evolution of the system, comparisons between 
system configurations at the same protrusion depth h but different values of membrane tension σR2/κ are conducted. Case studies at h 
= 15R and θ = 0.25π show that the tip-roof configuration prevails at a lower membrane tension and the finial-roof configuration 
prevails at a higher membrane tension (Fig. 5a). As the tension energy is linearly proportional to the area excess of the membrane, the 
variation of the slope dEt/dh around the profile discontinuities in Fig. 2c suggests that the finial-roof configuration saves the membrane 
area in comparison with the tip-roof configuration. Since the membrane deformation is dominated by the membrane tension of a finite 
value, the transition from the tip-roof configuration to the finial-roof configuration is expected as the membrane tension increases, 
releasing the tension energy with compensation of increasing bending energy induced by the membrane tubule covering the pro-
truding tube. 

The configurational transition governed by the competition between bending and tension energies is summarized in a protrusion 
phase diagram (Fig. 5b). In comparison with the finial-roof configuration, the tip-roof configuration is more energetically favorable at 
a smaller σR2/κ and a larger protrusion angle θ. At a given θ, the critical membrane tension for the configurational transition decreases 
with increasing protrusion depth. Dependence of the dimensionless parameter σR2/κ implies the size effect of the tube on the system 
configuration. As σR2/κ is proportional to the tube radius R, a transition from the tip-roof to the finial-roof configuration is expected as 
R increases. The filopodia–membrane system adopts a typical finial-roof configuration and, according to our results, the finial-roof 
configuration is enhanced by the formation of actin filament bundles of a larger radius. 

3.5. Resistive force during the protrusion 

A successful tubular protrusion requires overcoming the resistive force f associated with the membrane deformation (Derényi et al., 
2002; Powers et al., 2002; Koster et al., 2005; Jiang and Powers, 2008; Jiang, 2012; Tian et al., 2018; Tang et al., 2019; Zhang et al., 
2022). Fig. 6a shows the normalized resistive force fR/κ as a function of the protrusion depth h/R at different values of the protrusion 
angle θ and membrane tension σ. In the early protrusion stage, the resistive force increases almost linearly with the protrusion depth 
and the system adopts the tip-roof configuration. Upon further protrusion f shows weakly nonlinear dependency on h/R before the 
resistive force rises to its peak value fmax. Then the resistive force drops and reaches a plateau after slight oscillation, corresponding to 
the formation and maintenance of a stable finial-roof configuration. The f − h/R profile exhibits a nonmonotonic feature. Similar 
nonmonotonic force–displacement profiles were observed in the indentation of pore-spanning lipid membranes by cylindrical in-
denters (Zhang et al., 2022) and in the packing of long stiff nanorods in vesicles (Zhu et al., 2016; Zou et al., 2018), which is expected as 
the formation of a tubular membrane protrusion is a localized occurrence. 

The presence of a peak resistive force, fmax, can be attributed to the geometry of the enclosed tube. Our previous studies 

Fig. 5. System configurations at h = 15R, θ = 0.25π but different values of σR2/κ (a). The protrusion phase diagram with respect to the protrusion 
angle θ and normalized membrane tension σR2/κ at h = 12R, 15R, and 18R (b). 
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demonstrate that the outer membrane segment near the tube–membrane contact region undergoes a narrowing response as the 
resistive force approaches the peak value (Tian et al., 2018; Zhang et al., 2022). This localized constriction, made possible by the 
cylindrical shape of the tube, leads to a deceleration in the rate of the resistive force increase and eventually results in a slight drop, 
connecting to the plateau region of the resistive force. In contrast, a monotonically increasing force–indentation depth relationship is 
observed in the indentation of pore-spanning lipid membranes by parabolic indenters (Zhang et al., 2022). This is because the 
parabolic shape of the indenter does not allow for localized membrane constriction near the indenter–membrane contact region. 

Increasing the protrusion angle θ or membrane tension σ leads to an increasing fmax and plateau resistive force fp (Fig. 6a). 
Moreover, as θ increases, the configurational transition featured with the sudden force drop is delayed to a larger protrusion depth and 
the resistive force peak becomes higher, suggesting that perpendicular protrusion is stabilized by penalizing inclined protrusion with 
larger resistive force. A larger membrane tension prohibits the tube protrusion with a larger resistive force but favors the configu-
rational transition at a smaller critical protrusion depth hcr (Fig. 6b). The latter observation is consistent with Fig. 2c which indicates 
that the finial-roof configuration after the transition saves the membrane area in comparison with the tip-roof configuration. 

3.6. Analytical prediction on the membrane resistive force 

Fig. 6a shows that the force–protrusion depth relation can be approximated as a linear relation in the early protrusion stage fol-
lowed by a force plateau stage. The curve slope at small h/R and the plateau force at large h/R are two feature factors of the force-
–protrusion depth relation. As shown in Fig. 6a, in the early protrusion stage the resistive force is almost linearly proportional to the 
protrusion depth, regardless to the value of the protrusion angle. Therefore, the curve slope at small h/R with an arbitrary θ can be 
obtained from the special case of θ = 0. 

At zero protrusion angle, the system adopts an axisymmetric configuration which can be described in a cylindrical coordinate 
system, and analytical solutions of the force–protrusion depth relation and membrane profile can be obtained based on the force 
balance along the z-axis and small membrane deformation assumption (Müller et al., 2007; Tang et al., 2019). In the current case of a 
very small ratio between the tube radius R and membrane radius ρmem (e.g., R/ρmem = 0.002 here), expressions of the force–depth 
relation and membrane profile at θ = 0 in Tang et al. (2019) reduce to 

f =
2πσ
η(R)

h
R

κ
R
, z =

η(r)
η(R) h, η(r) = ln

ρmem

r
−

K0(
̅̅̅
σ

√
r/R)

̅̅̅
σ

√
K1(

̅̅̅
σ

√
)
, σ =

σR2

κ
, (7)  

where K0(α) and K1(α) are the zeroth and first order of the second kind modified Bessel functions of α, respectively, and r = (x2 + y2)1/2 

is the radial distance. The f − h/R relation in Eq. (7) agrees well with the numerical solutions (Fig. 6a). As the slope of the force–depth 
relation is insensitive to the protrusion angle (Fig. 6a), the f − h/R relation in Eq. (7) can also be used to predict the early protrusion at 
θ ∕= 0. 

Next, we seek an analytical prediction on the plateau force. As mentioned in the Section 3.3, for a free cylindrical membrane tubule 
of bending rigidity κ and tension σ, it has an equilibrium radius r0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κ/(2σ)

√
. Its corresponding elastic energy is Eel = 4πr0σLtube with 

Ltube as the tube length (Derényi et al., 2002; Powers et al., 2002; Harmandaris and Deserno, 2006; Tian et al., 2018; Tang et al., 2019). 
Therefore, a pulling force maintaining the tubule configuration at Ltube and r0 is 

f = ∂Eel

/
∂Ltube = 2π

̅̅̅̅̅̅̅̅
2σκ

√
(8) 

Fig. 6. Resistive force at different values of the protrusion angle θ and the protrusion depth h/R. The normalized resistive force of the membrane as 
a function of h/R (a). The critical protrusion depth hcr for the configurational transition as a function of θ (b). The plateau resistive force fp versus θ 
(c). The resistive force as a function of θ for different tube lengths (d). 
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In the case of a rigid tube of radius R in a membrane tubule, at R > r0 the membrane tubule is expanded to a configuration with 
radius R and forms tight sidewall contact with the enclosed tube. Thus, the elastic energy of the membrane tubule of length Ltube is Eel 

= (2πRσ +πκ /R)Ltube and the corresponding pulling force required for the configuration maintenance is 

f =
∂Eel

∂Ltube
=

πκ
R

(

1+
2σR2

κ

)

(9) 

In the case of the tube protruding against the cell membrane at the protrusion angle θ (Fig. 6a), a protrusion depth increment Δh 
leads to a length increment Δh/cosθ of the tubular membrane protrusion and an elastic energy increment ΔEel = (2πRσ +πκ /R)Δh /
cosθ with a physical approximation that the outer region of the membrane maintains its shape in the stage of resistive force saturation, 
as demonstrated in Fig. 2e and f. Therefore, the plateau of the resistive force fp is 

fp =
ΔEel

Δh
=

πκ
Rcosθ

(

1+
2σR2

κ

)

(10)  

Eq. (10) agrees well with the numerical results (Fig. 6c). By equating the plateau force Eq. (10) with the linear force–depth relation Eq. 
(7), we can obtain a protrusion depth h′, 

h′ =
1 + 2σ

2σ ×
η(R)
cosθ

with η(R) = ln
ρmem

R
−

K0(
̅̅̅
σ

√
)

̅̅̅
σ

√
K1(

̅̅̅
σ

√
)

(11)  

Due to the oscillation of the resistance, the critical protrusion depth hcr for the configurational transition is larger than h′, which is 
approximated by multiplying h′ with a constant factor α (α > 1) as 

hcr = αh′. (12)  

The scaling factor α is estimated by the case at θ = 0, that is, α = h∗
cr(θ = 0)/h′(θ = 0). Here h∗

cr(θ) represents the numerical result of 
the critical protrusion depth. The scaling factor is calculated to be α = 1.41 for σR2/κ = 1 and α = 1.56 for σR2/κ = 2. As shown in 
Fig. 6b, the critical protrusion depth is well described by Eq. (12). 

In the case of σR2/κ < 1/2, the tubular membrane protrusion has a radius of r0, larger than the radius R of the protruding rigid tube. 
As the boundary condition used in the derivation of Eq. (7) is based on the tube radius R, the expression of Eq. (7) remains unaltered at 
any arbitrary value of σR2/κ. Eqs. (9)–(12) are based on the membrane tubule radius. By replacing the tube radius R with r0, Eqs. (9)– 
(12) retain their validity in the case of r0 > R, as demonstrated in Fig. S6 on the protrusion at σR2/κ = 0.3. 

4. Discussion 

4.1. Filopodia grow perpendicularly from the membrane edge 

The membrane protrusion of the angle-dependent elastic deformation and resistive force have significant implications in the field of 
cell biology. One important case is related to the initiation, growth, and function of filopodia. Filopodia protrude perpendicularly from 
the leading edge of lamellipodia in most cases. Actin filaments of the filopodia are rooted at and intimately interwoven with the actin 
network beneath cell membranes. Filopodia are found to be initiated by reorganizing the dendritic network of lamellipodial filaments 
in a process involving the filament elongation, association, and convergence (Svitkina et al., 2003; Vignjevic et al., 2006). An inter-
esting phenomenon is that filaments in the lamellipodia are usually orientated at roughly ±35∘ with respect to the membrane normal 
direction, whereas the filaments of the filopodia grow perpendicularly from the membrane edge (Maly and Borisy, 2001). From a 
mechanical perspective, a reason for the different filament orientations in the above cases might be as follows. The resistive force due 
to the membrane deformation is smaller when the filopodial filaments protrude from the cell membrane perpendicularly rather than at 
an inclined angle. Filaments in the lamellipodia, however, propel the leading edge of the membrane and pull the cells forward during 
cell migration in a sheet-like conformation, i.e., the tip-roof conformation in our simulations. Our study shows that the tip-roof 
conformation is preferred with an inclined protrusion angle (Fig. 5b), consistent with the fact that the filaments in the lamellipo-
dium are inclined to the membrane normal direction. Since the filaments with inclined protrusion angle are subjected to an increased 
membrane resistive force, the filaments in lamellipodium are crosslinked to form a nearly orthogonal network to enhance the rigidity 
against bending and buckling. Note that the expansion velocity of the membrane edge vanishes when the filaments are parallel to the 
membrane (θ = π/2), thus the protrusion angle of filaments shall be a result of balancing the expansion velocity and the maintenance 
of expansion shape. 

Moreover, the primary function of filopodia is to explore the local environment of cells, and as part of this function, filopodia can 
undergo sweeping motion with their tips rotating around fixed bases (Zidovska and Sackmann, 2011; Leijnse et al., 2015). During the 
sweeping, the protrusion angle of the filopodia increases, and according to the present results, the resistive force exerted on the actin 
filaments in the filopodia increases. To model the rotation of a preformed filopodia, we calculate the resistive force of a tube with a 
constant protrusion length L measured from the root of protrusion, while varying the protrusion angle (Fig. 6d). The resistive force of 
the preformed filopodia with a finial-roof conformation (e.g., L=15R, 18R, 25R, and 50R) first increases with the protrusion angle and 
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then decreases as the resistive force ceases when the filament is parallel to the membrane. The resistive force at θ = 0 is a local 
minimum, which suggests perpendicular filopodia is stable when exploring the surrounding environment by rotating around the 
membrane normal. Also, the membrane resistive force exerted on filopodia increases as the protrusion angle increases. To avoid the 
bending and buckling of the filaments, the protrusion angle cannot be too large, which can explain why the filopodia can only rotate 
within a limited angle (Zidovska and Sackmann, 2011; Leijnse et al., 2015). In addition to the perpendicular configuration, the 
resistive force decreases with the protrusion angle when the tube is laying down to the membrane edge (Fig. 6d), consistent with 
experimental observations that the filopodia can fold laterally back into the lamellipodium and contribute to the generation of con-
tractile bundles parallel to cell edges (Nemethova et al., 2008). 

Another related cellular activity is the protrusion and invasion of the intracellular rod-shaped bacterial parasite Listeria mono-
cytogenes. During spread the infecting Listeria monocytogenes protrude against the cell membrane at a small protrusion angle (Tilney 
and Portnoy, 1989), and a small resistive force from the membrane deformation applied on the infecting Listeria as our results indicate. 

4.2. Cell membrane stabilizes the perpendicular protrusion of filaments and encapsulates long filaments simultaneously 

Morphologies of pressurized vesicles packed with straight and biologically stiff nanofibers, such as carbon nanotubes and gold 
nanowires, evolve from an axisymmetric lemon- to cherry- or ϕ-like shape as the fiber length increases (Tsai and Koenderink, 2015; 
Zhu et al., 2016; Zou et al., 2018; Ni and Papoian, 2021; Shi et al., 2023). The lemon-shaped vesicle features two tip-roof configurations 
at two poles of the deformed vesicle, whereas the cherry-shaped vesicle possesses a finial-roof configuration at one pole and a tip-roof 
configuration at the opposite pole. For the ϕ-shaped vesicle, the finial-roof configurations are formed at two vesicle poles. The 
configurational transition from the tip-roof to finial-roof as the protrusion depth increases is consistent with our results. Specifically, in 
the cherry-shaped vesicle, the equilibrium of the filament requires the force balance between filament ends with the tip-roof and 
finial-roof configurations. The force–depth relations in Fig. 6a suggest a spring-softening behavior with a drop of the resistive force 
accompanied by the transition from the tip-roof to finial-roof configuration. This nonmonotonic force–depth behavior indicates that 
the tip-roof and finial-roof configurations could suffer the same value of the resistive force, explaining the coexistence of two distinct 
configurations in the cherry-shaped vesicles. 

For flexible filaments that can bend, buckle and coil upon constraints of vesicles, the filament ends either align at the periphery of 
the vesicle or cause shallow or tubular membrane protrusion locally perpendicular to the vesicle membrane (Tsai and Koenderink, 
2015; Colin et al., 2020; Ni and Papoian, 2021; Shi et al., 2023), in accord with the two local minima of the protrusion force (Fig. 6d). 
Moreover, as a direct consequence of a larger membrane resistive force with the inclined protrusion, the flexible filaments bend and 
buckle as they approach the membrane with an inclination angle even in the case of low membrane rigidity, resulting in toroidal or 
disordered crumpled structures (Ni and Papoian, 2021; Shi et al., 2023). The bending and buckling of flexible filaments with an 
inclination angle enable the packing of very long filaments while maintaining the shape and integrity of cells, pivotal for cellular 
functions. For example, the gland thread cells of hagfish could encapsulate highly condensed filaments with length up to 10 cm 
(Fernholm, 1981). Engulfed long filamentous bacteria become supercoiled within macrophages (Prashar et al., 2013). 

Taken together, the mechanical interplay between cell membranes and filaments leads to two different organization modes of 
encapsulated filaments. For the filaments requiring protrusion to achieve specific biological functions, the cell membrane stabilize the 
perpendicular protrusion by penalizing the inclined protrusion with higher membrane deformation energy and larger resistive force. 
Bending and bucking deformation are avoided by the rigidification of filaments via bundling or cross-linking. In contrast, the flexible 
filaments that need to be stored intracellularly either approach the membrane along an inclined direction or become tilted due to the 
bending and buckling deformation of perpendicular protrusion. The large resistive force of inclined protrusion further facilitates the 
bending and buckling of filaments, resulting in the coiling of filaments. The deformation of the cell membranes either stabilizing the 
perpendicular protrusion or forcing the transverse bending and buckling of filaments, which respectively enables the formation of 
filopodia or packing of long filaments in cells. In a more general perspective, the stabilized perpendicular protrusion and buckling of 
inclined protrusion indicate the role of membrane elastic deformation in modulating the packing mode of encapsulated filaments. The 
elastic deformation of cell membranes has been shown to play an essential role in growth of filopodia by inducing the bundling of actin 
filaments in filopodia (Liu et al., 2008). Here, our results suggest that the elastic deformation of cell membranes stabilize the 
perpendicular protrusion of stiff filaments by penalizing the inclined protrusion with higher membrane deformation energy and 
resistive force, revealing an uncovered role of the membrane deformation in filopodia growth. 

4. Conclusions 

Theoretical investigations on the angle-dependent interaction between a protruding tube and the cell membrane have been per-
formed. System configurations at different values of protrusion angle and depth are determined. Two equilibrium configurations, the 
tip-roof and finial-roof configurations are identified. The configurational transition from the tip-roof to the finial-roof configuration is 
facilitated by decreasing the protrusion angle or increasing the membrane tension. Among configurations at different protrusion 
angles, any deviation from the perpendicular protrusion suffers a higher elastic deformation energy and a larger resistive force, 
suggesting the perpendicular protrusion is stabilized by the membrane deformation. Analytical estimations on the force–depth relation 
and membrane profile are provided. Specifically, the elastic deformation of the cell membrane is found to regulate the fate of 
encapsulated filaments by either stabilizing the perpendicular protrusion of stiff filaments or inducing the bending and buckling of 
flexible filaments, mechanisms underlying the formation of finger-like filopodia and the packing of flexible filaments in cells, 
respectively. Our results offer implications in analyzing filopodial orientation, invasion of the rod-shaped bacteria, instability of 
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confined filaments, and optimal design of nanowire arrays for cell property detection. 
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Datar, A., Bornschlögl, T., Bassereau, P., Prost, J., Pullarkat, P.A., 2015. Dynamics of membrane tethers reveal novel aspects of cytoskeleton-membrane interactions in 

axons. Biophys. J. 108, 489–497. 
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Fig. S1. Contact area between the membrane and tube as a function of the protrusion depth for the 

system with the protrusion angle 𝜃 = 0  and membrane tension 𝜎𝑅2⁄𝜅 = 1 . Representative

conformations marked by diamond symbols here are shown in Fig. S2.  
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Fig. S2. Evolution of the contact region between the membrane and tube at various protrusion 

depths with the protrusion angle 𝜃 = 0 and membrane tension 𝜎𝑅2 𝜅⁄ = 1. The contact regions

are shown in the x-z (up panels) and x-y (bottom panels) views. The contact regions are illustrated 

in orange and the tubes are shown in dashed lines with the coordination of the cap center set to be 

(0, 0, 0) for comparison. 
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Fig. S3. Configurational evolution for the system of a small membrane tension 𝜎𝑅2 𝜅⁄ = 0.3 with

increasing protrusion depth h at the protrusion angle 𝜃 = 0.25𝜋. 

Fig. S4. Contact area between the membrane and tube versus the protrusion depth at 𝜃 = 0.25𝜋 

and 𝜎𝑅2 𝜅⁄ = 0.3.
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Fig. S5. Evolution of the contact region at various protrusion depths with 𝜃 = 0.25𝜋  and 

𝜎𝑅2 𝜅⁄ = 0.3. The contact regions (orange) are shown in the x-z (upper panels) and x-y (lower

panels) views with the Cartesian coordinate of the tube cap center set to be (0, 0, 0).  

Fig. S6. Protrusion of a tube against the cell membrane with 𝜎𝑅2 𝜅⁄ = 0.3. The normalized

resistive force of the membrane as a function of h/R (a). The plateau resistive force 𝑓p versus θ (b). 

Analytical predictions in Eq. (7) and in Eq. (10) with R replaced by r0 agree well with the numerical 

results. 
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