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A B S T R A C T   

Refractory high entropy alloys (RHEAs) have drawn growing attention due to their remarkable 
strength retention at high temperatures. Understanding dislocation mobility is vital for opti
mizing high-temperature properties and ambient temperature ductility of RHEAs. Nevertheless, 
fundamental questions persist regarding the variability of dislocation motion in the rugged energy 
landscape and the effective activation barrier for specific mechanisms, such as kink-pair nucle
ation and kink migration. Here we perform systematic atomistic simulations and conduct sta
tistical analysis to obtain the effective activation barriers for the mechanisms underlying various 
types of dislocation motion in a typical RHEA, NbMoTaW. Moreover, a stochastic line tension 
model is developed to calculate the activation barrier with substantially reduced computational 
costs. By incorporating the effective activation barriers into the crystal plasticity model, a mul
tiscale simulation framework for predicting the mechanical properties of RHEAs is established. 
The ambient temperature yield strength of NbMoTaW is well-predicted by the kink-pair nucle
ation mechanism of screw dislocations, while the strengthening originating from screw disloca
tions does not predominate at high temperatures. Our work provides a robust foundation for 
atomistic studies of effective dislocation behaviors in random solution solids, elucidating the 
intricate relationship between microscopic mechanisms and macroscopic properties.   

1. Introduction 

High entropy alloys (HEAs) characterized by composition fluctuations have gained significant interest in recent years, due to their 
exceptional combination of properties that are rarely accomplished in other metallic materials (George et al., 2019; Li et al., 2021; Tsai 
and Yeh, 2014; Zhang et al., 2014). Currently, there are two main kinds of HEAs reported in the literature. The first kind is based on 3d 
transition elements such as Fe, Co, Cr, Ni and Cu, exhibiting a face-centered cubic (FCC) structure, which has been extensively studied 
(Ding et al., 2019; Li et al., 2019). The second kind mainly consists of refractory elements such as Nb, Mo, Ta, V and W, adopting a 
body-centered cubic (BCC) phase (Senkov et al., 2018), often referred to as the refractory high entropy alloys (RHEAs). RHEAs have 
been attracting growing attention since 2010 (Senkov et al., 2010) for their remarkable strength retention at high temperatures (Hu 
et al., 2021; Senkov et al., 2011), though the low ductility at ambient temperature still limits their formability and application (Mak 
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et al., 2021; Tandoc et al., 2023; Zhang et al., 2023). While existing investigations are mostly experimental studies focusing on the 
processing and macroscopic mechanical behaviors of RHEAs (Coury et al., 2019; Xiong et al., 2023), there is a growing recognition of 
the need for simulations and theoretical studies (Zhou et al., 2023), which are essential for comprehending the microscopic mecha
nisms with chemical fluctuations, aspects not easily accessible through experimental methods. 

Understanding the mobility of dislocations is crucial to achieving both high-temperature properties (Wang et al., 2020; Zhou et al., 
2023) and ambient temperature ductility (Mak et al., 2021; Qi and Chrzan, 2014) in RHEAs. It has been established in pure BCC metals 
and dilute alloys that screw dislocations are much harder to move, and thus play a crucial role in controlling plastic deformation 
(Seeger, 1995, 2001; Seeger and Holzwarth, 2006). However, recent molecular dynamics (MD) simulations have revealed that the 
mobility discrepancy between screw and edge dislocations is narrowed in RHEAs (Chen et al., 2023, 2020a; Yin et al., 2021). The edge 
dislocations may have lower mobility and control plastic deformation at high temperatures (He et al., 2023; Kubilay et al., 2021; Lee 
et al., 2021; Li et al., 2020a). The sluggish motion of edge dislocations is consistent with experimental observations (Lee et al., 2020, 
2021; Wang et al., 2020). However, conventional MD simulations encounter two major challenges when investigating dislocation 
behaviors in RHEAs. Firstly, the high strain rate of MD simulations often lacks relevance to the thermal activation regime of dislocation 
motion typical for quasi-static loading (Fan et al., 2013; Gurrutxaga–Lerma et al., 2020). Secondly, these works mentioned above have 
primarily focused on limited examples of dislocation motion due to time and computational costs. While informative, these studies 
struggle to provide a comprehensive understanding of the variability in dislocation behaviors due to the inherently variable local 
chemical environment of HEAs. Extracting effective activation barriers for individual mechanisms calls for statistically significant data 
and robust statistical analysis (Fey et al., 2022). In addition, despite the extensive attention on the dominant role of edge dislocations at 
high temperatures (He et al., 2023; Kubilay et al., 2021; Lee et al., 2021; Li et al., 2020a), the behavior of screw dislocations in REAHs is 
comparatively less explored. Nevertheless, recognizing the significance of screw dislocations is vital in constructing a whole picture of 
solution strengthening in RHEAs, and is relevant to the ambient-temperature ductility problem (Chen et al., 2020b; Li et al., 2020b; 
Mak et al., 2021; Senkov et al., 2021). 

Therefore, a systematic investigation of dislocation behavior with randomness in RHEAs becomes imperative. This entails con
ducting thorough atomistic calculations and subsequently conducting statistical analysis of the obtained data. The nudged elastic band 
(NEB) method is advantageous in capturing the reaction pathways and activation barriers of thermally activated, stress-driven pro
cesses (Zhang et al., 2022; Zhu et al., 2013). Despite its application in determining the reaction pathway of dislocation motion in 
RHEAs, only a few cases have been demonstrated (Wang et al., 2022). Furthermore, the presence of significant chemical fluctuations 
complicates the acquisition of effective dislocation properties for integration into broader-scale simulations. Although the NEB method 
allows for a direct atomistic determination of the saddle-point configurations and activation barriers of kink-pair nucleation, it still 
suffers from high computational costs. A line tension model initially proposed by Dezerald et al. (2015) has been used to study 
kink-pair nucleation in pure BCC metals. This model enables the determination of the kink-pair nucleation barrier, but it has not been 
extended to BCC alloys or the specific situation in RHEAs. 

So far, simulations and theoretical studies on RHEAs focus on revealing the microscale deformation mechanisms, whereas the 
plastic deformation of RHEAs contains complicated interactions coupled across various scales. This scale-coupling calls for multiscale 
frameworks to effectively unravel the mechanical behavior. Mechanical properties of RHEAs have been studied by incorporating MD, 
dislocation dynamics, and crystal plasticity simulations (Cereceda et al., 2016; Fang et al., 2022; Kumar et al., 2023; Lin et al., 2022; Po 
et al., 2016). Due to the high strain rate and limited time scale, MD is unable to sample the thermally activated processes at quasi-static 
loading conditions or to capture the activation barrier of kink-pair nucleation and kink migration. With the ability to properly capture 
thermally activated processes, the NEB method has been incorporated into the crystal plasticity model to form a multiscale framework 

Fig. 1. Schematic of the multiscale simulation framework. The accuracy of the first-principle simulations is conveyed to the NEB simulations 
through a machine learning interatomic potential (Yin et al., 2021). A stochastic line tension model is developed to obtain the activation barrier of 
kink-pair nucleation with substantially reduced computational costs. The obtained activation barrier, as a function of shear stress, is then incor
porated into crystal plasticity simulations to determine the stress-strain relationship of polycrystalline NbMoTaW. 
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(Narayanan et al., 2014). 
In this work, we perform systematic NEB calculations on a typical RHEA, NbMoTaW, and conduct statistical analysis to determine 

the effective activation barrier of kink-pair nucleation in Section 2. A stochastic line tension model considering the distribution of 
Peierls barriers is developed in Section 3, which provides activation barriers in agreement with NEB results. Section 4 incorporates the 
effective energy barriers from the statistical analysis of NEB calculations into the crystal plasticity model, allowing the derivation of the 
stress-strain relationship and temperature-dependent yield strength for NbMoTaW. The overall multiscale simulation framework 
utilized in this study, which integrates the NEB method and the crystal plasticity model, is illustrated in Fig. 1. Some discussions are 
presented in Section 5, followed by conclusions in Section 6. 

2. NEB simulations of screw dislocations 

Here we employ three-dimensional (3D) NEB simulations to study the screw dislocation glide in RHEAs, characterized by a rugged 
energy landscape (Wang et al., 2020). According to the transition state theory (Phillips, 2001; Vineyard, 1957; Wang and Cai, 2023), 
the rate of dislocation overcoming a barrier with activation Gibbs free energy ΔG is 

v = v0exp
(

−
ΔG(τ, T)

kBT

)

, (1)  

where v0 is the trial frequency on the order of 1011 s− 1, kB is the Boltzmann constant, and T is the temperature. For a typical activation 
rate of 10− 3 s− 1,ΔG of a dislocation glide process is approximately 30 kBT, equivalent to 0.7 eV at room temperature. The temperature- 
independent part of ΔG, denoted as ΔH, can be obtained from the potential energy surface of an atomic system at 0 K using the NEB 
method. Since a single dislocation glide can be influenced by the local element ordering, NEB calculations are performed on numerous 
random configurations. Various ways for extracting the overall behavior of dislocation motion from these calculations are compared. 
The details are described below. 

2.1. Atomistic modeling 

As shown in Fig. 2, a screw dislocation is embedded in the simulation supercell by imposing a displacement field according to the 
elastic solution of a screw dislocation and then relaxing the supercell using the conjugate gradient method. The supercell dimensions 
are 10 nm × 27 nm × 7 nm in the x//[111], y //[101], and z //[121]directions, containing 48,600 atoms with an equal number of Nb, 
Mo, Ta and W atoms. For computational efficiency, a dislocation length of 36b is adopted with b as the size of Burgers vector 
(½<111>). With this dislocation length, the screw dislocation segment undergoes kink-pair nucleation and kink migration, while 
shorter segments propagate as a straight line. Periodic boundary conditions are imposed in the x- and z-directions. Through performing 
NEB simulations on pure metal Mo with different dislocation lengths, it is observed that the effect of the attraction between two kinks 
across the periodic boundary is insignificant. Additionally, the dimensions in the y- and z-directions are also tested to ensure that the 
size of the supercell has negligible influence on the outcomes of the simulations. The centrosymmetry parameter (Kelchner et al., 1998) 
is employed to filter out crystal defects, and thus the upper and lower free surface layers are shown along with the dislocation line. The 
left and right boundaries are not shown because the periodic boundary conditions are imposed. 

Fig. 2(a) shows the initial state of the screw dislocation in the middle of the simulation supercell. The loading scheme for the stress- 
controlled NEB method (Si et al., 2023) is presented in Fig. 2(b). To implement the stress-controlled NEB, a fixed force fx is imposed on 
each atom in the top two y-surfaces, and an opposite force − fx is applied to each atom in the bottom two y-surfaces. The resulting shear 
stress is τ = (N × fx)/(Lx × Lz), where N is the number of atoms in the top or bottom layer, and Lx and Lz are the lengths of the supercell 
in the x- and z-directions, respectively. During the simulation, the work done by the fixed forces is added to the potential energy of the 
system, and this is why the enthalpy change ΔH is used to denote the activation barrier, instead of the energy change ΔE. The final state 
is established by applying shear stresses discussed above, which moves the dislocation to the adjacent Peierls valley in the negative 

Fig. 2. Atomistic simulation setup. (a) Simulation supercell and the dislocation in its initial energy minimum state, colored by the centrosymmetry 
parameter (Stukowski, 2010). (b) Schematic of the supercell showing the specifics of the loading scheme. 
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z-direction, followed by energy minimization using the conjugate gradient method. The stress-controlled NEB method (Si et al., 2023) 
is carried out using the parallel molecular dynamics simulator LAMMPS (Thompson et al., 2022). 42 replicas are generated via a linear 
interpolation between the initial and final states, with an inter-replica nudging force connecting neighboring replicas. The stopping 
tolerance for force is set at 0.005 eV/Å. Simulation results are visualized using OVITO (Stukowski, 2010). 

Machine learning potentials (MLPs) have been developed to transfer the accuracy of quantum mechanical methods to atomistic 
simulations (Hu et al., 2019; Wang et al., 2021; Zheng et al., 2023). A state-of-the-art machine learning interatomic potential known as 
the moment tensor potential (MTP) is employed here (Yin et al., 2021). The accuracy of the interatomic potential is verified in Yin et al. 
(2021) regarding the basic properties such as melting points, unstable stacking fault energy and elastic constants. The dislocation core 
structure is characterized using a differential displacement map, a technique pioneered by Vítek et al. (1970). To verify this inter
atomic potential, the differential displacement plots of the screw dislocation cores of Nb, Mo, Ta, and W predicted by the MTP are 
displayed in Fig. 3. In the plot, white, grey, and black colors denote atoms on three different (111) faces, while black arrows indicate 
the differential displacement vectors. The lengths of these vectors are proportional to the relative displacement of neighboring atoms 
from a perfect crystal configuration to a defect configuration. Dislocation cores of the four pure metals are all non-degenerate, 
symmetrically spread in the three (110) planes perpendicular to the [111] direction. This core structure is compatible with ab initio 
simulation results (Rodney et al., 2017; Shimizu et al., 2007), and supports stabilized glide on a (110) plane, consistent with exper
imental data (Chaussidon et al., 2006). In contrast, atomistic simulations with asymmetry degenerate cores predict (112) glide planes, 
which is less reliable than the results with non-degenerate cores (Chaussidon et al., 2006). 

At each applied load, a total of 600 three-dimensional (3D) NEB calculations of screw dislocation glide are performed. The 
arrangement of elements is shuffled before each calculation. Fig. 4 depicts the representative minimum energy path (MEP) and 
dislocation configurations at zero stress. The enthalpy H of the final state is about 0.3 eV higher than that of the initial state due to the 
difference in local element ordering. The red dots in Fig. 4 represent the local enthalpy maximum along the MEP, with corresponding 
dislocation configurations shown in Fig. 4(b)-(f). The first activation barrier (Fig. 4(b)) is related to a kink-pair nucleation event, while 
the second and third barriers are related to the migration of the right kink, and the fourth and fifth barriers are related to the migration 
of the left kink. The activation barrier for kink-pair nucleation is 0.7 eV, and the activation barrier for kink migration is about 0.1 eV to 
0.2 eV. Compared to pure BCC metals (Narayanan et al., 2014), RHEAs exhibit a relatively higher activation barrier of kink migration. 
Nevertheless, kink-pair nucleation continues to play a substantial role. Note that the dislocation lines often exhibit a curved shape in 
MD simulations (Yin et al., 2021), whereas in this study, we primarily aim to clarify the activation barriers of kink-pair nucleation and 
kink migration considering the effect of the local atomic configuration. Therefore, a local unit process is considered featuring a single 
nucleation event, so that the dislocation segment remains relatively straight. 

The shear stress-dependent MEPs of three randomly selected calculations out of 600 are presented in Fig. 5(a)-(c). The slopes of the 
MEPs decrease with increasing applied stress, leading to a corresponding reduction in the barrier energy. Analyzing the MEPs for shear 
stresses ranging from 50 MPa to 1000 MPa indicates that the small barriers under low stress gradually diminish and almost vanish at 
1000 MPa. The remaining barrier under high shear stress is related to kink-pair nucleation. For each applied load, the average MEP of 
600 calculations is displayed in Fig. 5(d), with the shaded regions representing the error bands, illustrating the influence of the 
inherently variable local chemical environment. 

To confirm the relative importance of kink-pair nucleation and kink migration, we extract the activation barriers from all 600 
calculations for each applied stress, including both kink-pair nucleation and kink migration, and perform a statistical analysis. Fig. 5 
(e)-(f) presents the probability distribution of activation barrier under 50 MPa and 500 MPa. The profile shows two distinct regions of 
high and low energy levels, fitting well with the superposition of two Weibull distributions 

Fig. 3. Differential displacement plot illustrating the non-degenerate screw dislocation core of Nb, Mo, Ta, and W predicted using the moment 
tensor potential (MTP) (Yin et al., 2021). 
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f (ΔH, c1, λ1, c2, λ2,A) = Af1(c1, λ1) + (1 − A)f2(c2, λ2), (2)  

where 

fi(ΔH, ci, λi) =
ci

λi

(
ΔH
λi

)ci − 1

exp
[

−

(
ΔH
λi

)ci]

, i = 1, 2. (3) 

The parameters ci and λi are the shape and scale parameters, respectively, ΔH denotes the activation enthalpy, and A is the mixing 
weight of the first Weibull distribution f1. Note that this distribution depends on the dislocation length. A longer dislocation segment 
could have a lower activation enthalpy due to the higher likelihood of exploring atomic distributions that are favorable for activation 
along the dislocation line. The high-energy region of the probability distribution corresponds to kink-pair nucleation, and the low- 
energy region corresponds to kink migration. Fig. 5 clearly indicates that kink migration often shows a much lower activation bar
rier, and this barrier decreases rapidly with the increase in external loading. Note that the application of Weibull distribution is 
rationalized by the extreme value distribution theory (Kotz and Nadarajah, 2000). Suppose that multiple possible nucleation sites exist 
on the dislocation line with nucleation barriers ΔH1,...,ΔHn, which are random samples from the same distribution. The actual barrier 
calculated is the minimal one. According to the extreme value distribution theory, if min{ΔH1, ...,ΔHn} or its linear transformation 
tends to a limit, the limit can only be one of three types (Kotz and Nadarajah, 2000), and one of these types is the Weibull distribution. 
In short words, mathematically, the Weibull distribution naturally arises from the extreme value distribution theory. It has also been 
utilized by Weibull in describing the distribution of the strength of brittle materials (Weibull, 1939). 

As shown in Fig. 5(e)-(f), kink-pair nucleation may be more critical in determining the mechanical behavior of the NbMoTaW alloy, 

Fig. 4. (a) NEB results of screw dislocation glide without applied loading. (b)-(f) Panels correspond, respectively, to the dislocation configurations 
at five local saddle points in (a), colored using the centrosymmetry parameter (Stukowski, 2010). The first saddle point corresponds to kink-pair 
nucleation and the rest are kink migration. 

Fig. 5. Shear stress-dependent MEPs for screw dislocation glide using the NEB method and statistical analysis of the activation barrier. Three 
randomly selected calculations out of 600 are depicted in (a)-(c), corresponding to MEPs of different configurations with random atom arrange
ments. The average MEPs are shown in (d) with accompanying error bands. The probability distribution f of activation barrier ΔH involving both 
kink-pair nucleation and kink migration under shear stress of (e) 50 MPa and (f) 500 MPa. 
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aligning with the study by Fey et al. (2022). As the double kink must nucleate before the kinks can migrate, the first barrier along the 
MEP is essentially the nucleation barrier. Focusing solely on the nucleation barrier, an interesting result is shown in Fig. 6, where the 
levels of activation barriers ΔH are depicted against the enthalpy difference between the initial state and the final state ΔHfinal. The 
correlation coefficient is defined as r(ΔH, ΔHfinal) = cov(ΔH, ΔHfinal)/(σΔHσΔHfinal ), where cov(ΔH,ΔHfinal) is the covariance and σ 
denotes the standard error. The scatter plots of 50 MPa and 500 MPa show a linear relationship with the correlation coefficients of 0.59 
and 0.58, respectively. Also, by plotting the value of the slope against the stress (not shown here), one can find that the slope decreases 
linearly with increasing shear stress. Note that a similar linear correlation is identified for cross-slip barrier and energy difference in 
FCC alloys such as Ni-Al and Cu-Ni (Nöhring and Curtin, 2017). 

2.2. Effective activation enthalpy 

Each of the 3D NEB calculations described above can be regarded as a unit process, representing a segment of screw dislocation 
moving by a small distance equivalent to the spacing between neighboring Peierls valleys. To obtain the overall stress-driven thermally 
activated dislocation behavior, which can be connected to the macroscale mechanical properties, the calculation results need to be 
averaged. As discussed above, only the barriers related to kink-pair nucleation are considered here. Three averaging methods are 
utilized and compared below. 

The first averaging method is a simple arithmetic mean ΔHeff =
∑

jΔHj /N, where ΔHj is the activation barrier of kink-pair 
nucleation from the j-th calculation, and N is the total number of activation barrier data. However, this approach lacks physical 
meaning. 

The second averaging method is termed waiting-time averaging. Similar to Eq. (1), the activation rate vj of each unit process is 
expressed as vj = v0exp( − ΔHj /kBT), and the reciprocal of the activation rate vjgives the waiting time required for the dislocation 
segment to overcome the activation barrier, denoted as tj = 1/vj. Following the kink-pair nucleation event, the dislocation segment can 
propagate a distance equivalent to the spacing between neighboring Peierls valleys, LP. The velocity of the segment Vj is expressed as Vj 

= LP/tj = vjLP. Supposing that the process of one dislocation segment continuously propagating multiple Peierls valleys in the forward 
direction can be approximated by the arrangement of all individual NEB calculations, the average dislocation velocity Veff is given by 
Veff = NLP/

∑
jtj, which is also related to the effective activation rate veff by Veff = veffLP. Therefore, the effective activation rate is 

obtained as 

veff =
N
∑

j
tj
=

v0N
∑

j
exp
(
ΔHj

/
kBT
). (4) 

By taking the logarithm of both sides of Eq. (1), the effective activation barrier can be related to the effective activation rate by 

ΔHeff(τ) = −
d
(
lnveff

)

d
(

1
kBT

) . (5) 

Substituting Eq. (4) into Eq. (5), the effective activation barrier by the waiting-time averaging is expressed as (Labusch, 1988) 

Fig. 6. Correlation between the activation barrier ΔHand enthalpy difference ΔHfinal under shear stress of 50 MPa and 500 MPa, showing a linear 
relationship with correlation coefficient 0.59 and 0.58, respectively. 
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ΔHeff =

∑

j
ΔHjexp

(
ΔHj

/
kBT
)

∑

j
exp
(
ΔHj

/
kBT
) . (6) 

As discussed above, ΔH follows the Weibull distribution as ΔH ∼ Weibull(c, λ). The probability density function of activation 
barrier is f(ΔH), and Eq. (6) can be written in a continuous form as 

ΔHeff =

∫+∞
0 ΔHf (ΔH) ⋅ eΔH

kT dΔH
∫ +∞

0 f (ΔH)eΔH
kT dΔH

. (7) 

The waiting-time averaging is a weighted averaging with the weight parameter in exponential form. When the temperature is not 
too high, the original waiting time averaging (Eq. (6)) is close to an extreme value, where the overall activation barrier is determined 
by the strongest barrier. This may be applicable along the forward direction of dislocation, since the dislocation must overcome all the 
barriers ahead to generate plastic flow. However, along the dislocation line, the kink-pair may nucleate at the most favorable location, 
representing the “weakest link”. In essence, both mechanisms may work simultaneously. 

Therefore, we propose a two-level averaging method involving minimization along the dislocation line (x-direction in Fig. 2) and 
waiting-time averaging along the forward direction (negative z-direction in Fig. 2). The process of the two-level averaging method is as 
follows. First, the NEB calculations are randomly grouped, where the results in the same group are taken to be on the same extended 
dislocation segment, and the actual activation barrier of kink-pair nucleation along this extended dislocation segment is the minimal 
one within the group. Different groups represent the dislocations at different positions along the dislocation forward direction, and the 
overall activation barrier is regulated by the waiting-time averaging. The discrete form of two-level averaging is expressed as 

ΔHeff =

∑

j
mini

{
ΔHji

}
exp
(
mini

{
ΔHji

}/
kT
)

∑

j
exp
(
mini

{
ΔHji

}/
kT
) , (8)  

where ΔHji denotes the ith barrier among the j-th group, and mini{ΔHji} represents the minimization within the j-th group. 
Furthermore, describing the distribution of activation barriers using the Weibull distribution, a continuous version of the above 

process can be obtained. The minimum value of n independent Weibull random variables min{ΔH1, ...,ΔHn} has the same distribution 
as n− 1/cΔH(Kotz and Nadarajah, 2000), i.e., min{ΔH1,...,ΔHn} ∼ Weibull(c,n− 1/cλ), where c and λ are the shape and scale parameters, 
respectively. Then, the waiting-time averaging Eq. (7) is applied to this distribution to obtain the two-level averaging expressed as 

ΔHeff =

∫+∞
0 ΔHfn(ΔH) ⋅ eΔH

kT dΔH
∫ +∞

0 fn(ΔH)eΔH
kT dΔH

, (9)  

where fn(ΔH) is the probability density function of min{ΔH1, ...,ΔHn}. 
Fig. 7 shows the effects of dislocation segment length and temperature on activation barrier calculated using Eq. (9). Since the 

dislocation length employed in NEB simulations is 10 nm (Fig. 2(a)), the length of the extended dislocation in the two-level averaging is 
10 × n nm. At 300 K, the activation barrier decreases as the dislocation length increases (Fig. 7(a)). With dislocation length 50 nm, 
Fig. 7(b) depicts the temperature effect on the activation barrier. From 300 K to 700 K, the increasing temperature only lowers the 
activation barrier slightly. Note that the activation volume stays stable across different dislocation lengths and temperatures, indi
cating that our model effectively captures the essential mechanism. 

Fig. 7. Effects of (a) dislocation segment length and (b) temperature on activation barrier based on two-level averaging, first choosing the ‘weakest 
link’ along the dislocation and then applying waiting-time averaging. 
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Fig. 8 displays a comparison analysis of these three averaging methods. The temperature used in both the waiting-time averaging 
and the two-level averaging methods is 300 K, and the dislocation length used in the two-level averaging method is 50 nm. The 
waiting-time averaging gives a zero-stress activation barrier exceeding 2 eV, leading to an overestimation of the yield strength 
compared to the experimental measurements of NbMoTaW (Senkov et al., 2011). While the simple averaging method and the two-level 
averaging method give more reasonable results, the former lacks clear physical significance. Hence, the result of the two-level 
averaging method will be utilized in the subsequent crystal plasticity model in Section 4. Despite methodological differences, the 
activation volumes given by all three averaging methods are quite close, about 7.6b3, since kink-pair nucleation is the rate-limiting 
mechanism (Narayanan et al., 2014). 

3. Stochastic line tension model 

As discussed in the previous section, the exploration of screw dislocation kinetics requires a substantial number of 3D NEB cal
culations, which are time-consuming, especially when using precise machine learning interatomic potentials. In this section, we 
propose a solution by utilizing a stochastic line tension model, which provides the activation barrier of kink-pair nucleation through 
the utilization of only two-dimensional (2D) NEB results. This approach offers a substantial reduction in computational resources. The 
details are as follows. 

3.1. Line tension model 

In the line tension model, the dislocation line is idealized as a one-dimensional curve represented by a function z(x), as illustrated in 
Fig. 9. The enthalpy of the dislocation comprises contributions from the Peierls barrier, line tension energy and the work done by 
external loading as (Dezerald et al., 2015; Kang et al., 2012; Rodney and Proville, 2009) 

H
(
z, τxy

)
=

∫ [

F(z(x))+
Γ
2

(
dz
dx

)2

− τbz(x)

]

dx, (10)  

where F is the Peierls barrier, Γ is the line tension, τ is the resolved shear stress shown in Fig. 2(b). To connect with atomic simulations, 
the dislocation is discretized into segments of length b. The normalized z-coordinate of each segment is Zn = zn/Lp, where zn is the z- 
direction coordinate of the n-th segment. Once discretized, the enthalpy is expressed as 

H
(
{Zn}, τxy

)
=
∑

n

[

F(Zn)+
ΓL2

p

2b
(Zn+1 − Zn)

2
− τb2LpZn

]

. (11) 

The activation barrier of kink-pair nucleation and the corresponding dislocation configuration can then be obtained by locating the 
saddle point of the above enthalpy H({Zn}, τ). 

The Peierls barrier is assumed to have a cosine shape as 

F(Zn) =
ΔUn

2
[1 − cos(2πZn)], (12)  

Fig. 8. Comparison of three averaging methods. The temperature used in both the waiting-time averaging and the two-level averaging methods is 
300 K, and the dislocation length used in the two-level averaging method is 50 nm. 
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where ΔUn is the Peierls barrier varying between dislocation segments. Note that in the model for pure metals, ΔUn is a constant; while 
for high-entropy alloys, the probability distribution of ΔUn can be extracted from 2D NEB calculations, a topic to be discussed in the 
next section. 

3.2. Nudged elastic band simulation of Peierls barrier 

The simulation supercell setup for 2D NEB calculations is similar to that for 3D NEB. The dislocation length in 2D NEB ranges from 
1b to 9b. Fig. 10 shows the MEP of a calculation with dislocation length 6b moving along the z-negative direction over two Peierls 
barriers. The reaction coordinates Z are not taken directly from NEB output, but calculated using the following equation to describe the 
dislocation position (Rodney and Proville, 2009) 

Z =
1
b

⎡

⎣
∑

x0
j ∈Y+

(
xj − x0

j

)
−
∑

x0
j ∈Y −

(
xj − x0

j

)
⎤

⎦, (13)  

where Y+ and Y− denote the two Y planes above and below the dislocation slip plane, and x0
j is the x-coordinate of the j-th atom in the 

initial configuration. The Peierls barriers present an approximate cosine shape with the enthalpy levels at the hills and valleys 
disturbed by the local element ordering. 

A total of 1000 calculations for each dislocation length L are performed at zero applied loading. The activation barrier distribution 
for a dislocation length of 6b is shown in Fig. 11(a), and the Weibull distribution provides the best fit. Moreover, the relationship 
between the activation barrier and the enthalpy difference between the initial and final states is analyzed in Fig. 11(b), demonstrating a 
strong positive correlation with a coefficient of 0.84. Averaging the energy at the same reaction coordinates, an average Peierls barrier 
of a dislocation length of 6b is obtained in Fig. 11(c). The average barrier aligns well with the expected cosine shape, validating our 
assumption for function F in the preceding subsection. This cosine shape also works for other dislocation lengths. Taking the standard 
energy error at the hill points, the relative root-mean-square fluctuation σΔH/〈ΔH〉 show a linear relationship with (L/b)− 1/2 in Fig. 11 
(d), where σΔHis the standard error and 〈ΔH〉 is the mean of ΔH. Fig. 11(d) Indicates that the fluctuations increase as the dislocation 
length decreases, while the mean activation barriers for different lengths remain close. Since the dislocation length is proportional to 
the model particle number, Fig. 11(d) provides intriguing insights in accordance with statistical mechanics. The distribution of the 

Fig. 9. Schematic of the energy landscape of (a) pure BCC metal and (b) RHEA. The energy landscape of RHEAs is more rugged. F denotes the 
Peierls barrier, and Lp is the distance between adjacent Peierls valleys. 

Fig. 10. A representative 2D NEB result of a screw dislocation glide under zero applied loading.  
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random variable ΔUn is fitted to the simulation data, yielding a mean of 0.0846 eV and a standard error of 0.0327 eV. The distribution 
of ΔUn is then integrated into the stochastic line tension model to determine the saddle point of enthalpy. 

3.3. Model results 

To obtain an initial configuration sufficiently close to the saddle point, the trial solution for {Zn} is formulated as 

Zn = (1 − Z0)

{
tanh[ϕ(Xn + φ)]

2
−

tanh[ϕ(Xn − φ)]
2

}

+ Z0, (14)  

where Xn is the position for the elementary segments, ranging from − K to K if the dislocation line in the supercell is discretized into 2K 
+1 segments with periodic boundary conditions along the x-direction. Parameters ϕ and φ are yet to be determined, and Z0 is the 
dislocation position of the initial state with external loading. To determine the saddle point, the following system of nonlinear 
equations is solved, 

Fig. 11. Statistical analysis of 2D NEB calculations without applied loading. (a) Distribution of activation barriers ΔH. (b) Correlation between 
activation barrier and enthalpy difference (between the initial and final configurations). (c) Average Peierls barrier of dislocation length 6b. (d) The 
relative root-mean-square fluctuation σΔH/〈ΔH〉 in the Peierls barrier. 

Fig. 12. (a) Peierls barrier ΔUn attributed to each dislocation segments before solving the nonlinear equation system Eq. (15). (b) Profiles of the 
dislocation at the saddle point under different shear stresses (0, 400, 800, and 1200 MPa) in one calculation. 
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂H({Zn}, τ)
∂ϕ

=
∑

n

∂H({Zn}, τ)
∂Zn

⋅
∂Zn

∂ϕ
= 0,

∂H({Zn}, τ)
∂φ

=
∑

n

∂H({Zn}, τ)
∂Zn

⋅
∂Zn

∂φ
= 0.

(15) 

The lattice parameter is 3.22 Å (Maresca and Curtin, 2020) and the line tension Γ is taken as 2.5 eV/Å. The value of K is taken as 20, 
meaning that the dislocation segment length is 41b, or 11.4 nm. 

A total of 5000 calculations are performed, with a new set of {ΔUn} sampled from the distribution of ΔU before each calculation. 
Fig. 12 illustrate the results of one calculation. Fig. 12(a) shows the value of the Peierls barrier ΔUn attributed to each dislocation 
segments before solving the nonlinear equation system Eq. (14), and Fig. 12(b) shows the resulting dislocation configurations under 
external loading. As the shear stress increases, the configuration profiles become more flattened, aligning with the theoretical results of 
Argon (2008). 

Furthermore, to determine the macroscopic effect, we impose a two-level averaging to all calculations. As discussed in Section 2.2, 
the two-level averaging contains identifying the weakest link along a dislocation length and incorporating it into the waiting-time 
averaging. The number of dislocation segments in each group is 5, and these 5 segments are taken to be on the same extended 
dislocation segment, leading to a dislocation length of 57 nm. This is close to the dislocation length used in the averaging of NEB 
results. The temperature used in the two-level averaging methods is 300 K. As displayed in Fig. 13, the resulting effective activation 
barrier curve denoted by solid line is in good agreement with the two-level averaging results of 3D NEB calculations denoted by red 
spheres. Note that for the two-level averaging of 3D NEB calculations, the temperature is also 300 K, and the dislocation length is 50 
nm. 

4. Atomistically-informed crystal plasticity simulations 

Based on the activation barrier of kink-pair nucleation obtained from the microscale simulations, we develop an atomistically- 
informed crystal plasticity model to describe the macroscale stress-strain responses of NbMoTaW. The constitutive equations are 
formulated within the rate-dependent, finite-strain framework of elastic–plastic deformation for individual grain (Kalidindi et al., 
1992). The deformation gradient of each grain F is decomposed multiplicatively into the elastic part Fe and the plastic part Fp, i.e., 

F = Fe ⋅ Fp.

The time differential of F is related to the velocity gradient L by L = ḞF− 1, and the velocity gradient can be further decomposed 
into two parts, i.e., L = Le + FeLpFe− 1 , where Le = ḞeFe− 1 and Lp = ḞpFp− 1. The Green strain tensor is related to Fe as Ee = 1 
/2(FeT ⋅ Fe − I), which can be used to determine the second Piola-Kirchhoff stress tensor T∗, i.e., T∗ = C ⋅ Ee, where C is the fourth- 
order anisotropic elasticity tensor. The plastic velocity gradient Lp involves the plastic shearing on slip systems. Here for a BCC crystal, 
12 {110} <111> slip systems are considered (Cereceda et al., 2016; Stukowski et al., 2015). Therefore, Lp is expressed as 

Lp =
∑12

χ=1
γ̇χmχ ⊗ nχ ,

where γ̇χ is the plastic strain rate on the χ-th slip system, mχ and nχ are the unit vectors of the normal and shear directions of the χ-th slip 
system. 

Fig. 13. Comparison between predictions from the stochastic line tension model and 3D NEB simulation results.  
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Considering long-distance athermal resistances, such as forest dislocation strengthening (Fan et al., 2021) and Hall–Petch effect in 
polycrystals (Han and Yi, 2021; Liu et al., 2020), the plastic strain rate on specific slip systems is described by a power law (Hill and 
Rice, 1972; Terentyev et al., 2015) 

γ̇χ = γ̇0

(
|τχ

RSS|

τχ
CRSS

)1
m

sgn(τχ
RSS), (16)  

where γ̇χ is the plastic strain rate of the χ-th slip system, τχ
RSS is the resolved shear stress of the χ-th slip system, m is the strain rate 

sensitive factor and sgn(τχ
RSS) denotes the sign of τχ

RSS. The critical resolved shear stress (CRSS) τχ
CRSS is given as (Liu et al., 2023; 

Terentyev et al., 2015; Xiao et al., 2015) 

τχ
CRSS(T) = τf + τHP + τth, (17)  

where τf is the resistance from the forest dislocations, τHP is the strengthening from grain boundaries, and τth is the thermal resistance 
from the lattice friction. τf is given by τf = αμb ̅̅̅ρ√ where α denotes the hardening coefficient of forest dislocation, μ is the shear 
modulus, ρ is the initial dislocation density. τHP is given by τHP = kHP/

̅̅̅
d

√
, where kHP is a Hall–Petch parameter (Han and Yi, 2021; Liu 

et al., 2020), and d is the gain size. The temperature contribution to the forest dislocation resistance τf is neglected, as τf tends to 
change slowly with temperature, mainly caused by the change in elastic modulus μ. The strain hardening is given as (Mecking and 
Kocks, 1981) 

ρ̇χ
= |γ̇χ |(k1ρχ − k2ρχ) (18)  

where k1 and k2 are dislocation multiplication and annihilation parameters, respectively. 
Here, we assume that the thermal part of the resistance τth is controlled by the predominant resistance between the contribution 

from screw dislocations and edge dislocations, since the macroscopic plastic flow requires the collective motion of these two types of 
dislocations. In a word, τth is taken to be the larger one of τs and τe. The determination of τs and τe is described as follows. 

For screw dislocations, the activation barrier ΔHs(τ) can be obtained from the 3D NEB simulations in Section 2. After applying the 
averaging process in Section 2.2 to the 3D NEB simulation results, the resulting data of activation barrier is fitted to the Kocks form: 
ΔHs(τ) = ΔHs0[1 − (τ/τs0)

ps ]
qs , where ΔHs0, τs0, ps and qs are parameters from atomistic simulations with their values listed in Table 1. 

The physical meaning of ΔHs0 is the activation barrier for kink-pair nucleation when the shear stress is zero, τs0 is the slip resistance at 
0 K. According to transition state theory (Vineyard, 1957), the plastic strain rate γ̇ is related to the activation barrier by γ̇ = γ̇0exp[ −
ΔH(τ) /kBT], where γ̇0 is the reference strain rate and ΔH(τ) is the activation barrier as a function of shear stress. Therefore, the 
temperature-dependent stress originating from the screw dislocation kink-pair nucleation is 

τs = τs0

[

1 −

(
kT

ΔHs0
ln

γ̇s0

γ̇

) 1
ps
] 1

qs

, (19)  

where the reference plastic strain rate γ̇s0 is taken to be 3.17×107 s− 1 (Narayanan et al., 2014). Similarly, the resistance attributed to 
edge dislocation motion is 

τe = τe0

[

1 −

(
kT

ΔHe0
ln

γ̇e0

γ̇

) 1
qe
] 1

pe

, (20)  

where pe = 1 and qe = 1.5, supposing a sinusoidal activation barrier (Maresca and Curtin, 2020). The athermal flow stress τe0 and 
activation barrier ΔHe0 are obtained using the solid solution strengthening theory as (Maresca and Curtin, 2020) 

τe0 = 0.040η− 1
3μ
(

1 + v
1 − v

)4
3

(
∑

n
cnΔV2

n

)2
3

b4 , (21)  

ΔHe0 = 2.00η1
3μb
(

1 + v
1 − v

)2
3
(
∑

n
cnΔV2

n

)1
3

. (22) 

The line tension parameter η is taken as a fitting parameter here, and other variables in Eqs. (21) and (22) are taken from the atomic 
simulations in Maresca and Curtin (2020). 

Table 1 
Atomistically-determined parameters for stress-dependent activation barrier.  

ΔHs0 τs0 ps qs 

1.42 eV 1.50 GPa 0.40 1.00  
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We perform crystal plasticity simulations of uniaxial compression of NbMoTaW by incorporating the equations above into ABA
QUS/Explicit as a user material subroutine VUMAT. The polycrystal model of NbMoTaW is taken as an assembly of 8000 grains with 
random orientations, each grain represented by an element with reduced integration (C3D8R). The strain rate sensitive factor m is 0.05 
(Hill and Rice, 1972; Terentyev et al., 2015). The grain size d is set at 200 μm (Senkov et al., 2011) and the initial dislocation density ρ is 
1 × 1013m− 2 (Argon, 2008). The line-tension parameter η is 0.5. The temperature dependence of the single crystal elastic constants are 
determined by measuring the change in the average stress tensor in an NVT simulations when the supercell undergoes finite defor
mation (Zhen and Chu, 2012). At 0 K, C11, C12 and C44 are respectively 345 GPa, 143 GPa and 73 GPa, which align with the DFT results 
(Maresca and Curtin, 2020). Also, C11 decreases with increasing temperature, while C12 and C44 vary little with temperature. C11 is 
fitted using a quadratic function (Lowrie and Gonas, 1967) to be C11=342.28 + 6.99 × 10− 2T - 2.23 × 10− 5T 2. Other parameters are 
shown in Table 2. 

The predicted strain-stress relationships of NbMoTaW at 296 K and 873 K are shown in Fig. 14(a). The simulation results match well 
with experimental data (Senkov et al., 2011), though the stress drop due to the ambient temperature brittleness is not captured by our 
model. Fig. 14(b) shows the predicted yield strength. In the low-temperature region, the effect of screw dislocation is prominent, and 
the yield stress diminishes rapidly with increasing temperature due to the small activation volume of kink-pair nucleation, on the order 
of several b3. This indicates that the ambient temperature yield strength of NbMoTaW can be well predicted by the kink-pair nucleation 
mechanism of screw dislocations, while strengthening originating from screw dislocations does not predominate at high temperatures. 
Above 400 K, the yield strength is controlled by edge dislocations, changing slowly with temperature. The solid solution strengthening 
theory, as represented by Eqs. (21) and (22), predicts a large activation volume of edge dislocation glide. The larger activation volume 
of edge dislocation glide than that of screw dislocations is in line with the nano-pinning mechanism reported by Chen et al. (2020a), 
since the activation volume of nano-pinning is on the order of lb2, where l is the distance between pinning points and is much larger 
than b. However, the consideration of screw dislocation provides valuable insights into the lower-temperature behavior of BCC HEAs, 
and our methodology establishes a solid foundation for the atomistic determination of effective dislocation behavior in random so
lution solids. 

5. Discussions 

5.1. Statistical analysis 

Our NEB simulations reveal that screw dislocation motion in HEAs follows a two-step process: kink-pair nucleation and kink 
migration. Kink-pair nucleation is the rate-limiting process in pure BCC metals. In dilute BCC alloys, kink-pair nucleation is still the 
rate-limiting process, albeit with a reported softening effect due to energy landscape fluctuations (Ghafarollahi and Curtin, 2020). 
These fluctuations may create more favorable locations, or “weakest links”, for kink-pair nucleation (Ghafarollahi and Curtin, 2020). 
However, without cross-slip, a relatively straight screw dislocation must pass all Peierls hills in succession to induce plastic flow. As a 
result, the “strongest link” can be rate-limiting along the forward direction, as shown by the relationship between the dislocation 
profile and the pinning point landscape (Utt et al., 2022). To account for both mechanisms, we propose a two-level averaging method. 
Our method is supported by phase field dislocation dynamics simulations of screw dislocation in RHEAs (Fey et al., 2022), which 
demonstrates that the critical stress to initiate dislocation motion depends on the weakest region, and to maintain the motion over 
more Peierls barriers, the critical stress can increase. 

5.2. The effect of cross-slip 

In BCC metals, cross slip is easy and the motion of screw dislocation can thus become three-dimensional. While this phenomenon 
may also occur in RHEAs, few studies have focused on this aspect. Two opposite effects can result from the cross slip of screw dis
locations. On the one hand, shifting to other slip planes may offer a way to overcome strong barriers and soften the RHEAs. On the 
other hand, cross-slip on different slip planes can lead to a self-pinning phenomenon called cross-kink, which has a strengthening 
effect. It is important to note that we have not considered the cross-slip mechanism in the present work. The cross-kink strengthening 
has been observed in RHEAs (Eleti et al., 2022; Zhou et al., 2021), which may extend the dominance of screw dislocation to 
higher-temperature regions. A detailed study of this effect using the NEB method (Wang and Cai, 2023) will be addressed in our future 
work. 

5.3. The effect of edge dislocation 

We adopt a theoretical model (Eqs. (21) and (22)) to describe the solid solution strengthening of edge dislocations (Maresca and 
Curtin, 2020). However, this model struggles to reproduce the high-strength “plateau”, as it only considers the average elastic 
interaction energy of solutes in the dislocation displacement field (Maresca and Curtin, 2020). As observed in previous atomic sim
ulations (Kubilay et al., 2021), edge dislocations can also be locally pinned by certain clusters and can be unpinned by a bow-out 
process. The bow-out process may lead to an even larger activation volume and may partly account for the slow change of strength 
at moderate temperatures, which is worthy of future investigation. 
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6. Conclusions 

In this study, we have conducted systematic 3D NEB simulations on screw dislocations and performed statistical analysis on the 
resulting data. Additionally, we have established a stochastic line tension model to offer a theoretical perspective on kink-pair 
nucleation energy. Moreover, a multiscale simulation framework is established to analyze the uniaxial loading response of RHEAs 
at various temperatures. The main conclusions are outlined below.  

• The statistical analysis of NEB simulation results shows a two-region distribution, highlighting two distinct mechanisms of screw 
dislocation glide: kink-pair nucleation and kink migration. Activation barrier of kink-pair nucleation is statistically higher than that 
of kink migration, suggesting that kink-pair nucleation is the rate-limiting process of screw dislocation glide in NbMoTaW, as is the 
case in pure BCC metals.  

• An averaging method is developed to determine the effective activation barrier of kink-pair nucleation. This method involves 
identifying the weakest link along a dislocation length and incorporating it into the waiting-time averaging, yielding a two-level 
averaging approach that aligns closely with the physical interpretation. 

• A direct relationship between the activation barrier and the initial-final enthalpy difference, involving both the kink-pair nucle
ation barrier from 3D NEB simulations and Peierls barrier from 2D NEB simulations, is identified.  

• A line tension model, assigning a stochastic Peierls barrier to each dislocation segment, is proposed. The model prediction for kink- 
pair nucleation energy agrees well with 3D NEB simulations, offering a substantial reduction in computational cost.  

• Using the enthalpy-stress function obtained from atomistic simulation, we have established an atomistically-informed crystal 
plasticity framework, facilitating accurate determination of the yield strength and stress-strain response of RHEAs. Our method
ology provides a solid foundation for determining the effective dislocation behavior in random solution alloys at the atomistic level. 
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