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Ultralow lattice thermal conductivity in quasi-one-dimensional BiI3

with suppressed phonon coherence
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The enhanced coherence thermal transport in complex materials poses challenges in achieving ultralow lattice
thermal conductivity in crystalline materials. In this work, based on a global structure search, we find a stable
quasi-one-dimensional crystal, q-1D BiI3, with a simple unit cell containing eight atoms. Using the Wigner
thermal transport theory and machine-learning potential, we derive Pearson correlation coefficient matrices based
on the calculations of over one million coherent modes, and find that the phonon coherent thermal conductivity is
mainly correlated with the generalized group velocity, the frequency interval of coherent phonon modes, and the
generalized coherent lifetime. Especially, the unique geometry and hierarchical bonding features of q-1D BiI3

induce significant anharmonicity, while the small number of atoms in the unit cell reduces the Wigner time limit
for the wavelike tunneling of phonons, suppressing the coherence thermal transport. Thus, the synergistic effect
of enhanced phonon scattering and reduced phonon coherence leads to an ultralow lattice thermal conductivity
of 0.088 (0.099) W m−1 K−1 in the x(y) direction. Our work demonstrates the significance of suppressing phonon
coherence for achieving ultralow lattice thermal conductivity of crystal materials.

DOI: 10.1103/PhysRevB.110.174309

I. INTRODUCTION

Developing new materials with ultralow thermal conduc-
tivity is of great significance for thermoelectric conversion,
energy storage technologies, and thermal insulation in micro
and nano electronic devices [1,2]. In recent years, significant
progress has been made in the study of crystalline materials
with low thermal conductivity based on Boltzmann trans-
port theory [3] and Slack’s rule [4]. For instance, layered
Bi4O4SeCl2 was found to exhibit an ultralow cross-plane
thermal conductivity of 0.17 W m−1 K−1 owing to its com-
plex structure and high average atomic weight [5,6]. As
an outstanding thermoelectric material, Ag8SnSe6 has a lat-
tice thermal conductivity lower than 0.50 W m−1 K−1 due to
the weak interatomic bonding [7]. Meanwhile, advances have
also been made in thermal transport theories, driven by the
exploration of ultralow thermal conductivity of materials. A
two-channel model was suggested for crystals with ultralow
thermal conductivity based on the study of Tl3VSe4 [8]. In
2019, Simoncelli et al. proposed a unified theory of thermal
transport in crystals and glasses [9], and further developed the
Wigner formulation of thermal transport in solids in 2022 [10]
for providing more accurate description of the lattice thermal
conductivity of strongly anharmonic crystals with complex
structures.

It has been found that it is difficult to follow Slack’s
rule [4] for achieving ultralow lattice thermal conductivity
in systems with complex structures, weak atomic bonding,
large average atomic mass, and strong anharmonicity. For
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instance, the lattice thermal conductivity of many complex
materials composed of clusters as the building units is in
the range 0.21−5.34 W m−1 K−1 [11,12]. The recently re-
ported Pt3Bi4Q9 (Q = S, Se) systems have low lattice thermal
conductivities ranging 0.59−0.81 W m−1 K−1 at room tem-
perature [13]. Although an extremely low cross-plane thermal
conductivity of 0.05 W m−1 K−1 was found in the disordered
WSe2 thin film, the corresponding value of single-crystal
WSe2 is about 30 times higher than that of the disordered
film [14]. Very recently, an ultralow lattice thermal conductiv-
ity of 0.25 W m−1 K−1 in AgTlI2 single crystal was reported
[15], demonstrating the possibility of achieving ultralow ther-
mal conductivity in anharmonic crystals with a simple lattice
structure by further suppressing both phonon propagation and
coherence effects, which motivates us to carry out this work
by considering three key factors: heavy element, strong anhar-
monicity, and weak phonon coherence.

In this work, starting from searching for new structures
composed of heavy elements of Bi and I, a different quasi-
1D crystal phase of BiI3 (q-1D BiI3) is found, which has
similar geometry to the experimentally synthesized q-1D TiS3

with a simple unit cell and intrinsically strong anharmonicity
[16–18]. We investigate its lattice thermal transport based
on the Wigner thermal transport theory and the neuroevo-
lution potential (NEP) [19] with a focus on the coherent
thermal conductivity. We also study other related properties,
including the generalized description of the velocity and life-
time of coherent phonon modes, as well as the complexity
of phonon dispersion to demonstrate the strategy for de-
signing materials with ultralow thermal conductivity, and to
elucidate the physical mechanism of how strongly anhar-
monic simple crystal structures synergistically regulate the
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two-channel phonon thermal transport to achieve ultralow
thermal conductivity.

II. COMPUTATIONAL METHODS

A. First-principles calculations

Our calculations are carried out based on density functional
theory (DFT) and the projector-augmented wave method
(PAW) [20,21] implemented in the Vienna ab initio simula-
tion package (VASP) [22]. The electronic exchange-correlation
interaction is treated by using the Perdew-Burke-Ernzerhof
functional (PBE) [23] within the generalized gradient ap-
proximation (GGA) [24]. The DFT-D3 functional is applied
for describing the interactions between BiI3 chains [25]. The
kinetic energy cutoff for wave function is set to 550 eV.
The Brillouin zone is represented with the Monkhorst-Pack
[26] grid of 10 × 6 × 15 k point for geometry optimization,
while the convergence criteria for energy and force are set as
10−8 eV and 10−6 eV/Å, respectively. A 3 × 2 × 4 supercell
of q-1D BiI3 and the canonical ensemble (NVT) are used for
our ab initio molecular dynamics (AIMD) simulations.

B. Wigner thermal transport

The calculation of thermal conductivity is based on the
Winger framework of lattice thermal transport [9,10]. the total
lattice thermal conductivity κL is divided into the particlelike
contribution (κP

L ) and the coherence contribution (κC
L ):

κL = κP
L + κC

L . (1)

The lattice thermal conductivity and phonon properties are
calculated using ShengBTE package [27]. The calculations of
κC

L are conducted using our in-house codes within the Wigner
framework [9,10]:

κ
C,αβ
L = h̄2

kBT 2�N

∑

q

∑

i �= j

ω(q)i + ω(q) j

2
V α (q)i jV

β (q) ji

× ω(q)iN̄ (q)i[N̄ (q)i+1]+ω(q) j N̄ (q) j[N̄ (q) j + 1]

4[ω(q)i − ω(q) j]
2 + [�(q)i + �(q) j]

2

× [�(q)i + �(q) j], (2)

where α and β are the directions of the Cartesian coordinate
system, h̄, kB, T , N , and � are the reduced Plank constant,
Boltzmann constant, temperature, number of phonon wave
vectors, and lattice volume, respectively, ω(q)i and N̄ (q)i are
the angular frequencies and the equilibrium Bose-Einstein
distribution, indexed by wave vector q with the branch i,
respectively, and �(q)i = 1/τ (q)i is the phonon linewidth
(scattering rate) of each phonon; V (q)i j represents the gen-
eralized velocity matrix along different directions [see the
Supplemental Material (SM) for details] [28]. The inputs for
calculating κP

L are harmonic (second-order) and anharmonic
(third- and fourth-order) interatomic force constants (IFCs).
The phonon dispersions and eigenvectors are calculated via
the PHONOPY code [31]. A 3 × 3 × 3 k point grid is applied.
One hundred perturbative structures for the calculation of an-
harmonic IFCs are generated using the Monte Carlo modified
rattle procedure implemented in the HIPHIVE package [32].
The phonon spectra of q-1D BiI3 under finite temperatures
are calculated by using the self-consistent phonon theory im-

plemented in HIPHIVE [32,33] with a perturbation approach
based on anharmonic force constants up to the fourth order. A
4 × 3 × 5 supercell is used for calculating second-order IFCs
under finite temperatures. The cutoff distances for second-,
third-, and fourth-order IFCs are set as 8.00, 7.30, and 6.30 Å
for q-1D BiI3, respectively (see Fig. S1 in the SM for details
[28]). In ShengBTE calculations, the convergent q point grid
of 7 × 5 × 9 and a Gaussian scalebroad of 1.00 are used (see
Fig. S2 in the SM [28]).

C. Neuroevolution potential

To speed up the calculation with high accuracy, we use
the machine-learning potential, i.e., neuroevolution potential
(NEP) developed by Fan et al. [34] to capture interatomic in-
teractions for q-1D BiI3. We have performed multiple AIMD
calculations for a 3 × 2 × 4 supercell of q-1D BiI3 at temper-
atures ranging 200–900 K. Each calculation lasts for about
5–10 ps with a time step of 1 fs, where the initial 1 ps is
taken for the lattice relaxation time. By sampling every 20
to 50 frames from the entire simulated trajectory, we obtain
a total of 660 structures extracted as input configurations for
the training data set. These selected structures are subjected
to our DFT calculations using a 3 × 3 × 3 k point grid to
obtain energy and interatomic force information for training.
The radial and angular cutoffs are set to 8.00 and 5.00 Å,
respectively, while the rest are kept at default settings, and
106 steps are trained (see Note 2 and Fig. S3 in the SM [28]).

D. Homogeneous nonequilibrium molecular dynamics

To verify the accuracy of calculations within the Wigner
framework, we further carry out the homogeneous nonequilib-
rium molecular dynamics (HNEMD) simulations employing
the NEP and using the Graphics Processing Units Molecular
Dynamics (GPUMD) package [34,35]. To avoid the influence of
size effects in MD simulations, we use a 7 × 5 × 9 supercell
with 2520 atoms for thermal conductivity calculations. The
structures are first relaxed using the isothermal-isobaric en-
semble (NPT) for 100 ps, and then six independent HNEMD
simulations are performed in the NVT with a duration of
10 ns at 300 K with a time step of 1 fs, taking the average
as the final result (see Fig. S4 in the SM [28]).

III. RESULTS AND DISCUSSION

A. Geometric structure and stability

Motivated by previous studies on BixI1−x and the changes
of their geometric structures under high pressure [36,37], we
screen the geometric morphology of BiI3 at 10 GPa by us-
ing the MAGUS software [38,39] combined with the machine
learning potential in MLIP-2 [40] where the chemical ele-
ment ratio is selected by comparing the formation enthalpy
(	H) of BixI1−x in the Materials Project database [41] (see
Note 3 and Fig. S5 in the SM [28]). Among the generated
structures, the TiS3-type q-1D BiI3 structure is identified, as
shown in Figs. 1(a) and 1(b), where the unit cell contains
two Bi and six I atoms. The optimized structure possesses a
monoclinic lattice with the symmetry of P21/m (no. 11) and
lattice parameters of a = 8.22 Å, b = 10.00 Å, c = 4.14 Å,
and γ = 102.04◦ (Table SI in the SM). According to the
convex hull of BixI1−x structures, we find that q-1D BiI3 is
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FIG. 1. Geometric structure and dynamical stability of q-1D BiI3. (a) Top and side views of the unit cell, and (b) perspective view of the
crystal structure of q-1D BiI3. (c) Phonon spectra of q-1D BiI3 within the temperature range 200–500 K.

a metastable phase of bismuth triiodides, but has a potential
to be synthesized from the ground state R−3 BiI3 [42] (see
Figs. S5 and S6 in the SM [28]). We then calculate the phonon
spectra of q-1D BiI3 at the temperatures ranging 200–500 K.
The results are plotted in Fig. 1(c), which shows no imag-
inary frequencies in their entire Brillouin zone, confirming
that q-1D BiI3 is dynamically stable at finite temperatures.
The phonon spectrum at zero temperature is presented in
Fig. S7(a) in the SM [28]. To confirm its mechanical stability,
we calculate the stiffness tensor components Ci j (i, j ranging
1–6) using the Calorine package with our NEP for q-1D BiI3

[34,35]. As a monoclinic lattice, all Ci j components possess
independent values. We find that all the calculated eigen-
values of the stiffness tensor matrix are positive, satisfying
the Born-Huang criteria [43], and indicating that q-1D BiI3

is mechanically stable (see Note 5 in the SM for details).
We have also verified the thermal stability of the q-1D BiI3

structure by performing ab initio molecular dynamics (AIMD)
simulations [see Fig. S7(b) in the SM [28]], and found that this
structure can be stable at high temperature of 700 K.

B. Lattice thermal conductivities

We first calculate the electronic band structure of q-1D
BiI3 to verify the feasibility of analyzing its thermal transport
properties only including phonon contributions. q-1D BiI3 is
found to possess semiconducting features with an indirect
band gap of 1.93 eV (Fig. S8). Therefore, the thermal con-
ductivity contributed from electrons can be neglected. We
then calculate the lattice thermal conductivity of q-1D BiI3

within the Wigner framework [28] by taking into account
the contributions from both phonon scattering and phonon
coherence. In all the relevant calculations, four-phonon scat-
tering [44] is included. For comparison, calculations are also
carried out for the light-element counterpart q-1D TiS3 and
the more complex R−3 BiI3 that contains 24 atoms per
unit cell. The calculated lattice thermal conductivities along
the different directions for the three structures at different
temperatures are plotted in Fig. 2(a). One can see that, for
q-1D BiI3, the intrachain thermal conductivity κz

L in the z
direction is higher than the interchain thermal conductiv-
ity κx

L in the x direction, exhibiting strong anisotropy. The
κz

L at 300 K is 0.61 W m−1 K−1 including a phonon coher-

ence contribution (κC,z
L ) of 0.13 W m−1 K−1, while the κx

L is
only 0.088 W m−1 K−1, including a κC,x

L of 0.046 W m−1 K−1.
Compared to the thermal conductivities of q-1D BiI3, q-1D
TiS3 possesses much higher κx

L (4.71 W m−1 K−1) and κz
L

(7.49 W m−1 K−1) at 300 K, including larger contributions
from phonon coherence κC,x

L (0.16 W m−1 K−1) and κC,z
L

(0.31 W m−1 K−1). For the layered R−3 BiI3 phase, both the
interlayered lattice thermal conductivity κz

L (0.46 W m−1 K−1)
and the coherent portion κC,z

L (0.26 W m−1 K−1) are also
found to be higher than the corresponding interchain values
of q-1D BiI3. Furthermore, to ensure the reliability of our
computational results, we conduct the homogeneous nonequi-
librium molecular dynamics (HNEMD) simulations for the κx

L
of q-1D BiI3 at 300 K, and find that the average simulation
result of 0.088 W m−1 K−1 matches well with that obtained
based on the Wigner thermal transport theory calculations.

To understand the extremely weak particlelike phonon
transport in q-1D BiI3, we then calculate the phonon group
velocities (Vi) and Grüneisen parameters (γ ) of these three
systems, and find that q-1D BiI3 has lower Vi and larger γ

than those q-1D TiS3 and R−3 BiI3, blocking the particlelike
propagation of phonons (Figs. S9 and S10 in the SM [28]),
resulting in a significantly lower particlelike contribution (κP

L ).
We then conduct the correlation analysis of typical phys-

ical quantities that are closely related to phonon coherence
in order to explore the physical mechanisms of the ultralow
coherent thermal conductivity (κC

L ). Due to the complexity
induced by the coupling of coherent phonon modes, the diffi-
culty of analyzing phonon properties is significantly increased
compared to the phonon gas model that only considers indi-
vidual phonon modes. Although our previous studies [45,46]
showed that the frequency interval and linewidth of coherent
phonon modes have a significant impact on coherent ther-
mal transport properties in crystals, the correlations among
various physical quantities remain unclear, which limits the
accurate assessment of the contribution from phonon coher-
ence to thermal transport in anharmonic crystals. To overcome
this dilemma, we calculate the Pearson correlation coefficient
matrices of the κC

L with the five main physical quantities,
including the square of the generalized group velocity (V 2

i j =
|Vi jVji|), the frequency interval of coherent phonon modes
(	ω = |ωi − ω j |), sum of linewidths (sum�=�i + � j), gen-
eralized coherent lifetime (τi j), and isochoric heat capacity of
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FIG. 2. Correlation analysis for the lattice thermal transport properties. (a) Calculated total lattice thermal conductivity and coherent
thermal conductivity as a function of temperature (red dot with error bar for the HNEMD results). (b) Average Pearson correlation coefficients
for the coherent thermal conductivity (κC

L ), square of the generalized group velocity (V 2
i j ), generalized coherent lifetime (τi j), frequency interval

of coherent phonon modes (	ω), sum of linewidths (sum�), and isochoric heat capacity of coherent modes (Cv,i j) of q-1D BiI3, R−3 BiI3,
and q-1D TiS3.

coherent modes (Cv,i j), for describing phonon coherent be-
haviors via over one million calculated coherent modes within
the Wigner framework. Due to the complex numerical distri-
bution, it is very difficult to establish the relationship between
the selected physical quantities through a direct comparison
of the correlation across the entire parameter range. We found
that the main contribution to κC

L comes from the coherent
phonon modes with relatively small V 2

i j and narrow 	ω (see
Fig. S11 in the SM [28]), therefore we respectively calculated
the correlation coefficients between the parameters for coher-
ent phonon modes with V 2

i j less than 10% of the maximum

value (V 2,max
i j ) and 	ω/2π less than 0.5 THz. Calculations are

also performed for V 2
i j > 0.1V 2,max

i j and 	ω/2π > 0.5 THz,
as shown in Fig. S12 in the SM [28]. The calculated average
results for the Pearson correlation coefficients are presented in
Fig. 2(b), indicating the degree of importance of each parame-
ter. One can see that in all the systems, when V 2

i j < 0.1V 2,max
i j

and 	ω/2π < 0.5 THz, there is a clear correction between
κC

L and V 2
i j , while the correlations with other parameters are

not obvious. On the other hand, V 2
i j , τi j , and 	ω show a

certain degree of correlation with κC
L , when V 2

i j > 0.1V 2,max
i j

and 	ω/2π > 0.5 THz. Meanwhile, the importance of τi j and
	ω has significantly increased. Therefore, we further discuss
the contribution of the three parameters, namely, V 2

i j , 	ω, and
τi j , suppressing coherent thermal conductivity in the simple
crystal structure of q-1D BiI3.

C. Generalized group velocity

To investigate the impact of the V 2
i j on the coherent thermal

conductivity, we respectively plot the projection of V 2
i j in the

x and z directions of q-1D BiI3 in Figs. 3(a) and 3(b), as
well as that in the x direction of q-1D TiS3 in Fig. 3(c) for
comparison. One can see that the V 2

i j in the x direction of
q-1D BiI3 is significantly smaller than that of the z direction,
while the V 2

i j in the z direction of q-1D BiI3 and in the x
direction of q-1D TiS3 exhibit similar magnitudes. Based on

the Allen-Feldman model [47,48], the mode diffusivity (Di)
has a strong dependence on the V 2

i j :

Dα (q)i = π

3ω(q)2
i

∑

i �= j

∣∣∣∣V
AA,α (q)i j

ω(q)i + ω(q) j

2

∣∣∣∣
2

· δ[ω(q)i − ω(q) j], (3)

V AA,α (q)i j = ω(q)i + ω(q) j

2
√

ω(q)iω(q) j

V α (q)i j, (4)

where V AA,α (q)i j is the velocity operator defined by Auerbach
and Allen and δ[ω(q)i − ω(q) j] is the Dirac Delta func-
tion that can be approximated using Lorentzian broadening
of width greater than the average mode frequency interval
(	ωave) [49]. As shown in Fig. S10 in the SM [28], the values
of Di for q-1D TiS3 and R−3 BiI3 are higher than that of q-1D
BiI3, indicating that the higher generalized group velocity
results in the weaker phonon localization, potentially leading
to a higher coherent thermal conductivity.

Based on the analysis of mode diffusivity, we further study
the coherent-mode-dependent contributions to the coherent
thermal conductivity at 300 K for correlating the V 2

i j with κC
L .

The heat maps in Figs. 3(d)–3(f) show the contributions of
coherent phonon modes in different frequency regions to the
total κC

L . It is noteworthy that the contribution from coherent
modes to the coherent thermal conductivity in the z direction
of q-1D BiI3 is similar to that in the x direction of q-1D TiS3

within a comparable frequency range of 4 THz, as verified by
the calculated values of κC

L shown in Fig. 2(a). However, the
situation is different for the x direction of q-1D BiI3, where the
contributions are small in the entire frequency range. Mean-
while, we found that when 	ω/2π < 0.5 THz as indicated
by the dashed lines in Fig. 3, the distribution of coherent-
mode-dependent contributions to κC

L shows a clear correlation
with the distribution of projected V 2

i j , further confirming the
correlation analysis discussed above.

Overall, when considering coherent phonon modes that
contribute significantly to κC

L , the correlation between their V 2
i j
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FIG. 3. Numerical correlation between the generalized group velocity and coherent thermal conductivity. (a)−(c) Projection of the square
of the generalized group velocity (V 2

i j ), (d)−(f) corresponding coherent-mode-dependent contributions to the κC
L vs coherent phonon frequencies

at 300 K. The color bars represent the absolute values of the plotted data. Dashed lines refer to where the 	ω/2π = 0.5 THz, clarifying the
correlation between the V 2

i j and κC
L .

and κC
L is relatively strong, which reveals that the magnitude

of the V 2
i j has a significant influence on the coherent thermal

conductivity in these crystals. Thus V 2
i j could serve as a pri-

mary parameter in searching for the crystals with extremely
low two-channel thermal conductivity. This conclusion is
also confirmed by comparing the V 2

i j and the coherent-mode-
dependent contributions in different directions of R−3 BiI3

(see Fig. S13 in the SM [28]).

D. Generalized coherent lifetime and average
mode frequency interval

To provide the evidence for the significant influence of the
generalized coherent lifetime (τi j) and frequency interval of
coherent phonon modes (	ω) on the coherent lattice thermal
conductivity, we plot the distribution of τi j in the coherent
lifetime space for q-1D BiI3, R−3 BiI3, and q-1D TiS3 in
Figs. 4(a)–4(c), which show that for the two q-1D structures,
the overall distribution of τi j is relatively far from the peak
values in the coherent lifetime space, as indicated by the
yellow dashed lines. This can be attributed to the relatively
moderate 	ω in the two structures, while the τi j of R−3 BiI3

is more concentrated around the extremum, exhibiting higher
absolute values. Based on this comparison, one can see that
the coherent phonon modes with larger 	ω exhibit smaller τi j ,
thereby suppressing the κC

L . To establish a better understand-
ing of this phenomenon, we further analyze the relationship
between the lifetime of individual phonon modes (τi) in these
systems and their contributions to thermal conductivity. Here,
Nat is the number of atoms per unit cell, 1/	ωave = 3Nat/ωmax

is a criterion for determining the boundary of phonon coher-

ence contributions, also known as the Wigner limit in time.
Phonon modes with τi below this limit mainly contribute to
coherent thermal conductivity, and the Ioffe-Regel limit (1/ω)
[50] can be used to assess whether the assumption of phonon
quasiparticle excitations is valid. When the τi of a large
amount of phonon modes is below the Ioffe-Regel limit, the
phonons are in an overdamped state, where the consideration
of phonon spectral functions is required [51,52]. Our analysis
reveals that all the studied systems fully follow the Wigner
framework. Furthermore, the distribution of τi in q-1D BiI3 is
mainly around the Wigner limit in time, and the lower τi also
suppresses the lattice thermal conductivity contributed from
the particlelike propagation.

In addition, according to Eq. (5),

κC
L,ave(q)i

κP
L,ave(q)i

� 	ωave

�(q)i
= τ (q)i

1/	ωave
, (5)

the contributions of phonon modes to κP
L and κC

L in q-1D
BiI3 are proportionate, which is consistent with the calculated
result shown in the pie chart in Fig. 4(d). In contrast, due to the
extremely low 1/	ωave, most phonon modes in q-1D TiS3 pri-
marily contribute to the particlelike propagation primarily by
the acoustic phonons, as presented in Fig. 4(f). Moreover, the
numerous phonon modes generated by the 24 atoms in the unit
cell of R−3 BiI3 result in a higher Wigner limit in time. There-
fore, despite having the higher τi and κP

L , compared to those
of q-1D BiI3, R−3 BiI3 exhibits an even higher proportion of
coherent thermal conductivity, as illustrated in Fig. 4(e).

Overall, the extremely low phonon frequency distribution
(ωmax/2π = 4.05 THz) of q-1D BiI3 results in the ultralow
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FIG. 4. Characterization of the lifetime for phonons and their coherent modes. (a)−(c) Distribution of the generalized coherent lifetime
τi j . The yellow dashed lines represent the extremum value of τi j at the same 	ω/2π . (d)−(f) Variation of the single phonon modes lifetime
τi with phonon frequency at 300 K. The black dashed lines and dashed curves are for the Wigner time limit (1/	ωave) and Ioffe-Regel limit
(1/ω), respectively. The areas of the circles represent the proportion of the contribution to the total thermal conductivity: red for particlelike
propagation and blue for phonon coherence, and green in color bars corresponds to an equal contribution from both transport mechanisms. The
insert pie charts show the proportions of particlelike and coherence thermal conductivity.

Vi j coupled with strong anharmonicity. Meanwhile, the mod-
erate 	ω determined by the simple crystal structure reduces
the Wigner limit in time, effectively suppressing the ratio
of κC

L /κP
L to near 1, which leads to an ultralow total lattice

thermal conductivity. In addition to the detailed analysis,
we also need to provide a brief description of the under-
lying physical picture to support our conclusions discussed
above.

E. Strategies for designing materials with ultralow lattice
thermal conductivity

From Figs. 4(d)–4(f), one can see that the κP
L values in

all the three structures are primarily contributed from their
acoustic phonons and a small portion of extremely low-
frequency optical phonons. This is consistent with previous
studies that refer to the phonon modes below the Ioffe-Regel
critical frequency (ωIR) as propagons, and those above as
diffusons and locons [53,54], indicating that the modes below
the ωIR primarily contribute to κP

L , while those above the value
mainly contribute to κC

L . One can see that the diffusons are
mainly consist of optical phonons. This is because the optical
phonons are more localized than the acoustic phonons but still
carry a significant portion of thermal energy for propagating
coherently between different modes. To clarify the capacity
of thermal carriers, we plot the isochoric lattice heat capacity

FIG. 5. Mechanism of suppressing diffusons. (a) Isochoric lattice
heat capacity (Cv), where the vertical lines represent ωIR and the
horizontal lines correspond to the heat capacity values contributed by
propagons. The shaded area represents the derivative of heat capacity
with respect to frequency. (b) Schematic diagram illustrating the
difference between the simple (q-1D BiI3) and complex (R−3 BiI3)
structures in thermal conductivity: the complex lattice producing
more optical phonons for coherence thermal conductivity. The green
arrows reflect the complexity of the atomic vibrations.
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FIG. 6. Schematic diagram of the physical mechanism for designing materials with ultralow lattice thermal conductivity. (a) Key properties
and physical parameters for achieving ultralow lattice thermal conductivity (κL), and (b) lattice thermal conductivity changing with elements
and geometry, where the dashed lines represent the values of 102 and 10−1 W m−1 K−1, respectively.

(Cv) of q-1D BiI3 and R−3 BiI3 in Fig. 5(a), showing that
R−3 BiI3 with a larger number of atoms in its unit cell has
a higher lattice heat capacity, but the contribution from its
propagons is similar to that for q-1D BiI3. Moreover, one can
see from Fig. 2(c) that the correlation between the heat capac-
ity of coherent phonon modes and κC

L is weak. Therefore, the
relatively independent isochoric heat capacity determines the
energy-carrying capacity of different phonon modes, affecting
the ratio of κC

L dominated by diffusons to κP
L dominated by

propagons; Fig. 5(b) schematically illustrates the origin of
lower κC

L in crystals with small number of atoms in the unit
cell.

Based on above discussion, we elaborate on the physical
mechanism of the strategy for designing materials with ul-
tralow thermal conductivity: simple and strongly anharmonic
crystals containing heavy elements for achieving ultralow lat-
tice thermal conductivity by synergistically suppressing the
particlelike propagation and wavelike tunneling. As illustrated
in Fig. 6(a), heavy elements and strong anharmonicity sup-
press the group velocity (Vi, Vi j) and lifetime (τi, τi j) of
phonons and their coherent modes in crystals, leading to low
κP

L and κC
L , while the simple geometric structures with a small

number of atoms limit the wavelike tunneling, because the
number of diffusons is limited by the number of atoms in
the unit cell due to the less optical phonons in simple crys-
tals, resulting in low ratio of κC

L /κP
L . Thus, the synergistic

coupling of these two mechanisms results in ultralow thermal
conductivity. For instance, the lattice thermal conductivities
of Tl3VSe4 [8], CuBiI4 [55], and Pt3Bi4Q9 (Q = S, Se) [13]
composed of heavy elements with strong anharmonicity are
about 0.30, 0.34, and 0.59 W m−1 K−1, respectively, which
are much lower than those of harmonic lightweight materials,
such as diamond (∼2000 W m−1 K−1) [56] and cubic boron
arsenide (∼1310 W m−1 K−1) [57]. However, their average
lattice thermal conductivities are still higher than that of q-1D
BiI3 due to the more complex structures [Fig. 6(b)] with 16
[8], 48 [55], and 96 atoms [13] in their unit cells. Accordingly,
their phonon coherence makes more contribution to thermal

transport compared to that in q-1D BiI3. This in-depth under-
standing would effectively promote the discovery of crystals
with ultralow thermal conductivity.

IV. CONCLUSIONS

In summary, this work focuses on an important question:
how to design new crystal structures with strong anharmonic-
ity and weak phonon coherence to achieve ultralow lattice
thermal conductivity. Using a structure search, a different bulk
phase of quasi-one-dimensional crystal, q-1D BiI3 composed
of BiI3 chains, is found. Compared with the well-known lay-
ered R−3 BiI3 phase, this chainlike BiI3 phase has enhanced
anharmonicity but with much less atoms in its unit cell (8
vs 24 atoms). Based on the Wigner thermal transport theory
and MD simulations with machine learning potential, we have
found that q-1D BiI3 possesses an ultralow lattice thermal
conductivity of 0.088 (0.099) W m−1 K−1 in the x(y) direction
within the Wigner framework. Through correlation analysis,
we further identified that the generalized group velocity (Vi j),
the frequency interval (	ω), and the generalized coherent life-
time (τi j) are the main factors affecting the coherent thermal
conductivity. Especially, the fewer atoms in the unit cell of
this new phase reduces the number of diffusons for coherence
thermal transport. Therefore, the reduced phonon coherence,
together with the enhanced strong anharmonicity due to the
unique geometry with weakly coupled chains, make the new
phase of BiI3 exhibit an ultralow lattice thermal conductiv-
ity. This work provides insight into the complex correlations
among the physical quantities that are closely related to lattice
thermal conductivity for guiding the design of materials with
ultralow thermal conductivity.
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