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Abstract - It is shown that the flat output of the single input 
underactuated mechanical system can be obtained by finding a 
smooth output function such that the system has relative degree 
equals to the dimension of the state space. Assuming the flat 
output of an underactuated system can be solved explicitly, an 
optimization method is proposed for the motion planning of the 
differentially flat underactuated mechanical systems by 
constructing a shape adjustable curve with satisfying specific 
boundary conditions in flat output space. The inertia wheel 
pendulum is used to verify the proposed optimization method 
and some numerical simulation results are included.

Index Terms - Differential flatness\, Underactuated system, 
Motion planning, Optimization. 

I. INTRODUCTION

The underactuated mechanical systems that the degrees of 
freedom (DOF) are more than the numbers of independent 
inputs, allow to reduce cost, weight as well as the occurrence 
of failures, thus can be used in the fields such as space [1], 
underwater [2], and biomechanical systems [3] etc. The 
underactuated mechanical systems are generally slaved by 
first-order [1] or second-order [4] nonholonomic constraints in 
high nonlinear form. In some cases, the linear approximation 
of the underactuated mechanical systems lose the 
controllability [5], thus the motion planning and control 
problem for the underactuated system is generally nonlinear in 
nature. In the field of nonlinear control, so far, some effective 
methods [6-8] are just developed for the nonlinear systems 
with specially geometric or algebraic structure such as 
differentially flat [9] or nilpotent [7] systems.  
 In this paper, optimizing the motion of underactuated 
mechanical system with differentially flat property is 
investigated. Differential flatness was first defined by Fliess et 
al. [9]. Now it is well known that both motion planning and 
control problem for a nonlinear system with differentially flat 
property are simple [6] since that the motion planning problem 
can be transformed to solve a algebraic equation in flat output 
space, as well as the nonlinear control problem is equivalent to 
a linear one in flat output space. Unfortunately, so far there is 
no systematic way to determine if a nonlinear system is 
differentially flat, or what the flat outputs for a nonlinear 
system are, with the major exception of the single-input 
system. For the single-input system, there is a sufficient and 

necessary condition, while for multi-inputs nonlinear system, 
only a necessary condition had been presented [6].  
 If an underactuated mechanical system can be confirmed 
to be differential flat and the flat output can be expressed 
explicitly, then the problem of finding a trajectory satisfying 
the underactuation constraints becomes the relatively simple 
algebraic problem of finding a curve to fit the start and final 
constraints on flat output. As to be shown in this paper, by 
constructing a polynomial with redundant design parameters, 
optimizing the feasible trajectory for the underactuated 
mechanical system is also possible. For instance, considering 
the main application fields of underactuated mechanical 
system, improving the energy efficiency of the motion of the 
underactuated system is appealing because that the power of 
the remote manipulation system is limited generally.  

II. THE DYNAMICS OF UNDERACTUATED MECHANICAL 
SYSTEMS

Consider a mechanical system with n  DOF, denote by 
nR∈q the vector of generalized coordinates of the system. 

Assume there are no external constraints on the system, the 
dynamics of the mechanical system can be calculated by 
Euler-Lagrange equation given as 
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where L  is the Lagrangian,  mR∈  is the vector of 
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where pq  and aq  are the unactuated and actuated generalized 

coordinates respectively. After partitioning the inertia matrix 
of the system accordingly, then the dynamics (1) can be 
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includes centrifugal, Coriolis, gravitational and frictional 
forces. Since there are no external generalized forces, the first 
mn −  rows of equations (2) are given by 

0),(1apappp =++ qqcqmqm      (3) 

and it can be seen as “constraints” of the subsystem 
qqcqmqm =++ ),(2aaapap      (4) 

The second-order differential “constraints” (3) have first 
integral if and only if the passive generalized coordinates pq
are cyclic [4], viz., satisfying  

0
p
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         (5) 

This means the dynamics (1) has conserved quantities 
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Equations (6) are a set of first-order differential equations that 
indicate the generalized momentums are constants such as 
showing in the space free-floating manipulator system [1]. We 
consider the case that the passive generalized coordinates pq
are not cyclic, viz., the equations (3) absence the first integrals 
then showing a set of second-order “nonholonomic 
constraints”. This terminology used in this paper emphasizes 
that the motion planning and control problem for the 
underactuated mechanical system can indeed be dealt with by 
the same tools as for the classical nonholonomic systems.  
 For simplifying the dynamics (3)-(4), by the partial 
feedback linearization proposed by Spong [12], the dynamics 
(2) can be transformed to 
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by the input transformation 
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where aqu =  is the new input. Then, the system (7) can be 

written to a form in state space as 
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The main difficulty for motion planning and control design for 
the underactuated system in (9) is that after partial feedback 
linearization, the new control u  appears in the dynamics of 
both subsystems ),( 21 xx and ),( 43 xx . It will be shown in 

next section that the underactuated system (9) can be 
transformed to a linear system if it is differentially flat.

III. DIFFERENTIALLY FLAT UNDERACTUATED MECHANICAL 

SYSTEMS

 Differential flatness was first defined by Fliess et al. [9] 
using the formalism of differential algebra. Roughly speaking, 
a system is differentially flat if one can find a set of outputs 
such that all states and inputs can be determined from these 

outputs without integration. More rigorously, if the system has 
states nR∈x , and inputs mR∈u then the system is flat if we 

can find outputs mR∈y (equal in number of inputs) with the 

form ),,,,( )(αuuuxhy = such that the states and inputs can 

be expressed as  
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Since the algebraic structure between the states and the flat 
outputs, the motion planning and control design for the 
differentially flat nonlinear systems become simple. 
Unfortunately, so far there is no systematic way to determine 
if a multi-inputs nonlinear system is differentially flat, or what 
the flat outputs for a multi-inputs nonlinear system are. For the 
single-input nonlinear system, the sufficient and necessary 
condition was presented by the following theorem [6]: 

Theorem 1: A single input nonlinear system of the form 
RRu n ∈∈= uxxfx ,,),(  is differentially flat if and only if 

it is feedback linearizable. 

 Exact linearization via nonlinear feedback is one of the 
most important fruits of the geometric control theory in 
nonlinear system during the past two decades [13]. The 
feedback linearization theorem for the single-input nonlinear 
system can be recited as follow [13]: 

Theorem 2: The single-input nonlinear system of the form 
uxgxfx )()( += , RRx n ∈∈ u, , is feedback linearizable if 

and only if there exist a neighborhood U  of a point 0x  and a 
real-valued function )(xh , defined on U , such that the single 

input and single output (SISO) system 
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satisfies conditions: 
(a). 1,0)( −<= nkhLL k

fg x

(b). 0)(1 ≠− xhLL n
fg .

 The Theorem 2 indicates the single-input nonlinear 
system is feedback linearizable if and only if the real-valued 
function )(xh  defined at a point 0x can be found such that the 

relative degree of the SISO system satisfies nr = . Obviously, 
the relative degree of a nonlinear system depends on the 
selection of the output function, and if the point 0x  can be 
given arbitrarily, the nonlinear system is globally linearizable 
by nonlinear feedback. If the output function )(xh  is 

available, then the Theorem 2 indicates the derivative of the 
output has relationships 
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If one defines the coordinates transformation as 
nihLz i

fii ≤≤== − 1),()( 1 xxφ      (12) 
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and defines the input change as 
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then the system (10) can be transformed to a linear system 
with form 
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It is obviously that the linear system (14) is controllable. 
Therefore, the main task for linearizing the nonlinear system 

RuRn ∈∈+= ,,)()( xuxgxfx  by nonlinear feedback (13) 

is to seek an output function )(xh  that makes the system has 

relative degree nr = . Thanks to the following theorem [13] 
the output function can be found for the SISO nonlinear 
system. 

Theorem 3: There exists the output function )(xh for which 

the single-input nonlinear system with form uxgxfx )()( += ,

RuRn ∈∈ ,x , has relative degree nr =  at a point 0x if and 
only if the following conditions are satisfied. 

(a) The matrix [ ]gggg 12 −− n
f

n
ff adadad  is full rank at 0x ;

(b) The distribution { }ggg 2,,,span −=Δ n
ff adad  is involutive 

near 0x .

Note that if the point 0x can be specified arbitrarily in the 
state space, then the Theorem 3 is globally effective. 
Assuming this is the case we here consider, then the following 
Theorem is easy to be proven. 

Theorem 4: The single nonlinear system with 
form RuRn ∈∈+= ,,)()( xuxgxfx is differentially flat if and 

only if the following conditions are satisfied. 

(a) The matrix [ ]gggg 12 −− n
f

n
ff adadad  is full rank; 

(b) The distribution { }ggg 2,,,span −=Δ n
ff adad  is involutive. 

And the flat output can be solved by 
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where

[ ]ggggxC 12)( −−= n
f

n
ff adadad   (16) 

is addressed as the controllability matrix of the system, and 
0)( ≠xδ .

 The Theorem 4 provides a systemic way to find the flat 
output for the single-input underactuated mechanical system. 
Assume the flat output could be obtained by equation (15), the 
coordinate transformation (12) gives 

)(xz =        (17) 

where
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coordinate transformation 
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therefore both the states and input can be expressed as the 
functions of flat output and its finite order derivatives.

IV. OPTIMAL MOTION PLANNING FOR THE FLAT 

UNDERACTUATED MECHANICAL SYSTEM

 For the flat underactuated mechanical system, the problem 
of finding a feasible trajectory ))(),(( tutx  between the initial 

state )( 0
0 txx =  and the final state )( 1

1 txx =  for the 

underactuated system is changed to the problem of finding a 
flat output curve )(ty  satisfying boundary conditions 

[ ] )(T)1(0
o

n tyyy −=z  and [ ] )( 1

T)1(1 tyyy n−=z
specified by )( 0

0 txx =  and )( 1
1 txx =  respectively. 

Therefore, the problem finding a trajectory satisfying the 
underactuated constraints becomes the relatively simple 
algebraic problem of finding a curve to fit initial and final 
conditions on )(ty . By the inverse coordinate transformation 

(18), any curve )(ty maps directly to a consistent pair of state 

and control histories )(tx  and )(tu . For instance, the flat 

output can be parameterized by the polynomial  
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where [ ]10 ,ttt∈ , 01T tt −= , and ksas ,,2,1,1 =−  are the 

design parameters. Define  [ ]1,0TT ∈= tτ  to be a new time 

variable, and let nk 2> , where n  is the dimension of the state 
space. Substitute the boundary conditions into (20), one has  
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where 1)1(,0)0( TT == ττ . Obviously, the matrix A has full 

rank with ( ) n2rank =A . Since nk 2> , the general solution of 

algebraic equation (21) can be written as 
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Aa )(
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0
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where +A  denote the Moore-Penrose generalized inverse and 
is given by 1TT )( −+ = AAAA , 0>μ  is a scale multiplier, I  is 

the identity matrix,  is an arbitrary vector. The term 

( )AAI +−  span the null space of A . This formulation 

provides a decoupled solution. The first term is the special 
solution that makes 

2
a  be minimized, and it gives a set of 

design parameters *a such that the polynomial )(ty satisfies 

the boundary conditions. The second term AAI )( +−μ  can 

change the shape of the curve )(ty while not violating the 

boundary conditions 0z and 1z since 0)( ≡− +AAIA .

Therefore, the equation (22) provides an approach to 
optimizing the motion of the flat mechanical system for 
specific sake.   
 To improve the energy efficiency is a broadly interested 
task for designing the control for the mechanical system. As 
an example, considering the optimization problem that 
minimizes a measure about the kinetic energy. The measure 
can be defined as 
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where G is a weighted matrix . With considering the equation 
(16), the measure (23) can be rewritten as  
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Therefore, the kinetic energy is a function of the design 
parameters of the polynomial (20). Let 

)(a
a
K

∂
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with 0>μ , then the equation (22) gives a locally optimal 

solution for minimizing the measure (23). If the arbitrary 
vector  can be expressed explicitly, then by adjusting the 
scale μ , a better suboptimal solution can be obtained 

generally. If the arbitrary vector  cannot be obtained 
explicitly, a global optimization algorithm such as the 
evolution methods (for instance, genetic algorithm) or the 
randomized methods (for instance, probabilistic roadmap 
method) can be used to solve the problem, and the formulation 
(22) is also useable as long as one regards the arbitrary vector 

 and the scale multiplier μ  as new design variables. Some 

global optimization methods permit determining the arbitrary 
vector  without using the gradient of the measure. Therefore, 
the energy efficiency measure can be defined by a function 
without depending on the design parameters a  explicitly. For 
instance, the measure can also be defined as 

=
1

0

da
T

t

t

tK q      (26) 

The measure (26) calculates the total works of the actuators on 
the actuation duration. This is a more direct way to evaluate 
the energy efficiency of the specific motion. Since the 

generalized actuation force i  is not an algebraic function of 

state variables, the gradient of the measure (26) cannot be 
obtained by (25), the optimization problem can but be solved 
by a optimization method without using the gradient of the 
measure. 

V. MOTION PLANNING AND CONTROL OF THE INERTIA
WHEEL PENDULUM

The inertia wheel pendulum (IWP) is a planar inverted 
pendulum with a revolving wheel at the end, as shown in 
Figure 1. The wheel is actuated and the joint of the pendulum 
at the base is passive. The IWP was first introduced by Spong 
et al. [14]. The task is to stabilize the pendulum at its upright 
equilibrium point while the wheel stops to a given position. 
The IWP is the first example a flat underactuated of 
mechanical system with two DOF and single actuator. This is 
due to the constant inertia matrix of the system [15]. In this 
section, the IWP is considered to verify the feasibility of the 
optimization method. 

1θ

2θ

11, Im

22 , Im

l

x

y

o
cl

Fig.1. The inertia wheel pendulum 

A. The flat output of the IWP
Given the length of the link is l , the distance between 

the center of mass (CM) of the link and the passive joint is cl ,

the mass of the link and the wheel are 1m  and 2m
respectively, 1I  and 2I  are the inertias of the link and wheel 

respectively. Denote the generalized coordinates of the system 

to be [ ]T
21 θθ=q . The dynamics of the IWP is given by 

τθθ
θθθ
=++
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the state space equation of the system (27) can be written as 
u)()( xgxfx +=       (28) 

where

[ ]T
4102 0sin)( xxhx=xf

[ ]T
1 100)( h=xg
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4xu =
The controllability matrix of the system (28) is given by 

[ ]ggggxC 32 ,,,)( fff adadad=
    (29)

Let 110 cos)( xhh−=xδ , the flat output for the IWP can be 

obtained by the equation (15), and gives 

311)( xhxxhy −==        (30) 

The derivatives of the flat output can be obtained as 

412 xhxy −= 10 sin xhy = 120 cos xxhy =    (31) 

then, the inverse coordinate transformation can be given by 
)arcsin( 01 hyx =           
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002 )(1 hyhyx −=          
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h
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Substituted (32) into (19), the input transformation has form 
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h
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Since both the states and the input can be expressed as the 
function of the output (30), as shown by equation (32) and 
(33), this confirms the output (30) is indeed a flat output for 
the IWP system.  
 Refer to the equations (32) and (33), one can find that 

there is a singularity at the point ,2,1,0,
211 =±== kkx θ .

Outside the singularity region, by the nonlinear feedback 
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the system is equivalent to a fourth order linear system 
vy =)4(        (35) 

where v  is the auxiliary control input defined in (34).

B. Optimal motion planning for the IWP system
The underactuated mechanical systems are appealing for 

the application fields where the weight of the system has 
rigorous limit. The energy efficiency of the underactuated 
mechanical must be considered even if the system is carefully 
designed to be flat, such as the flat biped robots [16] and the 
flat space manipulators [17]. For the IWP system (27), the 
benchmark single input flat underactuated mechanical system 
with flat output (30), the trajectory in the flat output space can 
be parameterized as a eighth-order polynomial 

1
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1
1 T

)(
−

=
−=

s

s
s

taty       (36) 

where a redundant design parameter is included. Assume the 
initial state and the final state are 0x  and 1x  respectively, and 

the corresponding positions in flat output space are 0z  and 1z
respectively. The matrix A  of the equation (21) is given by 

=

333333

2222222
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(37) 

As in section 4, the measure of the IWP system can be defined 

to be [ ] [ ] txxxxK
t

t

d
2
1 `

0

T
4242= M , where =

2221

1211

mm
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M . Despite the 

arbitrary vector in the equation (22) can be calculated as 
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where 182 ×∈
∂
∂ Rx
a

 and 184 ×∈
∂
∂ Rx
a

 are vectors, the negative 

gradient of the measure only gives the best direction for 
reducing the energy dissipation. We adopt the global 
optimization method to optimize the motion for the IWP 
system. In the simulations section, the vector  and the scale 
multiplier μ  are determined by the standard genetic 

algorithm, which can be found in many textbooks. 

C. Simulation results 
The physical parameters of the IWP are listed in the 

Appendix. For the motion planning task, we assume the initial 

state is [ ]To

0

0 00030
0

=
= st

x and the final state is 

[ ]T

10

1 0000
1

=
= st

x , the duration of the task is 

stt 10T 01 =−= . By the genetic algorithm, the approximately 

optimal values for the arbitrary vector and the scale multiplier 

are obtained to be [ ]T101150000 −−=ε and 
4106×=μ respectively. Fig. 2 and Fig. 3 show the motion 

planning (dashed line) and trajectories tracking (solid line) 
simulation results, of which the former corresponds to 0=μ
and the later corresponds to 4106×=μ . The energy 

efficiency is evaluated by =
T

0
2 dtE θτ . For the fourth-order 

linear system (35), it is easy to design a closed-loop controller  
)()()()( 0223

)4( yykyykyykyykyv ddddd −+−+−+−+=  (39) 

where dy is the flat trajectory given by (36). The controller 

(39) is stabilizable by choosing the parameters 4,3,2,1, =iki
such that the closed loop characteristic polynomial 

01
2

2
3

3
4 kkkk ++++ λλλλ  has all its roots in the left half of 

the complex plane. For testing the performance of the closed 
loop controller, the state of the system is started from a new 

initial state ( )[ ]To3o

0

0 0103070
0

×−=
= st

x , which 

significantly deviates from the target trajectory. Refer to the 
Fig.2 and 3, one can find that not only the controller (39) is 
exponentially stable but also the actual energy dissipation is 
reduced correspondingly. 
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Fig.2. The trajectory tracking control results with 0=μ
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Fig. 3. The trajectory tracking control results with 4106×=μ

VI. CONCLUSIONS

 For a flat underactuated mechanical system, it is shown 
that the motion of the system can be optimized by constructing 
a shape adjustable curve in the flat output space. By the 
benchmark singe-input underactuated mechanical system, the 
inertia wheel pendulum system, it is verified that the proposed 
optimal motion planning method can effectively improve the 
energy efficiency of the IWP system for a given position 

control task. Since there is no systemic way to determine if a 
multi-inputs nonlinear system is flat or what the flat outputs 
for a multi-inputs nonlinear system are, the motion planning 
and control for general multi-inputs underactuated mechanical 
systems are still open problems, say nothing of the motion 
optimization.
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