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内 容 摘 要 

 研究了零重力环境中有自由被动关节的欠驱动机械臂和重力环境中弹性欠

驱动机构腿式机器人的动力学与控制问题。 

 有自由被动关节的欠驱动机械臂在航天机器人等零重力环境具有应用价值。

这类欠驱动机械臂被证明是一类有漂移二阶非完整约束机械系统。以平面二自

由度转动关节欠驱动机械臂为具体对象，分析了其可控性、非最小相位性、非

最少时间局部可控性、非微分平坦性，以及不可反馈幂零化特征。这些否定的

分析结果表明该研究对象虽然具有简单的机构模型，但其控制问题的难度却很

大。采用幂零近似技术和参数化周期输入控制方法提出一种具有一致渐近稳定

性的非线性控制方法，并进行了数值计算仿真。 

 以综合提高动态腿式移动机器人的运动能效性和运动灵活性为目标，进一步

探讨了弹性欠驱动机构在腿式动态移动机器人中的应用。首先以仿袋鼠机构的

一般机构为模型，探讨了其支撑相的站立平衡控制问题、支撑相平衡点临域的

周期摆动运动控制问题和支撑相的鲁棒反步控制问题。设计的所有控制器给出

了指数收敛稳定性证明并进行了数值计算仿真验证。为改善提出的仿袋鼠机构

的仿生学特征并使其动力学模型具有特殊的性质以便于设计控制器，受到惯性

轮摆系统的启发，提出一种新的仿袋鼠跳跃机器人机构模型，基于其飞行相动

力学模型的扩展链式变换，提出一种积分反步控制方法，给出了控制器的指数

稳定性证明并进行了数值计算仿真验证。 

为提高欠驱动机械系统的运动能效性，进一步研究了欠驱动机械系统的最优

运动规划问题。针对具有微分平坦性的欠驱动机械系统，提出一种具有冗余待

定系数多项式的最优平坦轨迹规划方法，基于待定系数矩阵的零空间解实现平

坦轨迹的能耗最小化。理论分析和数值计算仿真验证了这种最优运动规划方法

的有效性。 

 最后总结了全文研究结果并指出了进一步研究的内容和研究计划。 

关键词： 机器人；二阶非完整约束；欠驱动；非线性控制；反步 



Abstract 

 The dynamic control problems both for underactuated manipulators with 
free-swing joints in agravic surroundings and legged robots with elastic underactuated 
mechanism in gravitational surroundings are investigated. 
 The underactuated manipulators with free joints are appealing for space robots in 
agravic surroundings. It was shown that this class of underactuated manipulators is 
second-order nonholonomic systems with drift. Specifically, a 2R underactuated 
planar manipulator with free second joint is selected and some properties such as the 
controllability of the linear approximation model, non-minimum phase, non 
small-time-local -controllability (STLC), non-differential-flat and not exactly 
nilpotentizable by feedback transformation are analyzed. These negative properties 
show the difficulty in designing the control for it though the manipulator has very 
simple mechanism. Based on the nilpotent approximation technique and adopting 
parameterized periodic input, a nonlinear control with uniformly asymptotic stability 
is proposed and then some numerical simulation results are presented. 
 In order to synthetically improve the energy efficiency and mobility of the legged 
robots, introducing the elastic underactuated mechanism into the legged systems is 
also investigated. A generalized mechanism biologically mimicking a kangaroo is 
proposed at first, and then the stance balance control, a small periodic swing control 
near to the stance equilibrium and a robust backstepping control are studied. All 
proposed controls are proved theoretically and verified by some numerical 
simulations. For enhancing the biological characteristics of the proposed mechanism 
and holding better properties for designing control conveniently, inspired by the 
inertia wheel pendulum system, a novel mechanism with biologically mimicking a 
kangaroo is proposed. By transforming the dynamic control system to the so-called 
extended chained form, an exponentially stabilizable control is proposed based on the 
integrator backstepping procedure. The exponential stability of the presented control 
is proofed in theory and also verified by some numerical simulations.  
 For the sake of improving the energy efficiency of the underactuated mechanical 
systems, optimal motion planning with minimizing the energy expenditure for the 
underactuated systems with differential flatness is investigated. By constructing a 
polynomial with redundant pending coefficients to approximating the flatness 
trajectory, an optimal motion-planning algorithm is proposed by optimizing the null 
resolution of the coefficient matrix. Both analyzing in theory and simulating in 
numerical calculations verify the effectiveness of the suggested algorithm.    
 Finally, the research results are concluded and some further research plans are 
presented.  
Keywords: Robots; Second-order nonholonomic constraints; Underactuation; 

Nonlinear control; Backstepping 
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1 引言 

 从 1850 年前后蒸汽机车的调节问题开始，至今机械系统控制技术经历了 150

余年的发展，俨然是一个传统的研究领域。在军事和一般工业技术发展的推动作

用下，一个多世纪以来，科学家和工程技术人员合力创造的线性控制理论、最优

控制理论、自适应控制理论、以及当前被高度关注的非线性控制理论和鲁棒控制

理论，不仅没有象人们所期望的那样使机械系统这一传统研究对象的控制问题充

分解决，反而随着人们探索领域的不断扩展和对使用新工具的功能和性能的更高

要求、随着新机械系统不断被创造出来，机械系统的控制问题给控制工程领域的

工作者提出了很大挑战。机器人就是这样一类在控制技术方面具有挑战性的机械

系统对象。 

 自从 1950 年前后首台工业机器人问世以来，机器人系统的控制问题就被发现

是复杂而困难的。其多变量强耦合高度非线性动力学系统特征给设计高性能实时

控制器设置了很大障碍。直至今天，一般多自由度工业机器人依然没有采用动力

学控制方法。虽然在非工业机器人领域，例如高性能仿人机器人（图 1.1）、杂技

机器人（例如骑自行车机器人图 1.2）、多腿动态移动机器人（图 1.3）等，采用了

动力学控制方法，但是这些成果多数是单项技术的标志性成果，远未达到通用和

实用的水平。 

 

       
图 1.1 日本ASIMO机器人在跑步                图 1.2 日本骑自行车机器人 
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图 1.3 美国Boston Dynamics公司研制的大型机器狗（www.bostondynamics.com） 

 

 这些（基于动力学控制的）动态机器人系统的主要技术局限性之一就是系统能

效性不足。正如T.Y. Wu[1]比较不同仿人机器人系统给出的能效性比较结果（如表

1.1 所示），除了Cornell powered biped 机器人系统具有与人体相仿的运动能效

性外，其它机器人系统的运动能效性远低于人体的运动能效性。而Cornell powered 

biped 机器人系统的高能效性是通过采用被动（Passive）动力学（或无源动力学）

设计实现的，其奇异的外形表明它远非仿生学设计，而采用了能效性设计原则。

机械系统的无源动力学运动是指机械系统的无能量输入运动行为。当使机械系统

工作于无源动力学运动方式，机械系统具有最少的能量消耗(理想无摩擦情况下，

消耗能量为零)。 

表 1.1 不同移动对象的能效性比较 

运动对象 能效性指标η＝输入总能量/（重量×移动距离） 

人体 0.2 

Asimo（图 1.1） 3.2 

MIT Flamingo(图 1.4) 2.8 

Cornell powered biped(图 1.5A) 0.2 

TU Deflt Denise（图 1.5B） 5.3 
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图 1.4 MIT Spring Flamingo 机器人系统 

 

 
图 1.5 Cornell powered biped（A）和TU Deflt Denise（B）机器人系统 

 

 采用被动动力学设计同样具有致命的缺陷：即机器人的运动灵活性不足。早期

的被动行走机器人只能在斜坡路面通过重力作用向下运动[2]。近年来通过在机器

人踝关节处安装很小功率（几瓦）的电机，可使被动行走机器人（10 余公斤重）
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在水平路面稳定步行[3]。 

 针对当前仿生机器人系统能效性和运动灵活性难以兼顾的困难，本报告主要探

索弹性欠驱动机构在动态仿生机器人系统中的应用及其可行控制方法。 

1.1 欠驱动机械系统 

 欠驱动机械系统是一类原动件（独立控制输入）数目少于系统自由度数目（系

统广义坐标数目）的机械系统。欠驱动机械系统广泛分布于机器人[4-16]、航空飞

行器[17]、水面船舰系统[18,19]、柔性机械系统[17,20]、机动多体系统[21]等。机

械系统的欠驱动特征通常由如下原因引入： 

(1) 由系统动力学引入。这类机械系统包括航空飞行器[17]、空间飞行器[22,23]、

水下运载工具[19]、无轮机动机械系统[24,27]。 

(2) 为降低系统成本或满足实际需要。这类系统包括只安装两个推进装置的卫星以

及柔性连杆机器人系统[17,20]。 

(3) 驱动器失效。例如空间飞行器、水面船舰或航空飞行器的容错控制[22]。 

(4) 人为设计用于探索非线性控制技术。例如杂技机器人Acrobot[28]、Pendubot、

球杆系统（Beam and Ball）[29]、Cart－Pole系统[30]、旋转摆系统[30]，以及

TORA系统[30]等。 

已有研究结果表明，欠驱动机械系统与全驱动机械系统相比，它可能通过相对

较少的驱动输入实现多自由度机械系统的运动控制。这显然在探索轻质大比刚度

低成本机械系统设计、实现高成本遥操作系统（如航天飞行器、行星探测器等）

的余度容错控制、完成高能效仿生机器人系统设计和应用等方面具有实际价值。

欠驱动机械系统的提出也是对传统机械设计理论的突破。目前机械工程本科机械

原理教材中依然明确指出：“只有机构的原动件数目与机构自由度数目相等时，机

构才有确定的运动”。因此目前欠驱动机械系统的设计和控制理论研究虽然已经得

到一定关注，但远未达到共识或普遍认同的程度，其相关研究结果也远不充分。

欠驱动机械系统对传统机械系统设计理论带来的重要理论突破还未充分展示出

来。 

有必要指出，近年来，国内外一些学者把由弹性结构连接的机械系统也归于欠
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驱动系统，这类系统的特征是静态稳定系统，并通过外部环境提供附加约束实现

系统的被动自适应运动控制，例如欠驱动多指灵巧手[31]。本报告主要研究静态不

稳定欠驱动机械系统的设计和控制问题。 

1.2 欠驱动系统的力学特征 

 对于一个无外加约束的机械系统，设系统的广义坐标为 Q∈q ，系统的拉格朗

日（Lagrangian）函数为 ),( qq L ，则系统的Euler-lagrange 方程可写为 

uqG
qq

)(
d
d

=
∂
∂

−
∂
∂ LL

t 

         (1.1) 

其中， )(qG 为输入矩阵，u为广义力矢量。若 

)dim())((rank1 Qnn =<= qG       (1.2) 

则系统（1.1）被称为欠驱动系统。也就是说，欠驱动系统的独立控制输入数目少

于系统的广义坐标数目。若一个机械系统满足式（1.2），则其输入矩阵 )(qG 可写为

( )T
1

,0)( nI=qG ，式（1.1）中的前 )( 1nn − 个方程可表示为动力学方程 

0qqq =),,( ϕ         (1.3) 

若不存在函数 h满足 ),,( qqq 

 ϕ=h ，则方程(1.3)称为二阶非完整约束，或非完整加

速度约束。 

 欠驱动机械系统控制的主要困难在于不能采用精确非线性反馈实现控制系统

线性化。把系统（1.1）中前 )( 1nn − 个方程组成的子系统称为无驱动子系统，把系

统(1.1)中的后 1n 个方程组成的子系统称为驱动子系统。Spong[28]证明欠驱动系统

的驱动子系统可通过可逆控制输入变换化为线性系统，但是无驱动子系统依然为

高度非线性系统，并通过非线性项和新的控制输入与驱动子系统相耦合。这种线

性化方法称为部分反馈线性化。部分反馈线性化并未解决欠驱动系统的控制问题。 

 由于存在不可积的无驱动子系统而导致存在二阶非完整约束的欠驱动机械系

统，使传统的非完整约束系统的定义有重新修订的要求。传统上认为，非完整约

束系统是外加在机械系统上的微分－代数约束，这种系统需要通过建立在变分基

础上的拉格朗日乘子法来建立系统动力学，例如人们熟悉的无滑动滚动圆盘和冰

刀系统等一阶非完整约束系统。本报告明确使用二阶非完整约束这一概念，不仅
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因为它已得到较为广泛的认同和使用[12,17,30]，而且因为它与一阶非完整约束系

统控制问题本质上的高度一致性。到目前为止，几乎所有具体的静态不稳定欠驱

动机械系统均被证明是二阶非完整约束系统，除特别说明外，本报告提到的所有

欠驱动机械系统均指二阶非完整约束欠驱动机械系统。 

1.3 欠驱动系统控制问题的特征 

 欠驱动机械系统作为一类多变量强耦合非线性动力学系统，其控制问题的复杂

性集中代表了非线性系统控制问题的复杂性。已有研究结果已经证明，1.1 节提到

的众多欠驱动系统，针对一种欠驱动系统设计的控制器往往不能推广应用于其它

欠驱动系统。但是探索欠驱动机械系统的一般控制方法，始终是非线性系统控制

理论工作者追求的目标。文献[30]基于无源性分析，把已有标志性欠驱动机械系统

的基于能量的控制方法进行了较系统的论述。而R.Olfati-Saber[17]则从欠驱动机械

系统控制模型的非线性规范形变换角度，研究了多种欠驱动机械系统的控制器设

计方法。这些都为欠驱动系统的设计和推广应用提供了一定的理论和技术基础。 

 总体而言，欠驱动机械系统在控制器设计方面的特殊性主要体现在以下方面： 

(1) 可控性判别 

欠驱动系统的可控性判别是保证设计一个可用欠驱动机械的首要问题。然而遗

憾的是，欠驱动系统的可控性判别有时也是困难的，因为这类系统的可控性往往

不仅与它在平衡点临域的线性近似模型的可控性不等价，而且其可控性与可达性

也不等价[5]。研究表明，静态不稳定欠驱动系统通常是有漂移二阶非完整约束机

械系统。对于无漂移非完整约束机械系统，其系统可控性与可达性是等价的，并

存在Lie代数可控性判据(Chow定理)[32]。对于有漂移非完整约束机械系统，其可

控性判别目前还没有充分必要条件，只有Sussmann[37]提出的最少时间局部可控性

(Small-time local controllability, STLC)定理这一充分条件。 

(2) 可达性判别 

欠驱动系统可达的一个充分条件是满足完全非完整条件[12]。理论证明，对于

一个非完整约束系统，只有它是完全非完整约束系统，则该系统才是可达的[32]。

欠驱动系统通常与非完整约束系统紧密相关，因此若欠驱动系统具有完全非完整
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性，则它是可达的。但是有漂移非完整约束系统的可达性并不等价于可控性。 

(3) 非最小相位特征 

非线性系统的零动态被定义为在输入作用下，系统输出被控制到零时系统所具

有的内部动力学运动[33]。当一个非线性系统的零动态是稳定的，则系统才是稳定

的。这种零动态稳定的系统被定义为最小相位系统。欠驱动系统的输出被控制到

零后，其零动态往往并不稳定，这时控制输入并不为零，而且往往很快趋于无穷。

因此欠驱动系统通常是非最小相位系统。当然非线性系统的最小相位性与其输出

的选择有关，有时可以通过改变输出来改变系统的非最小相位特征[34,35]。 

(4) 漂移非线性系统 

对于一阶非完整约束机械系统，其控制问题通常是无漂移非线性系统[32]。无

漂移非线性系统的可达性与可控性等价。但是欠驱动系统多数为二阶非完整约束

系统，其控制系统通常是有漂移系统[34,35]。有漂移系统的可达性与可控性不等价。 

(5) 控制器设计方法存在很强的个性 

无论是已有的基于无源性分析的能量控制器设计方法[30]还是基于非线性规范

形变换的控制方法[17]，都不能解决所有欠驱动系统的控制器设计问题。很多欠驱

动系统的控制器设计还依赖于切换控制[36]。切换控制是不同控制方法的切换组

合，存在很大的灵活性。但是这也导致切换控制本身的稳定性分析问题比较复杂。 

1.4 非完整约束系统控制问题的特征 

由于存在微分形式的不可积约束，非完整约束机械系统的控制问题难以采用

标准的线性系统理论或精确反馈线性化方法予以解决。根据控制问题的性质不同，

非完整约束机械系统的控制问题一般分为两类： 

(1) 运动规划 

运动规划属于开环控制问题。运动规划问题是指采用一组控制序列使系统能

在有限时间内从任意初始状态到达任意目标状态。对于完整约束机械系统，总可

以找到一组独立的广义坐标，在此广义坐标空间上机械系统工作空间内的任意运

动都是可行的。对于非完整约束系统则不同，它不能采用一组独立的广义坐标表

示系统的运动空间，这些广义坐标还存在微分形式的不可积约束（非完整约束），
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因此在广义坐标空间内并非任意运动都可行，而只有满足非完整约束的那些运动

才是可行的。 

由于非完整约束是不可积的微分方程表示的约束式，非完整约束系统严密、

直观的运动规划方法是微分几何方法[32,37,38]。微分几何的强有力的研究工具之

一是李代数。许多具有很强理论和实际应用价值的非完整约束系统运动规划方法

就基于李代数方法[32,38]。其基本原理是：由控制输入光滑向量场定义的分布，通

过李代数计算分布的对合封闭，根据对合封闭分布的维数与系统广义坐标空间的

维数是否相等，可判断非完整约束系统是否可达。若该系统还是无漂移系统，则

该系统是可控的。可控非完整约束系统的基本运动规划方法是分段定常输入（piece 

wise constant inputs）方法[32,38]。对于链式非完整约束系统，Murray[39,40]提出

一种正弦函数输入运动规划方法。链式系统满足幂零（nilpotent）条件，对于幂零

系统或可幂零化(nilpotentizable)的非完整约束系统，正弦函数输入控制、分段定常

输入控制等参数化输入控制方法是有效运动规划方法。所谓幂零性是指控制系统

输入光滑向量场的分布具有幂零性。幂零分布指存在整数 k ，所有长度大于 k 的李

积项为零，则称由系统输入光滑向量场张成的分布是 k 阶幂零的[32]。类似地，对

于具有Pfaffian形式的非完整约束系统，Papadopoulos[41]提出一种多项式输入运动

规划方法。这种运动规划方法也是一种参数化运动规划方法。 

除以上对于具有幂零性或可幂零化特征的非完整约束系统，还有一类具有特

殊性质的非完整约束系统是具有微分平坦（differential flatness）性质的系统[42-56]。

微分平坦系统是指对于无漂移仿射非线性系统，若存在与控制输入空间相同维数

的光滑输出，它是系统状态、输入以及输入微分的函数，并使得状态和输入可表

示成输出及其微分的函数，则称该系统是微分平坦系统。Martin[44,45]指出，任意

3（或m）输入 5 状态(或m+2 状态)可控无漂移仿射非线性系统是微分平坦系统。

具有微分平坦性质的非完整约束系统的运动规划问题可大大简化，基于微分平坦

性，系统的运动规划问题变为寻找满足初态和终态边界条件的平坦输出，对该输

出微分可得到期望的输入。平坦输出通常是机械系统的位形变量的函数[30]，有时

甚至是机械系统上的某个特殊点（例如对于平面欠驱动机械臂系统，末连杆的冲

击中心一般为系统的平坦输出[11]）。但是遗憾的是到目前为止，依然没有寻找微

分平坦输出的一般方法。 
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(2) 反馈镇定和轨迹跟踪控制 

反馈稳定是指采用反馈控制律使闭环系统被渐近稳定到平衡点（镇定）或平衡

轨迹（轨迹跟踪）。对于线性时不变系统，若所有不稳定特征值是可控的，则通过

线性时不变静态状态反馈可实现原点的渐近稳定。对于非完整约束系统，情况就

要复杂的多。非完整约束系统在平衡点的线性化系统一般是不能渐近稳定的，因

此有关线性镇定的工具甚至不能局部应用。进一步，基于著名的Brockett定理[57]，

人们已经了解到，非完整约束系统不能通过光滑时不变反馈实现系统稳定。基于

此，已有的非完整约束系统反馈控制方法通常可分为三类： 

A.光滑时变反馈控制方法。例如[58, 60,61]。 

 Samson[58]针对链式非完整约束系统首先提出了这种控制方法。其核心思想是

通过把链式系统变换为斜对称（skew-symmetric）链形，然后通过Lyapunov控制设

计方法设计光滑时变反馈控制器并实现时变反馈控制率的全局稳定性分析。为实

现指数收敛，Morin和Samson[59]还把这种反馈控制方法改进为基于反步

（backstepping）技术的时变反馈控制方法，但是改进后的控制方法失去了光滑性。

Morin和Samson在文献[62]中指出的，非完整约束系统的光滑时变反馈控制方法的

主要缺点是不能达到指数收敛率，优点是具有较强的鲁棒性。但是通过引入辅助

状态变量和基于最小膨胀度（minimal dilation degree）概念的时变状态变换，Tian[61]

针对一大类非完整约束系统提出一种可实现指数稳定的光滑时变反馈控制方法。 

B.非连续反馈控制方法。例如[63-66]。 

 非连续反馈控制方法应用于非完整约束系统得到较多的研究。这主要包括非光

滑变换引起的非连续控制律[63,64]、切换控制律[36]，以及滑模控制律[66]等。 

 非光滑变换引起的非连续控制律以 Astolfi[63]提出的σ 变换方法为代表。σ 变

换方法是一种奇点分解方法，通过该变换使得奇点附近很小的位移对应坐标很大

的变化，或称之为奇点的膨胀。利用σ 变换方法，Astolfi对满足一定条件的一类非

完整约束系统进行巧妙的变换，将对原系统的非线性设计问题转化为对线性定常

系统的设计问题。该方法充分利用了非完整系统的结构特点，是解决非完整控制

系统反馈镇定问题的一种重要方法。Rehanoglu[65]将该方法推广到欠驱动水面船

舰系统的反馈镇定问题中，得到非连续的反馈控制律使得闭环系统被指数渐近镇
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定。 

 切换控制方法以切换有限时间稳定控制方法为代表[36]。这种方法的主要思想

是定义一组交集为连通集且包含平衡状态的曲面，然后设计控制器满足条件： 

(1) 闭环轨迹在有限时间内到达该交集； 

(2) 闭环系统的原点在交集内是渐近稳定的。 

该控制器设计方法基于连续有限时间微分方程理论实现有限时间到达每个曲面。

设计的控制器可以避免传统滑模控制器表现出的“抖振”现象。 

 滑模控制是一种非连续反馈控制方法，是解决非完整约束系统控制问题的一类

潜在可行的鲁棒控制方法。Hu[66]提出一种时变滑模控制方法用于解决有漂移不确

定非完整约束系统的控制问题。该方法基于滑模控制技术和非线性时变系统理论

的结合，并可适用于除无漂移链式系统以外的其它具有更一般形式的非完整约束

系统的鲁棒控制。克服了以往滑模控制方法[ 67，68]用于解决非完整约束系统时依

赖于系统具有特殊的结构和容易找到合适的Lyapunov函数的缺陷。Hu提出的方法

可系统构造合适的Lyapunov函数。 

C.非光滑时变反馈控制方法。例如[69,71-74]。 

为改善光滑时变反馈控制方法收敛速度慢的缺陷，M’closkey和Murray[69]首先

针对无漂移系统提出齐次反馈控制方法。齐次反馈控制方法属于非光滑（仅连续）

时变反馈控制方法。Hermes[70]最早进行了齐次微分方程的理论研究，给出了有关

齐次系统的一些重要概念，如过滤(filtration)、膨胀(dilation)，向量集合的齐次逼近

等。Kawski[71]则首先研究了齐次控制理论，并提出了齐次范数（homogeneous 

norm）的 “δ 指数收敛” 的概念。M’closkey和Morin[72]在他们的研究结果中提出

了齐次度(homogeneous of degree)的概念，并将齐次反馈控制方法从无漂移系统推

广到有漂移系统。对于无漂移仿射非线性控制系统，齐次系统理论给出的结论为：

可控的无漂移仿射非线性控制系统总可以被一个可控的幂零齐次系统逼近。对于

原系统的控制器设计可以转化为对该幂零齐次近似系统的控制器设计。对于该幂

零齐次近似系统，一般构造闭环系统为零齐次度的齐次反馈，使得闭环系统指数

收敛。该指数收敛指关于齐次范数的指数收敛，称为δ 指数收敛，这有别于传统的

指数收敛的含义。若一个系统本身是幂零系统，则其幂零齐次近似系统就是其本
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身，若能构造出齐次反馈，则可得到全局指数收敛反馈控制律。若原系统并非幂

零系统，则针对幂零齐次近似系统设计的反馈控制律使原系统局部渐近稳定。 

1.5 当前二阶非完整约束欠驱动机械系统研究中存在的问题 

 目前虽然欠驱动机械系统的控制问题已经得到一定的关注，并提出了一系列具

体研究和应用对象，但是已有研究结果还存在以下方面的问题： 

(1) 提出的可行控制方法主要针对具体的欠驱动系统。欠驱动系统与非完整约束系

统紧密相关，从非完整约束系统控制问题的复杂性可以想象欠驱动机械系统控

制问题的复杂多样性。这种复杂多样性主要源于非线性系统形式的多样性。针

对一种欠驱动系统提出的可行控制方法往往难以推广到其它系统。因此对欠驱

动系统进行细致的分类，例如已有的高阶链式系统、微分平坦系统、精确幂零

系统等，并针对不同类型的欠驱动系统提出相应的具有一定普遍意义的可行控

制方法，也许更具有理论和实际研究价值。 

(2) 提出的二阶非完整约束系统反馈控制器设计过于复杂。过于复杂的非线性控制

器对于实际应用存在很大技术困难。目前虽然DSP、ARM等高性能嵌入式处理

器的性能已有很大发展，但是实现复杂非线性控制算法的实时计算还存在技术

障碍。 

(3) 提出的控制方法鲁棒性不足。由于非完整约束机械系统的控制器设计一般均比

较复杂，因此设计高性能的鲁棒控制器更加困难。目前虽然针对一些具有特殊

微分几何或微分代数性质的系统提出了一些鲁棒控制方法[66,75,76]，例如鲁棒

反步控制方法[75,76]等，但是控制方法的实际鲁棒性难以通过实验证明，目前

多停留在控制方法的鲁棒性分析上。 

(4) 在机械工程和应用力学领域，研究二阶非完整约束机械系统的结果很少。这种

现状严重阻碍了欠驱动系统技术的发展，使得欠驱动系统的提出没有系统设计

方法，多数已有欠驱动系统是由控制工程领域研究者提出的简单欠驱动机械系

统。这些有限种类的简单欠驱动机械系统对于从力学的角度系统分析总结欠驱

动系统的特征，并为控制器设计提供理论参考，具有明显局限性。 

(5) 欠驱动机械系统的应用领域不够广泛。目前多数欠驱动机械系统是工程中不得
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不处理的系统对象，例如具有失效驱动部件的航天飞行器，或仅用于非线性控

制技术实验，例如倒立摆等简单欠驱动系统。实质上，依据欠驱动机械系统的

内在特征，它可被应用于更广泛的领域，例如仿生机械、仿生机器人、康复医

疗器械、残疾人体育器材等等，这些都是有待开发的研究领域。本报告的研究

工作就是弹性欠驱动机构在仿生机器人中应用的初步探索。 

总之，总体上看，欠驱动机械系统的研究远不充分，关于它的研究结果也远未

得到广泛认同和普遍重视，其潜在的应用领域还没有充分发掘，具体工程应用系

统还十分缺少。 

1.6 本报告的主要工作内容 

针对当前欠驱动机械系统研究中存在的问题，本报告主要研究了零重力欠驱动

机械臂的非线性控制问题、重力环境中弹性欠驱动机构腿式动态移动机器人的非

线性控制方法，具有特殊微分几何特征或微分代数性质的弹性欠驱动机构的非线

性控制方法和最优运动规划和控制方法。具体地： 

第 2 章，以无重力平面 2R 欠驱动机械臂为具体对象，研究了有漂移二阶非完

整约束机械系统的控制问题。分析了平面 2R欠驱动机械臂的特征，包括线性近似

模型不可控性、非最小相位性、非 STLC、非微分平坦以及不可反馈幂零化，这些

特征表明无重力平面 2R欠驱动机械臂的控制问题是困难的。采用近似幂零化和周

期输入控制方法研究了该系统的控制问题，给出了系统全局有效近似幂零化模型

和参数化多项式周期输入控制器设计方法。这种控制器设计方法最后归结于一个

非线性代数方程组的求解，若该非线性代数方程可解，则控制器是一致渐近稳定

的。数值仿真证明了这种控制器设计方法的可行性。 

第 3 章，针对一种双臂驱动非 SLIP 模型弹性单腿跳跃机器人系统，研究了其

支撑相的控制问题。该机器人由一被动伸缩弹性腿和两驱动臂组成，是一种类似

于杂技机器人但更为复杂的弹性欠驱动机械系统。分析了这种机器人系统在支撑

运动相的特征，包括线性近似模型的可控性、定义广义坐标为输出时系统的非最

小相位性、系统非线性模型的非微分平坦性。证明了该欠驱动弹性单腿跳跃机器

人在支撑相的线性近似模型具有微分平坦性质，微分平坦输出为系统广义坐标的
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特殊线性组合。基于微分平坦近似模型，这种机器人系统支撑相的运动规划问题

可通过在平坦输出空间利用插值方法解决，而系统控制可通过动态反馈实现指数

稳定。通过数值仿真验证了以上结果。 

第 4 章，以探索非 SLIP 模型跳跃机器人和跑步机器人的可行控制方法为目的

研究了双臂驱动被动伸缩弹性单腿跳跃机器人支撑的运动控制问题。单腿跳跃机

器人在支撑相一般是二阶非完整约束机械系统，对于非 SLIP 模型腿式跳跃机器人，

该二阶非完整约束方程是强非线性微分方程，线性时不变反馈控制方法难以实现

系统运动稳定。利用规范化动量坐标变换和反步控制方法，针对跳跃机器人这种

周期运动系统，提出一种基于近似严反馈形变换的鲁棒反步控制方法。通过理论

分析和数值仿真证明，该欠驱动单腿跳跃机器人能实现站立平衡稳定和平衡点附

近的周期运动轨迹跟踪。以上结果为具有更好仿生学特征的非 SLIP 模型腿式跳跃

机器人系统设计提供了新的技术途径。 

第 5章，提出一种新型仿生单腿跳跃机器人的设计方案，着重讨论了该跳跃机

器人在飞行相的动力学和姿态镇定问题。该机器人由腿部、身体和尾巴组成，腿

部采用弹性被动关节式结构设计，身体为一惯性轮（其质心与髋关节重合），而尾

巴与身体同时铰接于髋关节。这种结构设计使该跳跃机器人具有非 SLIP模型结构，

但其动力学得到很大简化。由于跳跃机器人在飞行相满足角动量守恒这一不可积

微分约束（一阶非完整约束），着重讨论了该机器人系统飞行相动力学规范形变换

问题和非完整约束条件下机器人姿态镇定问题，提出一种基于反步法的姿态指数

稳定控制方法，仿真结果证明了这种控制方法的有效性。 

第 6 章，研究了欠驱动机械系统的最优运动规划问题。从单输入非线性系统具

有微分平坦性的充要条件出发，基于非线性反馈理论，推导了单输入微分平坦欠

驱动机械系统的平坦输出的求解方法。针对微分平坦欠驱动机械系统，通过在平

坦输出空间构造具有冗余待定系数的多项式来拟合可行平坦轨迹，基于待定系数

矩阵的零空间解提出了一种最优运动规划方法。通过惯性轮摆这一单输入二自由

度微分平坦欠驱动系统进行了数值仿真，证明了提出的最优运动规划方法的有效

性。 

第 7 章，总结了在站期间的工作，并对进一步研究工作做了简要展望。 
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2  平面 2R欠驱动机械臂的特征分析与控制 

2.1 引言 

 本章研究有自由被动关节的开链机械臂系统的控制问题。对于有重力或弹性回

复力作用的欠驱动机械系统，例如倒立摆、杂技机器人，弹性关节/连杆机械臂等，

这类系统在平衡点附近的线性近似模型是可控的，因此已有较多研究。对于无重

力和弹性回复力作用的欠驱动机械系统，例如有自由被动关节的平面欠驱动机械

臂，其线性近似模型不可控[5]，一般情况下是二阶非完整约束系统[12]，且不能通

过光滑状态反馈镇定[12]，近年来引起了一些学者的研究兴趣。 

 由于线性近似模型不可控，零重力欠驱动机械臂的稳定控制十分困难。到目前

为止，几乎所有相关研究都针对具体的简单（2－4 自由度）平面欠驱动机械臂对

象，例如 De Luca 等对末关节为自由被动关节的平面三连杆欠驱动机械臂的控制

问题进行了研究[6]，他们通过把末连杆冲击中心的笛卡儿坐标作为控制输出，证

明通过动态反馈线性化方法能实现系统稳定控制。在文献[7]中，他们通过类似方

法把单被动关节机械臂的研究推广到双被动关节机械臂, 类似结果还包括[13,15]。

在文献[15]中，Shiroma 等把类似方法推广到有 n个被动关节的两输入开链欠驱动

机械臂。在这些研究中，把与被动连杆的冲击中心笛卡儿坐标选为微分平坦输出，

采用动态反馈可实现系统输入－输出线性化，这种方法仅限于两输入欠驱动机械

系统。 

对于单输入零重力平面欠驱动机械臂，De Luca 等做了较多研究[5,7-10]，这类

系统不仅线性近似模型不可控，而且不满足最少时间局部可控性（Small-time local 

controllability, STLC）条件。解决这类系统的控制问题，De Luca 等主要采用基于

幂零近似[70]和迭代状态操纵[77]的方法；而 Arai 等[14]采用基于双向运动规划的

时间尺度控制方法；Hong[16]采用振荡输入控制方法；Alfredo Rosas-Flores 等[78]

采用滑模变结构控制方法；Mahindrakar 等[79]则提出利用被动关节中的摩擦实现

控制目标。在这些研究结果中，只有 De Luca 等给出的方法具有较好的系统性，可

被推广用于更广泛一类欠驱动机械系统的控制，例如还被用于杂技机器人[80]、板
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－球机构[29]、双拖车[81,82]等系统的控制。 

近二十多年来关于欠驱动非完整约束系统控制的研究结果表明，对于具有微分

平坦性、幂零性或可反馈幂零化、以及具有特殊幂零形的链式非完整约束系统，

已有不少可行运动规划和控制方法，例如 Murray 等[39,40]针对链式系统提出的正

弦输入控制方法、De Luca 等[6,7]及其参考文献针对微分平坦系统提出的动态反馈

线性化方法、Lafferriere 和 Sussmann[83,84]针对一般幂零系统提出的分段定常输

入控制方法。但是对于简单的平面 2R 欠驱动机械臂，正如本章分析给出的结果，

它既不是微分平坦系统，也不能通过反馈变换实现精确幂零化，因此从机械系统

的角度看，它几乎是最简单的欠驱动机械系统，但是从稳定控制的角度看，却是

困难的。 

 本章从探索欠驱动机械系统的一般控制方法的角度，基于近似幂零化这一高阶

近似方法 [70,85,86]，研究平面 2R 欠驱动机械臂的稳定控制问题。本章的主要贡

献包括：①较全面地分析了平面 2R 欠驱动机械臂的系统特征；②详细给出了有漂

移仿射非线性系统的近似幂零化算法，提出采用全局有效基来构造可控矩阵，以

得到全局有效近似幂零化模型；③ 提出具有普遍适用性的参数化多项式周期输入

控制方法，把稳定控制器的设计归结于非线性代数方程组的求解问题，若该非线

性代数方程组的解是存在的，则控制器是渐近稳定的。 

下面第 2.2 节给出平面 2R 欠驱动机械臂的动力学模型及其部分反馈线性化模

型；第 2.3 节详细分析平面 2R 欠驱动机械臂的系统特征，包括线性近似模型的不

可控性、非最小相位性、非 STLC 性、非微分平坦以及不可反馈幂零化特征；第

2.4 节给出了有漂移仿射系统的近似幂零化算法，并推导出了平面 2R 欠驱动机械

臂的全局有效幂零化近似模型；第 2.5 节设计控制器并进行数值仿真；第 2.6 节是

结论。 

2.2动力学模型 

 本章研究图 2.1 所示在水平平面内运动的 2R 欠驱动机械臂，与基础相连的关

节是主动关节，第二关节是自由被动关节。假设机械臂连杆的长度分别为 21 , ll ，连

杆的质量分别为 21 ,mm ，连杆质心位置与关节之间的距离分别为 21 , cc ll ，两连杆相
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对其各自质心的转动惯量为 21 , II ，取机械臂的关节角变量为系统广义坐标 ( )21 ,θθ 。

系统动力学模型可表示为 

 

1θ

2θ

y

x

1cl

2cl

1l

2l

 
 

图 2.1 平面 2R 机械臂模型 

 

uhmm τθθ =++ 1212111
          (2.1a) 

02222121 =++ hmm θθ           (2.1b) 

其中， 2212
2
2

2
12

2
112111 cos2)( θccc llmllmlmIIm +++++=  

   2212
2
22212 cosθcc llmlmIm ++=  

   1221 mm =  

   2
22222 clmIm +=  

   )2(sin 2
22122121 θθθθ  +−= cllmh  

   2
122122 sin θθ 

cllmh =  

uτ 为主动关节驱动力矩。 

 为简化系统动力学模型，对系统(2.1)进行部分反馈线性化[28]。由式(2.1b)有 

2
1

22121
1

222 hmmm −− −−= θθ           (2.2) 

把式(2.2)代入式(2.1a)有 

( ) ( )2
1

22121121
1

221211 hmmhmmmmu
−− −+−= θτ         (2.3) 

令输入 1θ=u ，由式(2.1a)和(2.3)得到部分反馈线性化动力学方程 
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u=1θ               (2.4a) 

2
1

2221
1

222 hmumm −− −−=θ           (2.4b) 

为 便 于 进 行 系 统 分 析 ， 把 式 (2.4) 改 写 为 状 态 空 间 方 程 。 为 此 令

[ ] 4T
2121 Rx ∈= θθθθ  ，则式(2.4)可写为 

u)()( xgxfx +=            (2.5) 

其中， [ ]T2
1221 sin0)( θθθθ  H−=xf  

   [ ]T2 )cos1(100)( θH+−=xg  

   )( 2
222212 cc lmIllmH +=  

2.3 系统分析 

2.3.1 线性近似模型的不可控性 

 对于给定的任意平衡点 [ ]00*
2

*
1 θθ=x ，系统(2.5)关于该平衡点的线性近似

模型为 

ugxfx ~~
+=            (2.6) 

其中， 440~ ×∈= Rf ,   [ ]T)1(100~ H+−=g 。 由 于 f~ 为 零 ， 显 然

[ ] 41~~~~~~~rank 32 ≠=gfgfgfg ，不满足线性系统可控性的充分必要条件，因此零

重力平面 2R 欠驱动机械臂在任意平衡位形附近的线性近似模型是不可控的。 

2.3.2 非最小相位性(Nonminimum-phase) 

 最小相位性是控制系统的一种输入－输出特性，一个系统是最小相位系统或非

最小相位系统与定义的系统输出有关[34,35]。对于我们研究的机械臂系统，其输出

通常被定义为机械臂的位形变量(即广义坐标)。对于 2R 机械臂，即 iy θ= ， 2,1=i  

或 [ ]T21 θθ=y ，前者为单输出，后者为多输出。若给系统（2.5）定义某一输出

)(xyy = ，则系统(2.5)变为输入－输出系统 
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)(
)()(

xyy
xgxfx

=
+= u

           (2.7) 

考虑系统（2.7）的输入－输出线性化问题，首先考虑单输出情况。 

当 1θ=y 时，显然式(2.4a)为系统的输入输出线性化方程，而式(2.4b)变为系统

的内动态(Internal dynamics)。当通过式(2.4a)控制使 0== yy  时，式(2.4b)变为系统

的零动态 (Zero dynamics) 02 =θ ，这意味着欠驱动机械臂被动关节的运动为

tt )0()0()( 222 θθθ += ，显然当 0)0(2 ≠θ 时，该零动态运动是不稳定的，因此当输出

为 1θ=y 时，系统(2.7)是非最小相位的。 

当 2θ=y 时，为探讨系统(2.5)的输入输出线性化问题，求输出的微分 

xx
x

 )(
∂
∂

=
yy ))()()(( uy xgxfx

x
+

∂
∂

= uyLyL gf )()( xx +=      (2.8) 

其中函数 )())(()( xfxxx ∂∂= yyL f 为 y 沿向量场 )(xf 的李导数， )(xyLg 的意义类

似。通过简单计算有 2)( θ=xyL f ， 0)( =xyLg 。为得到输入－输出之间的显式关

系，还需求输出的二阶微分 

xx
x

 )(
∂

∂
=

yL
y f uyLLyL fgf )()(2 xx +=         (2.9) 

式(2.9)实质上与式(2.4b)相同，因此当输出为 2θ=y 时，采用非线性反馈 

2

2
12

2

cos1
sin)(

θ
θθ

H
Hx

yLL
yL

u
fg

f

+
−=−=



         (2.10) 

可使输出 0== yy  ，此时式(2.10)也表示了系统在输出为 2θ=y 时的零动态 

2
1

2

2
1 cos1

sin
θ

θ
θ

θ 

H
H
+

−=           (2.11) 

当 输 出 满 足 0== yy  时 2θ 为 常 数 ， 因 此 当 0,1,2,kπ,2 =±≠ kθ ， 且

)1arccos(2 H−≠θ 时，式(2.11)的解为 

))0(1log(1)0()( *
1*11 tH

H
t θθθ ++=         (2.12) 

其中 )cos1(sin 22
* θθ HHH += 。当 0)0( *

1 >Hθ 时， ∞→
∞→t

t)(1θ 。当 0)0( *
1 <Hθ

时， ( ) 0))0(1log(
*

1 )0(
1

*
1 =+

−≥
H

t
tH

θ

θ


 。因此零动态(2.11)是不稳定的，系统是非最小
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相位的。 

 当输出为 [ ]T21 θθ=y 时，由式（2.4）可以看出，输出 y 与输入u 之间具有显

式关系，系统具有最大关系度 2=r 。因关系度与系统状态空间维数不相等，即

42 =≠= nr ，系统（2.7）不能实现全状态反馈线性化。对于输出 [ ]T21 θθ=y ，

系统（2.7）也就不存在所谓的内动态、零动态、最小相位性或非最小相位性。 

2.3.3 非最少时间局部可控性（non small-time local controllability，STLC） 

 研究一般仿射非线性系统(2.7)的可控性是十分困难的问题，Sussmann[37]提出

的最少时间局部可控性定理是目前解决这一问题的唯一途径，但是该定理只是判

断系统（2.7）可控性的充分条件。为便于讨论，给出该定理。 

定理 2.1：Sussmann[37]: 非线性仿射系统（2.7）是 STLC 的，其充分条件是 

a) 该系统满足李代数秩条件 n=∆ ))(dim( *x ； 

b) 每个坏李括号是比其阶数低的好李括号的线性组合。 

定理 2.1 中，对于系统（2.7）， )( *x∆ 表示由向量场 gf , 在点 4* Rx ∈ 生成的对

合分布。对于由李括号和多重李括号生成的向量场 ∆∈v ，定义 )(),( 10 vv δδ 分别为

v 中向量场 gf , 的个数，把向量场 v 的度(degree)定义为 )()( 1

0
vv ∑=

=
i

iδδ 。若 )(0 vδ

是奇数，且 )(1 vδ 是偶数，则 v 被称为坏括号，若 v 不是坏括号则被称为好括号。

定义 [ ] g
x
ff

x
ggf

∂
∂

−
∂
∂

=, 表示向量场 gf , 的李括号，根据式（2.5）可列出向量场 gf ,

的部分李积： 

[ ]T2
12210 sin0)( θθθθ  H−== xfg  

[ ]T21 )cos1(100)( θH+−== xgg  

[ ] [ ]T21222 sin)2(0cos11-)(, θθθθ  ++== HHxgfg  

[ ][ ] ( )[ ]T2
2

1
22

2122123 2cos)(cos0)(sin20)(,, θθθθθθθθ  HHH +++−== xgffg  (2.13) 

[ ][ ] [ ]T22
2

4 cossin2000)(,, θθH−== xgfgg  

[ ][ ][ ] [ ]T22
2

22
2

5 )2cos(20cossin20)(,,, θθθθ HH −== xgfgfg  
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不难看出，向量场{ }5421 ,,, gggg 在任意平衡点 [ ]T*
2

*
1

* 00θθ=x ， 2π*
2 k±≠θ ，

,1,0=k ，可张成空间 4R ，因此系统(2.5)满足李代数秩条件，系统是局部可达

(Locally accessible)的。 [ ][ ] )(,,4 xgfgg = 的度为 21)()()( 4
1

4
0

4 +=+= ggg δδδ ，因

此是坏括号。但是该坏括号不能由低度好括号 21 , gg 线性表出，系统（2.5）不满足

定理 2.1 的第二个条件。定理 2.1 只是一个充分条件，不满足该条件并不代表系统

（2.5）是非 STLC 的或不可控的，实质上文献[7]的研究已经展示，当无重力平面

2R 欠驱动机械臂的第一个关节为主动关节而第二个关节为被动关节时系统是可控

的[5]（反之，第一个关节为被动关节，第二个关节为主动关节时则不可控[12]）。 

 关于判断式（2.7）所示单输入仿射系统的 STLC 性，文献[35]给出了一个必要

条件： 

定理 2.2  对于点 nRx ∈* ，若系统(2.7)具有 STLC 性质，则 

[ ][ ] [ ] [ ][ ]{ }),(,,),(,),(span)()(,, ***** xgffxgfxgxxgfg =∈ χ  

对于式（2.5）所示的平面 2R 欠驱动机械臂，根据式（2.13）可以看出，由单

个向量场 g 和多个向量场 f 构成的度数不小于 3 的李括号是包括广义速度 iθ ，

2,1=i 和广义坐标 iθ ， 2,1=i 的向量场。对于 [ ]T*
2

*
1

* 00θθ=∀x ， 2π*
2 k±≠θ ，

,1,0=k ， ( ) 42)(dim * =<= nxχ 。然而包含向量场 [ ][ ] )(,,4 xgfgg = 在内的由

{ }5421 ,,, gggg 张成的空间维数 { } n== 4,,,spandim 5421 gggg ，因此 ∉4g )( *xχ 。不

满足 STLC 的必要条件，系统（2.5）不是 STLC 的。 

2.3.4 非微分平坦性（non differential flatness） 

 若一个仿射非线性系统具有微分平坦性质，那么一般可采用动态反馈线性化或

反步（backstepping）方法使系统控制问题得到有效解决。对于无重力平面欠驱动

机械臂，当系统的控制输入 2, ≥∈ nnRu ，且把末端连杆的冲击中心位置作为输出

时，已经证明具有微分平坦性质[6]。单输入仿射系统（2.7）的微分平坦性与反馈

线性化等价[50,87]。根据 2.2 节的结果，无重力平面 2R 欠驱动机械臂系统具有最

大关系度 42 =<= nr ，因此不能实现全状态反馈线性化，不具有微分平坦性质。 

一个仿射系统是否具有微分平坦性还可以通过以下必要条件进行判断[42]： 
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定理 2.3 (直纹流形判据)（The ruled-manifold criterion [42]）假设 ),( uxfx = 是微分

平坦的，则对于所有 x ,子流形 ),( uxfp = （ x 被当作参数）在 p 空间上的投影是

直纹子流形。 

 该判据意指从 ),( uxfx = 消去u后的方程 0),( =xxF  具有性质：对于所有满足

0),( =pxF 的 ),( px ，存在 nRa∈ ， 0≠a 使 R∈∀λ ， 0),( =+ apxF λ 。 

 对于无重力平面 2R 欠驱动机械臂系统，由式（2.4）可以看出，当消去 1θ=u 后

得到 

2θ=q ， 2
12sin θθ 

 Hq −=          (2.14) 

用 ( )31212 ,, aaqa λqλλq +++ 



 代替 ( )12 ,, θθ 



 q 并代入上式得到 

( )12 aq λq +=  ， ( ) ( )23122 sin aHaq λqqλ +−=+ 

  

显然若要对于 R∈∀λ 使上式成立，只有 )0,0,0(),,( 321 ≡aaa ，因此对于任何

( )12 ,, θθ q ， ( )12 ,, θθ 



 q 不是直纹子流形，证明无重力平面 2R 欠驱动机械臂系统不具

有微分平坦性质。 

2.3.5 不可精确幂零化 (Not exactly nilpotentizable) 

 对于形如式（2.5）或（2.7）的系统，若它是幂零系统或可通过反馈变换为幂

零系统，已有一些方法可实现稳定控制例如[39]。所谓幂零系统是指，若存在一个

整数 k ，系统（2.5）的光滑向量场 gf , 生成的李代数 ),( gfL 中，所有长度大于 k 的

李积恒等于零，则系统（2.5）是 k 阶幂零系统[39]。若原系统（2.5）并非幂零系

统，但可通过反馈变换化为幂零系统，则系统（2.5）称为是可幂零化的。幂零或

可幂零化系统的主要特点是由于它所具有的特殊李代数结构，在一定条件下可以

采用参数化输入通过有限次积分确定实现期望运动的精确输入，从而解决系统控

制问题[29]。文献[88]给出了判断系统（2.5）为幂零系统的一个必要条件和两个充

分条件，这里只用到必要条件。在给出用到的定理之前，首先需明确一些符号的

定义。 

 定义 V 为空间 nR 上由实解析向量场生成的实向量空间，光滑向量场

( ) ( ) Vk ∈xgxg ,,1  ，且对于 nR∈∀x ，向量场 ( ) ( )xgxg k,,1  线性无关。定义 )(x∆
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为向量场 ( ) ( )xgxg k,,1  在点 nR∈0x 生成的分布， )(1 xG 为集合 ( ) ( ){ }xgxg k,,1  ，

)(xmG 为由光滑向量场 ( ) ( )xgxg k,,1  的 l（ ml ≤ ）重李积组成的集合。下面给出

判断多输入仿射系统（2.15）可反馈幂零化的必要条件，更详细内容可参考文献[88]。 

∑
=

+=
k

i
ii u

1
)()( xgxfx           (2.15) 

命题 2.1[88]：整数值函数 { }{ })(spandim xmG 与生成分布 )(x∆ 的所取的基 )(1 xG 无

关。 

定理 2.4[88]：设李代数 ( ) ( )( )xgxg kL ,,1  是幂零的，且 

( ) ( )( ){ } nL k =001 ,,dim xgxg   

定 义 { }0)(: 00 =∈= xVLVH ， [ ]{ }001 ,: HHVLVH ⊂∈= ， … ，

[ ]{ }11,: −− ⊂∈= iii HHVLVH ， ,2,1=i 。则每一 iH 是子代数； 1−iH 是 iH 中的理想

(ideal)且对于某一m 若定义 { })(dim 0xHr ii = ，则 nrrr m =<<< 10 。 

命题 2.2[88]：在过点 0x 的子代数 iH 的可积流形上，每一 { })(dim 1 x−iH 都是常数，

,2,1=i 。 

 显然命题 2.1 实质上指出分布的维数与生成该分布的基的选择无关，定理 2.4

则说明与幂零李代数相关的子代数 iH 过点 0x 有 ir 维积流形，且由命题 2.2 指出

{ })(dim 1 x−iH 在子代数 iH 过点 0x 的积流形上不变。这表明若分布 )(x∆ 存在幂零基，

则与幂零李群相关的的局部作用（Local action）在点 0x 的邻域具有齐次性

（homogeneity），也就是说，若分布 )(x∆ 存在幂零基，则在点 0x 的邻域，分布 )(x∆

与分布 )( 0x∆ 的不变量一致。命题 2.2 常被用于判断一个分布是否存在幂零基。文

献[88]还给出了系统（2.15）可反馈等价为幂零系统的必要条件： 

命 题 2.3[88] ： 若 系 统 （ 2.15 ） 可 反 馈 等 价 为 幂 零 系 统 ， 则 分 布

{ })(,),(),(span)( 1
1 xgxgxfx k

k
=∆ + 和分布 { })(,),(span)( 1 xgxgx k

k
=∆ 都存在幂

零基。 

 对于本章研究的平面 2R 欠驱动机械臂，根据式（2.13）所列李积，对于平衡

点 [ ]T*
2

*
1

* 00θθ=x ，除了奇异点 2π*
2 k±=θ ， ,1,0=k 外，系统（2.5）的光

滑向量场 gf , 生成的分布 { }543210 ,,,,, gggggg 张满状态空间 4R 。假设分布
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{ }543210 ,,,,, gggggg 存在一个幂零基，则 3g 是该分布的一个不变量，但是不变量 3g

并不恒为零（其实只在点 *x 处为零），这与分布的不变量在点 *x 的邻域具有齐次

性相矛盾，因此不满足命题 2.2 给出的分布存在幂零基的必要条件，系统（2.5）

不是幂零系统。同时根据命题 2.3，因系统（2.5）不满足可幂零化的必要条件，因

此系统（2.5）也是不可精确幂零化的。 

2.4幂零近似模型 

 根据第 2.3 节的分析，式（2.5）所表示的图 2.1 所示的平面 2R 欠驱动机械臂

系统，其线性近似模型不可控、非最小相位、非 STLC、非微分平坦、不可精确幂

零化等特点，给控制器设计带来很大困难。在已有的各种方法中，De Luca 采用的

基于幂零近似的控制方法具有良好的理论基础，是一种具有普遍适用性的比较系

统的非完整机械系统控制方法。幂零近似是一种高阶近似方法，特别适用于线性

化近似不能保证可控性的情况，幂零近似能保留原系统的可控性，而且近似系统

具有整齐的“三角形”，便于通过直接积分确定满足边界条件的参数化控制输入。 

 Hermes et al[70]、Bellaïche et al[86]等研究了满足李代数秩条件的仿射系统的近

似幂零化算法，这里根据 Bellaïche[86]给出的算法，针对图 2.1 所示平面 2R 欠驱

动机械臂，计算其幂零化近似模型。Bellaïche 给出的算法是针对无漂移系统的，

即式（2.15）中漂移项 0)( ≡xf 。这里把该算法推广到漂移系统。为此，令式（2.15）

中 )()(0 xfxg = ， 10 =u ，则式（2.15）可写为输入为 1+∈ kRu 的无漂移系统 

∑
=

=
k

i
ii u

0
)(xgx           (2.16) 

设系统（2.16）满足李代数秩条件。给定点 nRx ∈0 ，用 )( 0xsL 表示由光滑向量场

( ) ( )xgxgxg k,,),( 10  的长度不大于 s 的李括号在点 0x 生成的实矢量空间。向量场

( )xgi ， ,2,1,0=i ，本身定义为长度为 1 的李括号。系统（2.16）满足李代数秩条

件，表示存在一个最小整数 )( 0xrr = 使 { } nLr =)(dim 0x 。定义 r 为系统（2.16）在

点 0x 处的非完整度（ degree of nonholonomic ）。设 { })(dim)( 00 xx s
s Ln = ，

rs ,,2,1 = ，把 ( ))(,),(),( 00201 xxx rnnn  定义为分布 )( 0xsL=∆ 的增长矢量。 
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定义 2.1：若对于任意一组整数 kii q ≤≤ ,,0 1  ，光滑实值函数 )(xh 的 q阶李导数满

足下式，则称函数 )(xh 在点 0x 的阶为 s 。 

( )
( )





=≠
−≤=
sqh

sqh

q

q

ii

ii

0)(,,
10)(,,

0

0

1

1

xgg
xgg





 

定义 2.2：若光滑实值函数 )(xh 在点 0x 的阶为 s ，它沿向量场 g 的李导数 ( ) )(xg h 在

点 0x 的阶为 ps + ，则向量场 g 的阶为 p 。根据该定义，输入向量场

( ) ( )xgxgxg k,,),( 10  的阶 1−≥ 。 

定义 2.3：令 nj ,,2,1 = ，当 )()( 001 xx ss njn ≤<− ， 00 =n ，定义整数 sw j = 。若

以 0x 为原点的一组局部坐标 jz （ nj ,,2,1 = ）在点 0x 的阶为 jw ，则把坐标 jz

（ nj ,,2,1 = ）定义为一组特权坐标(privileged coordinates)。把 jw 称为坐标 jz 的

权(weight)。 

 系统（2.16）的幂零近似系统就基于定义 2.3 中的特权坐标，推导幂零近似系

统的详细算法可参考文献[89,86,29,5]，这里引用该算法给出系统（2.5）的幂零近

似模型的推导过程。 

a. 对于给定点 0x 计算满秩分布∆的增长矢量和权值。 

根 据 式 （ 2.13 ）， 由 于 { } n== 4,,,spandim 5421 gggg ， 生 成 向 量 场

[ ][ ][ ]gfgfg ,,,5 = 的李括号的长度为 4， 4=r 是能使 ( ) ( ) nLr ==∆ )(dimdim 0x 的最

小李括号长度，因此系统（2.5）的非完整度为 4。分布 ( )5421 ,,, gggg=∆ 的增长矢

量 为 ( ) ( )4,3,2,1,,, 4321 =nnnn （ 2π2 k±≠θ ， ,1,0=k ）， 对 应 权 值 为

( ) ( )4,3,2,1,,, 4321 =wwww 。 

b. 给 实 矢 量 空 间 )( 0xrL 选 择 一 组 基 )(,),( 001 xγxγ n ， 并 令 可 达 矩 阵

[ ] nn
n R ×∈= )(,),( 001 xγxγA  。 

对 于 系 统 （ 2.5 ）， 直 接 选 ( )5421 ,,, gggg 为 4R 的 基 ， 因 为 对 于

[ ]T201020100 θθθθ =x ， ,2,1,0,
2
π

20 =±≠ kkθ ，该基是全局有效的。因此可

达矩阵可定义为 

[ ]( )05421 xggggA =  
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( ) ( )

















−−++−

+
−

=

2020
2

2020
2

20102020

2020
2

20

2cos22)2(1
0001

2010
0010

θθθθ  HcsHsHHc

csHHc
 

其中， 2020 sinθ=s ， 2020 cosθ=c 。 

c. 通过原坐标 x计算点 0x 邻域的局部坐标 )( 0
1 xxAy −= − 。 

 ( )

























+

−
−

+

−

−

=−

00
2

1
2
1

2
1

2
1

2
)2cos(

0001
0100

2020
2

2020
2

20

2020
2

2020
2

20
2

22
2

20201

csHcsH
Hc

csHcsH
Hc

csH
θθ

ζ


A  

其中
( ) ( )

( )2
2020

2
20202020

2
201020

2
)2cos(1)2(

csH
HccsH

−

+++
=

θθθθ
ζ



。得到 

1011 θθ  −=y  

( )1012 θθ −−=y  

( )
( )

( )2022
2020

2
2020

1013 2
)2cos(

θθ
θθ

θθζ −−−=
csH

y


 

( ) ( )202
2020

2101
2020

2
20

2
1

2
1

θθθθ  −−−
+

−
csHcsH

Hc
                 (2.17) 

( ) ( )202
2020

2101
2020

2
20

4 2
1

2
1

θθθθ −+−
+

=
csHcsH

Hc
y  

对于平衡点 [ ]T2010 00θθ=∀ ex ， ,2,1,0,
2
π

20 =±≠ kkθ ，由式（2.17）表示的

局部坐标变为 

11 θ=y  

( )1012 θθ −−=y  

2
2020

21
2020

2
20

3 2
1

2
1

θθ 

csHcsH
Hc

y −
+

−=                                (2.18) 

( ) ( )202
2020

2101
2020

2
20

4 2
1

2
1

θθθθ −+−
+

=
csHcsH

Hc
y  
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d. 通过以下公式构造特权坐标 

),,( 11

1

2
−

−

=
∑+= j

w

k
kjj yyhyz

j

 ， nj ,,1=       (2.19) 

其中 ( )0

1

2
)(

1111
11),,( xγγ 








+−= ∑∑

−

=
<

=
−−
−

k

p
pj

ww
k

jjjk hyyyh

j

j

α
α

ααβ  ，而 ( )∏ −

=
=

1

1
!j

i iij
iy αβ α 且

∑=
=

n

i i1
αα ， ( ) ∑ =

=
n

i iiww
1

αα ， nii ,,2,1, =α 为正整数。显然，多项式∑ kh 只

包含权度 2≥ 且 jw< 的项，因此只有当 3≥jw 时，特权坐标 jz 中才可能包括多项式

∑ kh 。 

令 exx =0 ，即求任意平衡点邻域的局部特权坐标，根据式（2.18）和（2.19），

有 

111 θ== yz  

( )10122 θθ −−== yz  

求特权坐标 3z 。根据式（2.19），显然 ))(,( 21233 eyyhyz x+= ，其中 

( ) )())(,( 3

3
2

213212

32211
21

21
e

www

e yyyh xγγx ∑
=<+

=+

−=

αα
αα

ααβ       (2.20) 

由于 2,1 21 == ww ，且 21 ,αα 为正整数，因此满足不等式方程组




<+
=+

32
2

21

21

αα
αα

的唯

一解为 ( ) ( )0,2, 21 =αα ，把它代入式（2.20），因 3y 延 1γ 方向的二阶李导数

( ) 0)(3
2
1 =ey xγ ，因此 0))(,( 212 =eyyh x ，即特权坐标 3z 为 

2
2020

21
2020

2
20

33 2
1

2
1

θθ 

csHcsH
Hc

yz −
+

−==  

求特权坐标 4z 。由式（2.19）显然 

),,(),,( 3213321244 yyyhyyyhyz ++=       (2.21) 

其中 

( ) )())(,,( 4

4
2

32143212

4332211
321

321
e

wwww

e yyyyh xγγγx ∑
=<++

=++

−=

ααα
ααα

αααβ      (2.22) 

式（2.22）中，因 3,2,1 321 === www ，且 321 ,, ααα 为正整数，不等式方程组
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



<++
=++

432
2

321

321

ααα
ααα

的 解 为 ( ) ( )0,1,1,, 321 =ααα 或 ( )0,0,2 。 而 李 导 数

( ) 0)()( 4
2
1421 == ee yy xγxγγ ，因此 0))(,,( 3212 =eyyyh x 。式（2.21）中 

( ) )())(,,( 4

4
3

32143213

4332211
321

321
e

wwww

e yyyyh xγγγx ∑
=<++

=++

−=

ααα
ααα

αααβ      (2.23) 

类似地，在 3,2,1 321 === www ，且 321 ,, ααα 为正整数的条件下，不等式方程组





<++
=++

432
3

321

321

ααα
ααα

的唯一解为 ( ) ( )0,0,3,, 321 =ααα ，而李导数 0)(4
3
1 =ey xγ ，因此

0))(,,( 3213 =eyyyh x ，这意味着 

( ) ( )202
2020

2101
2020

2
20

44 2
1

2
1

θθθθ −+−
+

==
csHcsH

Hc
yz  

从上面的计算可以看出，坐标 4321 ,,, yyyy 本身就是特权坐标，这也是我们采用基

( )5421 ,,, gggg 来构造可达矩阵 A的原因。实质上可以通过直接验证局部坐标 jy ，

4,3,2,1=j 的阶是否与权 jw ， 4,3,2,1=j 相等来判断 jy 是否是特权坐标。根据定义

2.1 容易验证，局部坐标 jy ， 4,3,2,1=j 的阶恰好与 jw ， 4,3,2,1=j 精确相等。不同

于文献[5]中采用基 ( )3210 ,,, gggg 来构造点 [ ]T2020100 0 θθθ =x ， 020 ≠θ 处的可

达矩阵 )( 0xA ，它虽适合于文[5]所采用的基于迭代状态操纵技术的切换控制方法，

但使特权坐标的构造过程和幂零近似模型变得复杂。在一般情况下，由式

)( 0
1 xxAy −= − 计算得到的局部坐标并不一定都是特权坐标，它只能保证坐标 jy

的阶 jw≤ [86]。根据上面的计算，特权坐标为 

11 θ=z  

( )1012 θθ −−=z  

2
2020

21
2020

2
20

3 2
1

2
1

θθ 

csHcsH
Hc

z −
+

−=                 (2.24) 

( ) ( )202
2020

2101
2020

2
20

4 2
1

2
1

θθθθ −+−
+

=
csHcsH

Hc
z  

e. 把原系统的动力学方程表示为特权坐标的形式： i

m

i
i u∑

=

=
1

)(zgz 。 
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 由式（2.5）和（2.24）得到 11 uz = ， 12 zz −= ， 2
1

20
3 2

1 z
Hc

z = ， 34 zz −= ，即 

1

3

20
2
1

1

0
0
0
1

)2(

0

u

z
Hcz
z



















+



















−

−
=z          (2.25) 

f. 把向量场 )(zgi 在点 0=z （其像为 ex ）按台劳级数展开，并按照与权度一致的

方式表示为以下形式， 

+++= − )()()()( )1()0()1( zgzgzgzg iiii  

并令 )()(ˆ )1( zgzg −= ii ， )()1( zg −
i 为 )(zgi 的首要部分（principal component），则得到

系统（2.16）的幂零近似系统 

j

k

j
jii uz ∑

=

=
0

ĝ ，            vi ,,1=         (2.26) 

( ) js

k

j
jss uzzz 11

0
,,ˆ −

=
∑= 

 g ， nvs ,,1+=        (2.27) 

其中，v为分布 { } )(,,span 0 ek xgg =∆ 的维数。当 vi ,,1= 时， kii gg ˆ,,ˆ 0  为常量。

当 nvs ,,1+= 时， ( )11 ,,ˆ −sjs zz g 一致为权度是 1−sw 的多项式。显然系统

(2.26)-(2.27)为严格三角形。在特权坐标形式下，函数和向量场的阶能以代数方式

计算。单项式 n
nzz αα



1
1 的阶为权度 ∑=

=
n

i iiww
1

)( αα 。函数 )(zh 在点 0=z 处的阶为

)(zh 在点 0=z 处台劳展开式中实际出现的单项式的最小权度。向量场

∑
=

∂=
n

j
zj j

1
)()( zgzg 在点 0=z 处的阶为 )(zg 在点 0=z 处台劳展开式中实际出现的

单项式的最小权度，其中把
jzj ∂)(zg 当作乘积，并且给

jz∂ 赋予权度 jw− ，因此向

量场 )(zg j 在点 0=z 处的台劳展开式中的余项 ),,()( 11
)1(

−
−− sjsjs zz gzg 是阶为 jw

的函数。 

把式（2.25）中各向量场的各元素在点 0=z 处，按照台劳公式展开到对应特权

变量 jz 的 1−jw 阶，则得到近似系统 

110 )(ˆ)(ˆ uzgzgz +=           (2.28) 
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一般情况下幂零近似系统与原系统不同，但是对于系统（2.25），通过简单计算可

发现其幂零近似系统（2.28）与原系统（2.25）相同，即 

1

3

20
2
1

1
110

0
0
0
1

)2(

0

)(ˆ)(ˆ u

z
Hcz
z

u



















+



















−

−
=+= zgzgz       (2.29) 

这是采用 ( )5421 ,,, gggg 为基构造可控矩阵 )( exA 来生成特权坐标的另一好处。通过

简单计算有 

[ ]T1 0001ˆ =g ， 

[ ] [ ]T20110 0)(z10ˆ,ˆ Hc=gg ， 

[ ][ ] [ ]T201100 )(z000ˆ,ˆ,ˆ Hc=ggg ， 

[ ][ ] [ ]T20101 0)(1-00ˆ,ˆ,ˆ Hc=ggg ， 

[ ][ ][ ] [ ]T201010 )(1000ˆ,ˆ,ˆ,ˆ Hc=gggg  

因此光滑向量场 1ĝ ，[ ]10 ˆ,ˆ gg ， [ ][ ]101 ˆ,ˆ,ˆ ggg ， [ ][ ][ ]1010 ˆ,ˆ,ˆ,ˆ gggg 张成 4R ，系统（2.29）

满足李代数秩条件，是可达的。通过进一步计算长度大于 4 的李括号，可以验证

系统（2.29）在点 ex 是 4 阶幂零的。 

由式（2.29）所表示的原系统（2.5）的幂零化近似系统具有三角形式，可以设

计参数化输入u 通过积分依次确定特权坐标 4,3,2,1, =jz j 与参数化输入u 之间的代

数关系，然后由式（2.24）表示的变换 )(xz Φ= 的逆变换 ( )zx 1−Φ= 来确定可行运

动规划。对于精确幂零系统或可反馈幂零化的系统，采用这种方法可以得到系统

（2.16）的精确可行运动规划[39]，但是对于幂零化近似系统(2.26)-(2.27)，以上方

法需要采用迭代方式来实现[5,7-10,29,81,82,38]。 

2.5. 控制器设计 

 对于本章研究的单输入零重力平面欠驱动机械臂系统，其线性近似模型不可

控、非最小相、非 STLC、非微分平坦、不可精确幂零化等特征，使得很多已有非

完整约束系统控制方法难以应用。综合幂零近似和迭代状态操纵技术为控制这类
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更一般化的非完整约束机械系统提供了可行途径[5,7-10,29,81,82,38]，与 De Luca 

的研究类似，这里也考虑采用迭代状态操纵技术实现系统位置控制，不同之处在

于，本章提出的方法不需要把控制问题分解为对正(alignment)、过渡(transition)、

收缩（contraction）三个阶段，而是采用统一的控制律同时控制主动关节和被动关

节的位置趋于目标位形。 

 幂零化近似系统（2.29）具有三角形式，因此可以通过设计参数化输入来综合

指数稳定控制器。根据式（2.29）可以看出，确定特权坐标 4z 与输入 1u 之间的代数

关系需要 4 次重复积分，因此设计循环控制输入为周期为T的 5 阶多项式 

( ) ( ) 5
5

4
4

3
3

2
2111 ττττττθτ aaaaau ++++==         (2.30) 

其中， [ ]1,0T∈= tt ， t 为时间变量。 5,,1, =iai 为待定系数。循环输入（2.30）

应满足边界条件 

0)1()0( 11 == θθ  ，即 ( )43215 aaaaa +++−= 。因此式（2.30）变为 

( ) ( ) 5
4321

4
4

3
3

2
211 ττττττ aaaaaaaau +++−+++=      (2.31) 

根据式（2.29），有 

=== ∫ σσθ
τ

d)(
0 111 uz  ( ) 6

4321
5

4
4

3
3

2
2

1 6
1

5
1

4
1

3
1

2
1 τττττ aaaaaaaa +++−+++ (2.32) 

式（2.31）应满足边界条件 0)1()0( 11 == θθ  ，即 ( )3214 25510 aaaa ++−= ，因此式

（2.31）变为 

( ) ( ) 5
321

4
321

3
3

2
211 2349)25510( ττττττ aaaaaaaaau +++++−++=  (2.33) 

式（2.32）变为 







 +−+






 +−+






 +−= 654

3
653

2
652

11 4
1

2
1

4
1

3
2

3
1

2
32

2
1 τττττττττ aaaz  (2.34) 

根据式（2.29）和（2.24）， 

ττ d)(
1

0 12 ∫−= zz ( )101321 )1(
420
1

84
1

21
1 θθ −−=−−−= aaa      (2.35) 

根据式（2.29） 

( ) σσ
τ

d)(z
2

1 2

0 1
20

3 ∫=
Hc

z σρρ
τ σ

d)d(
2

1
0

2

0
20
∫ ∫ 





= u

Hc
     (2.36) 

式（2.36）应满足边界条件 0)1()0( 33 == zz ，由 0)1(3 =z 有 
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0326315214
2
33

2
22

2
11 =+++++ aabaabaabababab      (2.37) 

根据式（2.29）还有 

Dzz =−= ∫ ττ d)(
1

0 34           (2.38) 

其中， ( )326315214
2
33

2
22

2
11

202
1 aacaacaacacacac

Hc
D +++++= 。式 (2.36),(2.37)中

6,,1, =ibi , 6,,1, =ici 为常系数，具体表示见附录 A。式（2.34）和（2.37）保

证在参数化输入u （式（2.33））满足周期稳定的速度边界条件 

0)1()0()1()0( 2211 ==== θθθθ          (2.39) 

要使系统（2.5）稳定到目标状态 [ ]T21 00ddd θθ=x ，在输入（2.33）作用下，

系统状态还应满足条件 

( ))0()1( iidiiid θθηθθ −=− ， 2,1=i        (2.40) 

其中 ( )1,0∈iη ，表示机械臂位置误差的收敛率。为叙述简便起见，式（2.39），（2.40）

中考虑了在每个控制周期开始把时间变量重置为 0=t 的假设。 

根据式（2.24）的第 4 式和式（2.38）有 

( ) ( ) D=−+− 20221011 )1()1( θθψθθψ        (2.41) 

其中，
2020

2
20

1 2
1

csH
Hc+

=ψ , 
2020

22 2
1

csH
=ψ 。该式表示的是第二关节的周期稳定边界

条件 0)1(2 =θ 。 

由式（2.35）和式（2.40）有 

( ) 113211 )1(,, eaaa ηξ −=          (2.42) 

其中， )0(111 θθ −= de ， ( ) 3213211 420
1

84
1

21
1,, aaaaaa ++=ξ 。该式表示的是第一关

节位置误差收敛的条件。 

 由式（2.40），（2.41）有 

( ) 112223212 )1(,, ξψηψξ +−= eaaa        (2.43) 

其中， )0(222 θθ −= de ， ( ) Daaa =3212 ,,ξ 。该式表示的是第二关节位置误差收敛的

条件。 

解由式（2.37）、（2.42）和（2.43）组成的非线性代数方程组，可以唯一确定
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控制输入u 中参数 321 ,, aaa 的可行值。为简化起见，从式（2.42）中解出 2a  

( )433112 dadada ++−=           (2.44) 

其中， 41 =d ，
5
1

3 =d ， 114 )1(84 ed η−−= 。把式（2.44）代入式（2.37）得到 

0163151143113
2
312

2
111 =+++++ papapaapapap       (2.45) 

把式（2.44）代入式（2.42）得到 

0263251243123
2
322

2
121 =+++++ papapaapapap       (2.46) 

式（2.45），（2.46）中 6,,1,1 =ip i ， 6,,1,2 =ip i 均为常系数，具体表示见附录 A。

解由式（2.45）、（2.46）组成的二元非线性代数方程组可以采用 Newton－Raphson

方法[90]。 

2.6 数值仿真 

 为验证控制律 [ ]1,0),(1 ∈ττu （式（2.33））在式 (2.44)-(2.46) 表示的稳定条件下

的可行性，考虑图 2.1 所示机器人系统的关节空间位置控制问题。数值仿真分三种

情况：① 021 <ee ，即机械臂关节的初始位置误差反相；② 0,0 21 >> ee ，即机械臂

关节的初始位置误差同相且均大于零；⑶ 0,0 21 << ee ，机械臂关节初始位置误差

同相且均小于零。典型地，以上三种情况分别对应于图 2.2，图 2.3，图 2.4 所示。 

图 2.5 是图 2.2 中 0-2s 的关节速度和加速度。数值仿真中控制周期 s0.1T = 。

从图 2.5 可以看出，主动关节和被动关节的角速度、角加速度均满足周期稳定边界

条件（式（2.39））。图 2.2 给出的机械臂关节位置误差收敛速度远大于图 2.3 和图

2.4 对应的两种情况，其原因在于平面 2R 欠驱动机械臂的主动关节和被动关节的

角加速度和角速度总是反相的，这从系统动力学方程（4b）不难看出，因此当机

械臂关节的初始位置误差反相时，控制律（2.3）使误差一致收敛。但是当机械臂

关节的初始位置误差同相时，一般情况下控制器必须先调整机器人的位形到第①

种情况后，才能使误差一致收敛。由于增加了机械臂位形的调整过程，因此控制

器的稳定过程较慢。 
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图 2.2. 机械臂关节初始位置误差反相 021 <ee  
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图 2.3.机械臂关节初始位置误差同相         图 2.4.机械臂关节初始位置误差同相 

0,0 21 << ee                          0,0 21 >> ee           
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(a)关节角速度                               (b)关节角加速度 

图 2.5.  图 2.2 中 0-2s 的仿真数据 

2.7. 结论和讨论 

 零重力平面 2R 欠驱动机械臂系统具有线性近似模型不可控、非最小相、非

STLC、非微分平坦、不可精确幂零化等特征，这些特征使其位置镇定问题都很困

难，路径和轨迹跟踪控制问题更是有待解决的问题。近似幂零化和迭代状态操纵

控制为解决一般非完整约束欠驱动系统提供了一条可行途径。通过本章的研究表

明，近似幂零化过程中可以采用不同的基向量来构造可达矩阵，从而简化近似幂

零化过程和幂零近似模型，使综合可行控制律更加方便。当采用参数化周期控制

输入时，可以通过选择全局有效基来构造可达矩阵，为设计全局有效控制律提供

了一般方法。 

 本章采用待定系数多项式来构造周期输入的确是一种具有一般性的非完整约

束欠驱动机械系统的控制方法，但是正如第 2.6 节所示，这种参数化周期输入控制

律设计方法最后需要解二阶非线性代数方程组。非线性代数方程组一般只能通过

数值方法求解，而且得到的解也只能是近似的，因此控制器的精度甚至稳定性均

依赖于非线性代数方程组解的存在性和数值解的精度，难以应用于实时控制。De 

Luca 虽然完成了平面 2R 机械臂的位置控制试验，但是他所采用的特殊周期输入很

难被推广应用，而且控制器的稳定速度较慢，从这一角度看，无重力平面 2R 欠驱
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动机械臂这类有漂移二阶非完整约束机械系统的控制依然期待更好的控制器设计

方法。 
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3 一种欠驱动弹性单腿跳跃机器人支撑相的 

近似微分平坦控制 

3.1 引言 

 仿生机械和仿生机器人是机器人学研究的重要领域之一。传统上认为，一个机

器人系统若没有仿生学特征，则不能称为完全的机器人系统。本章研究一类仿袋

鼠跳跃的静态不稳定机器人系统。生物学中的袋鼠具有两条粗壮的腿和一条强健

的尾巴，在运动过程中，袋鼠通过其弹簧般的腿部实现跳跃运动，而粗壮的尾巴

起到平衡身体的作用。为从一般机构模型出发探讨仿袋鼠跳跃机构的运动学、动

力学及其非线性控制问题，本章研究一种由双臂驱动的单腿跳跃机器人系统。其

中一条臂模拟袋鼠的躯干，一条臂模拟袋鼠的尾巴，而单一的弹性直线伸缩腿模

拟袋鼠的腿部。 

单腿跳跃机器人通常是一类只能实现动态稳定的移动机器人系统，关于单腿跳

跃机器人的运动控制方法在一定条件下可推广到多腿跑步机器人系统[91]，因此

在一定程度上单腿跳跃机器人可看作是多腿跑步机器人的最小系统。单腿机器人

由于具有几乎是最简单的腿式动态移动机器人的机械结构和最简系统动力学模

型，是深入研究机器人动态平衡原理和跑步运动规划和控制方法的良好平台，因

此这种机器人系统是近二十多年来机器人领域的一类重要研究对象[91-100]。 

 跳跃机器人或跑步机器人的稳态运动过程通常包括支撑运动相和飞行运动相，

这两种运动过程是交替重复出现的。在支撑运动相，需要为机器人系统注入弹性

能量，以克服因腿部运动和落地冲击引起的能量消耗。在飞行运动相，需要重置

腿部的姿态，为下个跳跃周期做准备。关于单腿跳跃机器人系统，Raibert[91-94], 

Hyon[95], Buehler[96,97], Papadopoulos[98], Zeglin[99], Burdick[100]等

都进行了研究并且给出了非常重要的研究结果，使人们对跳跃机器人有了比较深

入的认识。在这些研究中，都针对 SLIP模型单腿跳跃机器人进行研究。SLIP模型

把单腿跳跃机器人简化为与线性弹簧连接的质点，因此基于这种模型设计的机器

人系统具有以下特点[101]：① 腿的质量与系统总质量相比很小；② 系统质心位
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于髋关节下面附近且相对于髋关节位置不变。SLIP 模型跳跃机器人采用简单的线

性控制方法就能实现稳定跳跃，但是也因这种模型忽略了系统的动力学耦合效应，

使得它与实际仿生对象（如袋鼠）有很大的区别，甚至难以自行起跳。已有 SLIP

模型单腿跳跃机器人通常还采用全驱动设计，腿部的伸缩运动和摆动角度可以分

别进行控制，这种机器人系统对驱动功率有较高需求，通常只能采用气压或液压

驱动[91-95]，不适合于动态移动机器人远距离运动的要求。跳跃机器人的另外一

个重要特点是它在飞行运动相满足动量守恒律，其中角动量守恒方程是不可积一

阶微分方程，因此跳跃机器人实质上是非完整约束系统[102,32]。已有大多数关

于单腿跳跃机器人的控制中并未考虑非完整约束[91-101]，这类系统能实现稳定

运动的关键在于机器人的特殊 SLIP模型设计。 

实质上，机械系统的动力学耦合在一定条件下是有用的，例如袋鼠、猎豹、狮

子等动物的强壮尾巴在动物奔跑运动中对快速调整运动方向能起到非常重要的作

用，而对于跳跃机器人这类快速动态移动机器人系统，采用全驱动设计将降低机

器人系统的功率质量比，很难使机器人机械系统具有优良的能效性。以克服以上

缺陷为目标，本章研究一种双臂驱动非 SLIP模型欠驱动弹性单腿跳跃机器人系统。

对于非 SLIP模型跳跃机器人系统，由于动力学耦合效应不再可忽略，机器人系统

的运动规划和控制问题复杂性大大增加，而采用欠驱动设计，更使机器人系统的

轨迹规划和稳定跟踪控制变得十分困难。对于本章研究的单腿跳跃机器人系统，

在飞行运动相它是一阶非完整约束系统，已有一些结果[102,32]，本章重点研究

跳跃机器人支撑相的运动控制问题。正如有自由被动关节的欠驱动机械臂，无论

是有重力作用或无重力作用，通常都是二阶非完整约束系统一样[11,17]，被动伸

缩腿欠驱动跳跃机器人也属于这类系统。研究欠驱动腿式动态移动机器人，是全

驱动腿式机器人[91-95]和全被动腿式机器人[2,3]之间的折衷，可望克服全驱动

机器人能耗大和全被动机器人运动灵活性有限的缺陷，是开发高能效灵巧腿式仿

生动态移动机器人系统的一条潜在可行技术途径。 

 本章是如下安排的，第 3.2节介绍本章研究的跳跃机器人模型；第 3.3节分析

系统近似模型的可控性、定义广义坐标为输出条件下的系统非最小相位性，以及

系统非线性模型的非微分平坦性；第 3.4节建立机器人系统的微分平坦近似模型；

第 3.5 节给出机器人支撑相的运动规划；第 3.6 节设计控制器并给出数值仿真结
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果；最后是本章的结论。 

3.2 机器人模型 

图 3.1所示为本章研究的跳跃机器人系统模型。该机器人系统的腿部由有质量

腿和无质量腿两段组成，其中有质量腿段的长度为 1l ，质量为 1m ，质心位于形心。

无质量腿段的长度为 2l ，并与有质量腿段之间用带线性弹簧的直线运动副连接，弹

簧的刚度为 k 。两驱动臂的长度均为 r ，质量均为 2m ，质心位于连杆末端。两驱动

臂与有质量腿段铰接于同一点。 

 

o

2l

12
1 l

ϕ

r

r

2θ
1θ

2m

2m
1m

z

x0x

0z

         

图 3.1 机器人机构模型                              图 3.2 机器人 3D模型 

 

定义该机器人模型的广义坐标变量为 ( )21200 ,,,,, θθϕlzx ，其中 ( )00 , zx 为脚趾在

垂直平面内的坐标， 2l 为伸缩腿伸出的长度（假设当弹簧处于自由状态时 02 ll = ，

当机器人垂直站立并静态平衡时 202 ll = ），ϕ 为腿部轴线与水平面之间的夹角，

21 ,θθ 分别为驱动臂与腿部轴线之间的夹角，所有角度变量的正向为逆时针方向。

根据以上定义，可以建立机器人系统支撑运动相的动力学方程为 

1111 QCqM =+           (3.1) 

其中， [ ]T2121 θθϕl=θ ， 1M 为质量惯性矩阵， 1C 由哥氏力、离心力、重力、
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摩擦力、弹性力等组成， [ ]T211 00 ττ=Q 为广义驱动力，其中前两个元素为零

表示对应于腿部伸缩和腿部角度的广义坐标无驱动力， 21 ,ττ 分别为两臂的驱动力

矩，因此图 1所示机器人系统是欠驱动机械系统。动力学方程（3.1）的具体表示

式见附录 A。 

 把式（ 3.1）中机器人系统的广义坐标矢量分为 [ ]TT
a

T
p1 qqq = ，其中

[ ]T2p ϕl=q 对应于被动关节的广义坐标， [ ]T21a θθ=θ 对应于主动关节广义坐

标。则动力学方程（3.1）可表示为 
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

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
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
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T
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papp





        (3.2) 

式（3.2）中第一行是机器人系统的动力学耦合方程，对于欠驱动机械系统，它表

示系统的二阶微分约束。当该二阶微分约束不可积时，则表示是二阶非完整约束

[12]。当被动广义坐标为循环坐标时，循环坐标对应的二阶微分方程存在首次积

分，该积分方程对应于系统的广义角动量守恒方程，角动量守恒方程一般不能再

次积分，因此角动量守恒方程一般是一阶非完整约束，例如航天空间自由漂浮机

器人系统。从系统动力学方程可以看出(参见附录 C)，由于有重力作用，被动广义

坐标 2l ϕ不是循环坐标，其对应二阶微分方程不存在首次积分，因此图 3.1所示跳

跃机器人系统在支撑相是二阶非完整约束系统。 

3.3 系统分析 

 跳跃机器人的显著特征是有支撑运动相和飞行运动相两个运动阶段。在飞行

相，跳跃机器人系统遵守动量守恒定律，其中线动量方程是可积的，是完整约束，

角动量守恒方程是不可积的，是一阶非完整约束[102,32]。本章考虑二阶非完整

约束，主要探讨图 3.1所示非 SLIP模型欠驱动跳跃机器人在支撑相的运动控制问

题。 

 为简化问题的复杂性，首先采用部分反馈线性化方法[28]把系统动力学方程

（3.2）变为更简单的形式 
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uMMcMq
uq
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1

ppp
1

ppp

a
−− −−=

=





        (3.3) 

其中考虑了输入变换 )()( p
1

pp
T
paapa

1
pp

T
paaa cMMcuMMMMτ −− −+−=u ，u为附加输入。

式（3.3）可写为状态方程 

2211 )()()( uu xgxgxfx ++=         (3.4) 

其中， [ ]T221221 ϕθθϕθθ 

 ll=x ， 11 θ=u ， 22 θ=u 。方程（3.4）中光

滑向量场 
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因式（3.3）中质量惯性子矩阵 







=

2221

1211
pp mm

mm
M 为对称正定矩阵， 0)det( pp ≠M ，

可以得到 







−

−
=−

1121

1222

pp

1
pp )det(

1
mm
mm

M
M ，因此式（3.5）中 

)det( pp

122212
1 M

cmcm −
=ζ ， 

)det( pp

211121
2 M

cmcm −
=ζ ，

)det( pp

13222312
3 M

mmmm −
=ζ ， 

)det( pp

23111321
4 M

mmmm −
=ζ ，

)det( pp

14222412
5 M

mmmm −
=ζ ，

)det( pp

24111421
6 M

mmmm −
=ζ 。 

3.3.1 可控性和非最小相位性 

 考察系统（3.4）线性近似系统的可控性。首先研究系统站立平衡位形的可控

性 ， 对 于 任 意 站 立 平 衡 点 [ ]T20
*
2

*
1

* 00002πlθθ=x ， 其 中

π2*
2

*
1 k±≠ θθ ( k 为正整数)，设平衡点 *x 处线性近似模型为 

2211 )(~)(~~ uu xgxgxfx ++=         (3.6) 
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若定义 [ ] i
i

iifL g
x
ff

x
g

gfg ~
~~~

~,~~
~

∂
∂

−
∂
∂

== 为向量场 igf ~,~
的李括号，由于有重力作用,不

难证明 [ ] 8~~rank 32
~ =gggg fff LLL ，因此系统（3.4）在平衡点 *x 的线性近似模

型是可控的。 

跳跃机器人的控制不是单纯的站立平衡点的控制，而必须完成更复杂的运动，

例如对于支撑相控制问题，可以定义以下常规输出 

[ ]T2201 2π)( ϕ−−= llxy           (3.7a) 

[ ]T2
*
22 2π)()( ϕ−−= ltlxy           (3.7b) 

[ ]T2
*
22

*
21

*
13 2π)()( ϕθθθθ −−−−= ltlxy      (3.7c) 

当输出为 0)(1 =xy 时，对应于机器人的站立平衡状态。当输出 0)(2 =xy 时，对应

于机器人在站立平衡的同时弹性腿的伸缩运动符合某种给定的运动规律 )(*
2 tl ，例

如使弹性腿的振动逐渐增强，给系统注入弹性能量，为机器人的跳跃运动做准备。

而当输出 0)(3 =xy 对应于机器人的全位形空间运动控制，例如机器人在稳定跳跃

的同时，使机器人的双臂运动到指定位形（例如某种条件下的最优位形）。 

因输出（3.7a）包含在输出（3.7b）中，下面只考察输出为（3.7b）和（3.7c）

时的输入输出控制问题。当输出为 )(2 xy 时，为求得能实现 0)(2 =xy 的可行控制输

入u，为此对式（3.7b）微分有 

uxyxyuxgxfx
x
yxx

x
yy )()())()()(()( 22

22
2 gf LL +=+

∂
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=
∂
∂

=     (3.8) 

其中函数 )()()( 22 xfxxyxy ∂∂=fL 为 2y 沿向量场 )(xf 的李导数， )(2 xygL 的意义

类似。不难得到 [ ]T22 )( ϕ −−= lL f xy ， 22
2 0)( ×∈= RxygL 。为求输入输出之间的

显示关系，对式(3.8)进一步求导有 
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可使输出 022 == yy  ，此时式（10）表示了系统具有零动态[18] 

( ) p
1

paa cMq −−=           (3.11) 
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M ， ( ) ( )∞∞→= ,,
2121 θθθθ  ， 零 动 态 （ 3.11 ） 不 稳 定 。 当

,1,0,π221 =±≠− kkθθ 时，一般情况下 0
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mm
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，式（3.11）不能

得到解析解，但是通过数值积分可以验证式（3.11）所表示的系统零动态运动是

不稳定，因此当输出为 )(2 xy 时，系统（3.4）是非最小相位的[33], 很难被全状

态稳定控制。尽管一个系统的最小相位性与定义的输出函数 y 有关，但是如何构造

输出使系统具有最小相位性，目前还没有有效的方法。 

 当输出为 )(3 xy 时，根据式（3.3）可以看出，系统（3.4）具有最大总关系度

84 =<= nr ，因此此时系统（3.4）不能实现输入输出反馈线性化，不存在所谓最

小相位或非最小相位性特征。  

3.3.2 微分平坦性分析 

 本小节研究图 3.1所示跳跃机器人是否具有微分平坦性。对于一般仿射非线性

系统 

∑
=

+=
m

i
ii u

1
)()( xgxfx         (3.12) 

若它具有微分平坦性，则可以利用几种已有方法实现系统稳定，例如反步[54,103]

或动态反馈[11]。关于微分平坦系统[42]，Fliess, Martin, and Rouchon 等

[42,104,46]都进行了深入研究，文献[46]从理论方面做了很好的系统论述，[52]

从应用的角度汇集了大量微分平坦系统的实例。引用文献[46]的定义，若系统

（3.12）是微分平坦的，其充分条件是可以找到输出 mR∈y （其维数与输入 mR∈u

的维数相同）具有形式 

),,,,( )( 1ruuuxyy 
=  

使状态 x和输入u表示为以下形式 
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),,,( )( 2ryyyαx 
=  

),,,( )( 2ryyyβu 
=  

即状态 x和输入u可不用积分直接由输出 y 及其导数确定。下面给出的直纹流形判

据为判断非线性系统（3.12）具有微分平坦性质提供了一个简单的必要的条件。 

 

引理 3.1 (直纹流形判据 The ruled-manifold criterion [46])  假设系统

),( uxfx = 是微分平坦的，则对于所有 x，子流形 ),( uxfp = （其中 x被当作参数）

在 p空间上的投影是直纹子流形。  

 该判据的意思是若从 ),( uxfx = 中消去 u得到的方程 0),( =xxF  具有如下性

质：对于所有使 0),( =pxF 的 ),( px ，存在 nR∈a ， 0≠a ，使得 R∈∀λ , 

0),( =+ apxF λ 。则 0),( =pxF 是包含方向为a 的直线的直纹子流形。 

 

命题 3.1 （原非线性系统（3.4）的非微分平坦性）式（3.4）表示的图 3.1 所示

的跳跃机器人系统不是微分平坦系统。 

证明：若定义 [ ] [ ]T81
T

81 xxpp 



 = ，从式（4）中消去输入 21 ,uu ，显然有 

( )122212
1

pp17 )det( cmcmp −== −Mζ        (3.13) 

( )211121
1

pp28 )det( cmcmp −== −Mζ        (3.14) 

式（3.13），（3.4）中 2,1, =ici 为关于 4,,1, =ipi 的二阶非线性多项式（见附录 A），

若用 8,,1, =+= iapp iii λ 带入式（3.13），（3.14），则式（3.13），（3.14）是关

于 8,,1, =iai 的二阶非线性代数方程组，对于 R∈∀λ ，满足该二阶非线性代数方

程的唯一解为 8,,1,0 == iai ，因此式（3.13），（3.14）不是（包含方向为 0≠a 的

直线的）直纹子流形，系统（3.4）不是微分平坦系统。□ 

3.4 微分平坦近似 

 式（3.4）表示的图 3.1 所示的欠驱动跳跃机器人虽然不是微分平坦系统，但

是从文献[54]关于对惯性轮摆这一平坦欠驱动系统的全局稳定的研究中可以得到
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启发，若图 3.1 所示跳跃机器人能近似为微分平坦系统，且该近似微分平坦系统

能保留原系统的可控性，那么已有关于微分平坦系统的控制器设计方法就可以用

来实现式（3.4）所示欠驱动跳跃机器人支撑相的运动控制。为此，把 202 ll = 代入

式（3.1）中的惯性矩阵 1M ，并把 ( )*
2

*
1 ,θθ∀ 带入 1M 使 ( )( ) 0,det *

2
*
1pa

1
pp ≠− θθMM ，前

者即用伸缩腿的平衡位置的长度 20l 代替变量 2l ，后者即用双臂的非动力学耦合奇

异位形 ( )*
2

*
1 ,θθ 代替变量 ( )21 ,θθ 。通过以上近似处理，质量惯性矩阵变为常量矩阵

1
~M 。当机械系统的惯性矩阵为常量时，与惯性矩阵相关的 Christoffel 符号项（即

离心力、科氏力项）为零[17]，因此令式（1）的非线性项 1C 中的速度乘积项为零，

则动力学方程（1）可近似为 

1111
~~ QCqM =+           (3.15) 

方程（3.15）的具体表示见附录 B。通过部分反馈线性化，并把式（3.15）写为状

态空间方程 

2211 )(~)(~)(~ uu xgxgxfx ++=         (3.16) 

其中， [ ]T221221 ϕθθϕθθ 

 ll=x ， 11 θ=u ， 22 θ=u 。方程（3.16）中光

滑向量场 































=

2

1

2

2

1

~
~
0
0

)(~

ζ
ζ

ϕ

θ
θ









l

xf ，

































=

4

3

1

~
~
0
1
0
0
0
0

)(~

ζ
ζ

xg ，

































=

6

5

2

~
~
1
0
0
0
0
0

)(~

ζ
ζ

xg        (3.17) 

其中， )~~~~()~det(~
122212

1
pp1 cmcm −= −Mζ ， )~~~~()~det(~

211121
1

pp2 cmcm −= −Mζ ， 21
~,~ ζζ 均为

变量 ),( 2 ϕl 的函数，而 6,5,4,3,~
=iiζ 为常量。为讨论方便，把有势力项 21

~,~ cc 重写如

下 

)(sin)2(~
02211 llkgmmc −++= ϕ           (3.18a) 
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=2
~c ( ) ϕcos2

2
1

212211 gllmllm 







++






 + ( )[ ]212 cos)cos( θϕθϕ ++++ grm  (3.18b) 

假设机器人在支撑相时腿部的摆动角度不大，即 2π≈ϕ ， 1sin ≈ϕ ，并令式（3.18b）

中 202 ll ≈ ，( ) ≈21 ,θθ ( )*
2

*
1 ,θθ ，并把 ϕcos 在 2π=ϕ 处线性近似为 )2π(cos −−≈ ϕϕ ，

则式（3.18）可进一步近似为 

  gmmllkc )2()(~
21021 ++−=           (3.19a) 

=2
~c )2π(0 −ϕgH [ ]*

2
*
12 sinsin θθ +− grm                           (3.19b) 

其中， ( ) ( )







++++






 +−= *

2
*
12201220110 coscos2

2
1 θθrmllmllmH 。 

 

命题 3.2 （近似系统（3.16）在平衡点的可控性）对于任意非动力学耦合奇异平

衡点 

[ ]T20
*
2

*
1

* 00002πlθθ=∀x ， ( )( ) 0,det *
2

*
1pa

1
pp ≠− θθMM  

原系统（3.4）的近似系统（3.16）是可控的。 

证明：对于满足命题 3.2中条件的 *x∀ ，列出向量场 21
~,~ gg 及其与向量场 f~ 的部分

李积 

[ ]T43
*

1
~~010000)(~ ζζ=xg  

[ ]T65
*

1
~~100000)(~ ζζ=xg  

[ ] [ ]T431
*

1~ 0000~~01~,~)(~ ζζ−== gfxgfad  

[ ] [ ]T652
*

2~ 0000~~10~,~)(~ ζζ−== gfxgfad  

[ ][ ] [ ]T211
*

1
2

~ 000000~,~,~)(~ ψψ== gffxgfad  

其中，
ϕ
ζ

ζ
ζ

ζψ
∂
∂

+
∂
∂

= 1
4

2

1
31

~~~~
l

，
ϕ
ζ

ζ
ζ

ζψ
∂
∂

+
∂
∂

= 2
4

2

2
32

~~~~
l

均为常数。 

[ ][ ] [ ]T432
*

2
2

~ 000000~,~,~)(~ ψψ== gffxgfad  

其中，
ϕ
ζ

ζ
ζ

ζψ
∂
∂

+
∂
∂

= 1
6

2

1
53

~~~~
l

，
ϕ
ζ

ζ
ζ

ζψ
∂
∂

+
∂
∂

= 2
6

2

2
54

~~~~
l

均为常数。 
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[ ][ ][ ] [ ]T211
*

1
3

~ 000000~,~,~,~)(~ ψψ −−== gfffxgfad  

[ ][ ][ ] [ ]T432
*

2
3

~ 000000~,~,~,~)(~ ψψ −−== gfffxgfad  

考虑动力学耦合非奇异假设， ( )( ) 0,det *
2

*
1pa

1
pp ≠− θθMM ，即矩阵 









64

53 ~~
~~

ζζ
ζζ

满秩，显

然 Kalman可控性矩阵[52]是满秩的，即 

[ ] 8)(~~~~~~~~rank *
4

3
~1

3
~2

2
~1

2
~2~1~21 =xgggggggg ffffff adadadadadad  

即近似系统（3.16）是可控的。□ 

 

命题 3.3 （近似系统（3.16）的微分平坦性）近似系统（3.16）在式（3.19）的

条件下是微分平坦的。 

证明：根据命题 3.2的证明已知，近似系统（3.16）的 Kalman可控矩阵为 

































−−−−
−−−−

−
−

=

0000~~
0000~~
00000010
00000001

00~~00
00~~00

00001000
00000100

4264

3153

4264

3153

ψψζζ
ψψζζ

ψψζζ
ψψζζ

C  

该可控矩阵对应于输入 21 ,uu 的 Kronecker 因子[52]分别为 41 =γ ， 42 =γ ，则平

坦输出F 可通过下式得到 

xCF 1

2

1

10000000
01000000 −








=








=

F
F

 

平坦输出为 

 

ϕθθ 142132121111 flfffF +++=        (3.20a) 

ϕθθ 242232221212 flfffF +++=        (3.20b) 

其 中 ，
2341

3443
11

~~

ψψψψ
ψζψζ

−
−

=f ，
2341

3645
12

~~

ψψψψ
ψζψζ

−
−

=f ，
2341

4
13 ψψψψ

ψ
−

−
=f ，
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2341

3
14 ψψψψ

ψ
−

=f  

2341

2314
21

~~

ψψψψ
ψζψζ

−
−

=f ，
2341

2516
22

~~

ψψψψ
ψζψζ

−
−

=f ，
2341

2
23 ψψψψ

ψ
−

=f ，
2341

1
24 ψψψψ

ψ
−

−
=f ，

4,,1, =iiψ ， 6,,3,~
=iiζ 均为常数。为验证式（3.20）表示的输出F 的确是微分

平坦输出，对式（3.20）求导有 

21~11~1~
1

1 21
uFLuFLFLFF ggf ++=

∂
∂

= x
x


        (3.21a) 

22~12~2~
2

2 21
uFLuFLFLFF ggf ++=

∂
∂

= x
x


       (3.21b) 

其中， ϕθθ 



142132121111~ flfffFL f +++= ， ϕθθ 



242232221212~ flfffFL f +++= ， =11
FLg  

=2~
1
FLg =1~

2
FLg 02~

2
=FLg 。对式（3.21）求导有 

21~~11~~1
2

~
1

1 21
uFLLuFLLFLFF fgfgf ++=

∂
∂

= x
x




       (3.22a) 

22~~12~~2
2

~
2

2 21
uFLLuFLLFLFF fgfgf ++=

∂
∂

= x
x




       (3.22b) 

其中， 2141131
2

~
~~ ζζ ffFL f += ， 2241232

2
~

~~ ζζ ffFL f += ， =1~~
1

FLL fg =2~~
1

FLL fg =1~~
2

FLL fg  

0~~
2

=FLL fg 。对式（3.22）进一步求导有 

21
2

~~11
2

~~1
3

~
1

1 21
uFLLuFLLFLFF fgfgf ++=

∂
∂

= x
x




       (3.23a) 

22
2

~~12
2

~~2
3

~
2

2 21
uFLLuFLLFLFF fgfgf ++=

∂
∂

= x
x




      (3.23b) 

其中， ( ) ( )ϕζζ
ϕ

ζζ 



2141132214113
2

1
3

~
~~~~ fflff

l
FL f +

∂
∂

++
∂
∂

= ， 

( ) ( )ϕζζ
ϕ

ζζ 



2241232224123
2

2
3

~
~~~~ fflff

l
FL f +

∂
∂

++
∂
∂

= ， 

=1
2

~~
1

FLL fg =2
2

~~
1

FLL fg =1
2

~~
2

FLL fg 02
2

~~
2

=FLL fg 。 

为求输出F 与输入u之间的显式关系，求输出F 的四阶导数 

21
3

~~11
3

~~1
4

~
1)4(

1 21
uFLLuFLLFLFF fgfgf ++=

∂
∂

= x
x




      (3.24a) 
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22
3

~~12
3

~~2
4

~
2)4(

2 21
uFLLuFLLFLFF fgfgf ++=

∂
∂

= x
x




      (3.24b) 

其中， ( ) ( ) 22141131214113
2

1
4

~
~~~~~~ ζζζ

ϕ
ζζζ ffff

l
FL f +

∂
∂

++
∂
∂

= ， 

   ( ) ( ) 0~~~~~~
42141133214113

2
1

3
~~

1
≠+

∂
∂

++
∂
∂

= ζζζ
ϕ

ζζζ ffff
l

FLL fg ， 

   ( ) ( ) 0~~~~~~
62141135214113

2
1

3
~~

2
≠+

∂
∂

++
∂
∂

= ζζζ
ϕ

ζζζ ffff
l

FLL fg ， 

( ) ( ) 22241231224123
2

2
4

~
~~~~~~ ζζζ

ϕ
ζζζ ffff

l
FL f +

∂
∂

++
∂
∂

= ， 

( ) ( ) 0~~~~~~
42241233224123

2
2

3
~~

1
≠+

∂
∂

++
∂
∂

= ζζζ
ϕ

ζζζ ffff
l

FLL fg ， 

( ) ( ) 0~~~~~~
62241235224123

2
2

3
~~

2
≠+

∂
∂

++
∂
∂

= ζζζ
ϕ

ζζζ ffff
l

FLL fg 。 

显然在输出F 为式（3.20）时，近似系统（3.16）具有关系度 844 =+=r 。对于

任意平衡点 [ ]T20
*
2

*
1

* 00002πlθθ=∀x ， ( )( ) 0,det *
2

*
1pa

1
pp ≠− θθMM ，常量

矩阵












2
3

~~2
3

~~

1
3

~~1
3

~~

21

21

FLLFLL
FLLFLL

fgfg

fgfg
是满秩的。取反馈 






















+












−












=

−

2

1

2
4

~

1
4

~
1

2
3

~~2
3

~~

1
3

~~1
3

~~

21

21

v
v

FL
FL

FLLFLL
FLLFLL

f

f

fgfg

fgfgu      (3.25) 

式(3.24)可变换为线性系统 









=









2

1
)4(

2

)4(
1

v
v

F
F

         (3.26) 

其 中 ， 2,1, =ivi 为 新 的 参 考 输 入 。 式 (3.20)-(3.23) 表 示 从

[ ]T221221 ϕθθϕθθ 

 ll=x 到 [ ]T21212121 FFFFFFFF =z 的

坐标变换 

Φxzz += 0           (3.27) 

其中， 
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







































∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

2
2

~2
2

~

2

1
2

~1
2

~

2

2
2

~2
2

~

2

1
2

~1
2

~

2

24232221

14131211

24232221

14131211

000000

000000

000000

000000

0000
0000

0000
0000

FLFL
l

FLFL
l

FLFL
l

FLFL
l

ffff
ffff

ffff
ffff

ff

ff

ff

ff

ϕ

ϕ

ϕ

ϕΦ ， 

[ ]T0
5

0
4

0 00zz0000=z ， 

( )[ ]gmmklmfmfM )2(~~)~det(z 21011142213
1

pp
0
4 ++−+= −  

[ ])sin(sin2)~~()~det( *
2

*
12021141213

1 θθπ ++−++ − grmgHmfmfM ππ ， 

( )[ ]gmmklmfmfM )2(~~)~det(z 21011242223
1

pp
0
5 ++−+= −  

[ ])sin(sin2)~~()~det( *
2

*
12021241223

1 θθπ ++−++ − grmgHmfmfM ππ 。 

可以选择机器人的两臂位形 ( )*
2

*
1 ,θθ ，使矩阵Φ总满秩，因此可通过式（3.27）

所示变换的逆变换 

( )01 zzΦx −= −           (3.28) 

使原系统状态坐标 x和原输入u（式（3.25））表示为平坦输出及其导数的函数。

命题 3.3得证。□ 

 

评注 3.1：选择输出为平坦输出（3.20）时，线性系统（3.26）是积分链，是可镇

定的。把输出选择为常规输出式（3.7）时，原非线性系统（3.12）要么是非最小

相系统，要么不能实现反馈线性化（见 3.3.1节）。 

 

评注 3.2：当图 3.1所示机器人被动伸缩腿的长度 2l 和偏离平衡位置 20l 不大时，即

22022 llll δ<−=∆ ，系统（3.1）中惯性矩阵 1M 变化不大，即 Mδ<∆ 1M ，其中
2l

δ ，

Mδ 均为一大于零的小常数。当机器人的腿部摆角ϕ偏离平衡位置 2π=ϕ 不大时，
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即 ϕδϕϕ <−=∆
2
π

，其中 ϕδ 为另一大于零的小常数，线性近似系统（3.16）的可

控性不变。因此近似系统（3.16）可推广到更一般的平衡位形邻域 

[ ]T**
2

*
2

*
1

* 0000)()( ttl ϕθθ=∀x ， ( )( ) 0,det *
2

*
1pa

1
pp ≠− θθMM   (3.29) 

例如式(3.29)中， )(*
2 tl , )(* tϕ 均为关于时间 t的有界周期函数。在这种情况下，通

过微分平坦近似系统（3.16）来控制图 3.1 所示跳跃机器人支撑相的运动，可以

同时实现站立动态平衡、弹性能量控制、腿部姿态控制。 

3.5 机器人运动规划 

 根据命题 3.2的证明，对于任意平衡点 

[ ]T20
*
2

*
1

* 00002πlθθ=∀x ， ( )( ) 0,det *
2

*
1pa

1
pp ≠− θθMM  

近似系统（3.16）是可控的。考虑机器人支撑相运动的最少能耗运动规划问题。

由于图 3.1 所示跳跃机器人的运动是通过双臂与腿部的动力学耦合实现控制的，

根据 Bergermann等[105]提出的，欠驱动机械系统(3.3)的动力学耦合度指标可定

义为 

( )( )( )T
2

1

det EE
i

i MM==∏
=

σρ         (3.30) 

其中， pa
1

pp MMM −=E ， 021 ≥≥ σσ 为矩阵 EM 的奇异值。当 0≈ρ 时，表示机器人

双臂的运动与腿部运动之间接近动力学耦合奇异，此时很小的腿部运动加速度 pq

需要很大的双臂驱动输入加速度 aqu = ，近似地，这通常需要很大的驱动力矩 τ并

消耗较多的系统能量。相反，若动力学耦合指标 ρ 的值较大时，则表示较小的双

臂驱动力矩 τ或较少的能耗可实现较大的被动广义坐标加速度输出 pq 。式（3.30）

表示的动力学耦合度指标是机器人双臂位置 ( )21 ,θθ 和伸缩腿长度 2l 的复杂非线性

函数，不易通过解析方法得到最大动力学耦合度位形 ( )*
2

*
1 ,θθ ，但通过数值方法可

获得其近似最优位形。图 3.3 绘制了机器人伸缩腿的长度 202 ll = （机器人在支撑

相 2π≈ϕ ，因此 202 ll ≈ ）时，系统双臂全位形空间中的动力学耦合度等高图。其

中机器人的物理参数列于附录 D中。图 3.3中 067.0max ≈ρ 为系统支撑相的最大动
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力 学 度 ， 近 似 最 大 动 力 学 耦 合 度 位 形 为 ( ) ( )oo*
2

*
1 6.93,6.93, −≈θθ  或

( ) ( )oo*
2

*
1 6.93,6.93, −≈θθ 。 

 根据以上动力学耦合分析，规划机器人支撑相的运动如下： 

(1)使机器人腿部摆动运动为周期运动 

)sin(0 ϕβωϕϕϕ +∆+= tn         (3.31) 

其中， 2π0 =ϕ ， 0ϕϕϕ −=∆ 为机器人腿部偏离直立位置 0ϕ 的摆角， nω 为腿部摆

动角频率， ϕβ 为初始相位角。对于站立平衡控制任务， 0=∆ϕ 。对于连续跳跃运

动， 0≠∆ϕ ，且 ϕ∆ 越大，有利于提高机器人水平跳跃的移动速度，但系统稳定比

较困难。 

(2)把机器人腿部伸缩运动控制到周期运动 
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图 3.3 机器人动力学耦合度指标 ρ 等高图 

 

)sin()(
2022 lnttAll βω ++=         (3.32) 

其中， 02l 为机器人站立平衡时伸缩腿的长度， nω 为机器人系统的固有角频率（见

附录 C）， )(tA 为伸缩腿的振幅，
2l

β 为初始相位角。一般情况下，当需要为机器人

腿部弹簧注入能量时（如对于首次起跳过程或需增大跳跃高度时）， )(tA 是关于时

间变量 t增函数。当需要从系统减小弹性能量时（如机器人停止跳跃或降低跳跃高

度时）， )(tA 是关于时间变量 t的减函数。相位角
2l

β 由下式确定 

))(arcsin( 22
tAll ∆−=β        (3.33) 

其中， 20220 lll −=∆< 。对于站立平衡控制问题，当把机器人从不平衡站立状态控
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制到平衡站立状态时，由于 202 ll ≈ ，因此 0
2
≈lβ 。对于连续跳跃运动，当机器人

运动从飞行相变为支撑相时，相位角 0
2
≠lβ ，且按照式（3.33）确定。 

(3)把机器人双臂的运动控制到最大动力学耦合度位形 

*
i

d
i θθ ≈ ， 0≈d

iθ ， 2,1=i         (3.34) 

式（3.31）、（3.32）中，角频率 nω 相同的，这使机器人腿部运动合拍，便于

实现期望跳跃运动。图 3.1 所示机器人实现稳定跳跃运动的关键是使腿部的摆动

和伸缩运动符合式（3.31），（3.32）给出的运动规律，而双臂的运动应能驱动实

现式（3.31），（3.32）所示的腿部运动规律并且稳定于给定最大动力学耦合度位

形（式（3.34））。 

基于式（3.27）表示原状态空间坐标 x与平坦输出空间坐标 z之间的线性变换，

因此原状态空间的运动规划问题可转化为平坦输出空间的运动规划问题。对于原

状态空间的两点 dxx ,0 ，通过式（3.27）可映射到平坦输出空间的两点 dzz ,0 。由

于平坦输出空间中各坐标 iz 有规则的递推微分关系，其运动规划问题可采用充分

光滑的样条函数通过插值方法解决。由于平坦输出空间有 8 个独立坐标，因此可

令平坦输出为关于时间 t的 7阶多项式 

∑
=

=
7

0
)(

j

j
iji aF ττ , 2,1=i          (3.35) 

其中， Tt=t ， [ ]1,0∈τ 。令 dzzzz == )1(,)0( 0 ，则式（3.35）应满足边界条件 
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， 2,1=i         (3.36) 

即 
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  (3.37) 

输入-输出线性化系统（3.26）可表示为 

)48036012024()()( 3
7

2
654

4)4( τττ iiiiii aaaaTτvτF +++== − ， 2,1=i   

 (3.38) 

当式（3.35）中的系数 7,,0;2,1, == jiaij 由式（3.37）确定后，则它表示满足平

坦输出空间中从初始点 0z 到目标点 dz 的一条光滑可行路径，而式（3.38）表示了

可实现该路径的可行输入。 

3.6 控制器设计 

 在第 3.3节已经证明，由式（3.20）表示的近似微分平坦输出可使欠驱动系统

（3.3）局部近似为线性系统（3.26）。针对线性系统（3.26）我们很容易设计反

馈控制器 

( ) ( ) ( ) ( )FFkFFkFFkFFkFv d
ii

d
ii

d
iii

d
ii

d
ii −+−+−+−+= 4321

)4(
 ， 2,1=i  

 (3.39) 

设计参数 4,,1;2,1, == jikij ，使闭环系统的多项式 01
2

2
3

3
4

iiii kkkk ++++ λλλλ 是

Hurwitz 多项式，则输出 [ ]T2121 FFFF 

=z 能精确跟踪规划平坦输出运动

[ ]T4321
ddddd FFFF 

=z 。在可逆坐标变换式（3.27）作用下，系统状态坐

标 x与坐标 z之间有线性映射关系，因此若由式（3.37）表示的闭环运动是指数收

敛的，则系统状态 x能指数收敛到规划运动 dx 。规划运动 dx 是由式（3.31），（3.32）

和（3.34）及其一阶导数 ),,,( 212
dddd l θθϕ 

 给定的。对于二阶非完整约束欠驱动系统

系统(3.15)，我们不能直接规划图 3.1 所示机器人系统的全位形空间运动
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),,,( 212
dddd l θθϕ ，只能给出期望运动应满足的边界条件。例如规划机器人支撑相的

目标运动为： 

(1) 机器人腿部的摆动运动为 

)sin()( 0 ϕβτωϕϕτϕ +∆+= n
d         (3.40) 

其中， [ ]1,0∈= Ttt 且 nfT 1= ， 2π0 =ϕ ， )s(π5 1−=nω ， π=ϕβ ，令 18π=∆ϕ 。 

(2) 机器人腿部的伸缩运动为 

))(sin()(
2022 ln

d All βτωτ ++=         (3.41) 

其中， [ ]1,0∈= Ttt 且 nfT 1= ， )m(360.002 =l ， )s(π5 1−=nω ， π
2

−=lβ ， atA = ，

其中 a为给定的腿部振幅变化率，当 0=a ，表示站立稳定；当 0>a 表示为系统注

入弹性能量，腿部振幅增加；当 0<a ，表示减小系统弹性势能，腿部振幅减小。 

(3) 机器人双臂的运动为 
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， 2,1=i        (3.42) 

 把由式（3.40），（3.41），（3.42）给出的规划运动的边界条件代入坐标变换式

（3.27），可得到平坦输出空间运动的边界条件，再由式（3.35）所示平坦输出坐

标通过多项式插值方法进行运动规划，然后把平坦输出空间的可行运动通过逆坐

标变换式（3.28）变换到机器人状态空间，得到机器人系统的可行运动规划。采

用式（3.39）所示极点配置控制律，其中在初始状态引入的位置误差为

)10,m01.0,10,10(),,,( ooo
221

=ϕθθ eeee l ，得到仿真结果如图 3.4，图 3.5 所示。其中

图 3.4 是站立平衡的控制仿真结果，可以看出，机器人腿部姿态被控制到垂直位

形（ 2π=ϕ ）的同时双臂的运动是周期稳定的。图 3.5 是针对式(3.40)-(3.42)

所示规划运动的仿真结果，其中考虑了为腿部注入弹性能量且腿部摆角做周期运

动，而双臂的运动也是周期稳定的。 
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(c)                                    (d) 

图 3.4 站立平衡控制 
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(c)                                           (d) 

图 3.5 注入能量及腿部摆动控制 

3.7 结论 

为提高跳跃机器人系统的能效性，探索弹性欠驱动机构在跳跃机器等动态稳定

机器人系统中的应用，本章研究了一种被动伸缩弹性欠驱动单腿跳跃机器人支撑

相的运动控制问题。由于有重力和弹性回复力的作用，在支撑运动相这种跳跃机

器人系统的线性近似模型是可控的并被证明具有微分平坦性。通过微分平坦近似

模型，这种弹性欠驱动机器人支撑相的运动可采用动态反馈实现控制稳定，而机

器人的运动规划可通过插值方法解决。这种基于线性近似模型的运动规划和控制

方法的主要优点是能有效降低控制器设计的复杂性，避免了实时控制中非线性控

制器的巨大计算量，为这种大范围移动机器人的低功耗嵌入式控制器设计提供了

方便。但是由于本章给出的控制器基于线性近似模型，因此设计具有强鲁棒性的

控制方法是有待进一步研究的问题。 
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4 欠驱动弹性单腿跳跃机器人支撑相的鲁棒反步控制 

4.1 引言 

本章继续研究上一章提出的非 SLIP 模型跳跃机器人支撑相的运动控制问题。

与 SLIP 模型跳跃机器人不同，非 SLIP 模型腿式机器人的动力学特征要丰富和复

杂得多，给机器人系统的设计和实验带来巨大困难，使得在过去的三十年里只有

很少的几种非 SLIP 模型跳跃机器人样机得到成功实践[95,106]，而且这些机器人

实验系统多数采用气动或液压驱动，因此不是自治机器人系统。非 SLIP 模型腿式

跳跃机器人除了对系统驱动功率有很高的要求外，阻碍它能成功实验的最主要的

困难在于这种机械系统的非线性力学本质特征，它不仅与 SLIP 模型跳跃机器人一

样是二阶非完整约束系统，而且其非完整约束微分方程比 SLIP 模型机器人系统的

非完整约束微分方程要复杂得多，表现出更复杂的非线性特征。这种二阶非完整

约束非线性系统的控制器设计问题通常是十分困难的。非线性系统控制理论在过

去的二十余年里的重要进展主要表现在几何控制理论方面[107,108]。已有研究结果

证明，若一个非线性系统能通过输入和状态变换转化为某种特殊的结构形式，如

三角形结构[107,17]，对于非完整约束系统，类似地，如链形[58,77,109]，则有一

些指数稳定控制方法[59,61,76,109]。很多标志性非线性系统[103,6]的控制问题能得

到解决的关键正是由于可以找到相应的规范形变换方法，然而遗憾的是，对于一

般非线性系统，并不存在普遍适用的规范形变换方法。因此基于近似规范形变换

和强鲁棒控制方法对于解决更一般的非线性系统的控制问题具有更加重要的意义

[29,81,82]。 

在研究欠驱动机械系统的非线性控制问题中，Olfati-Saber[17]提出采用规范化

动量实现坐标变换，并结合 Spong [28]提出的基于输入变换的部分反馈线性化方

法，来实现非线性系统的规范形变换，在满足一定条件时，欠驱动机械系统动力

学可变换为三角形规范形：严反馈形或前馈形规范形。严反馈形规范形的重要性

主要源于存在反步控制器设计方法[107,110,111]，这种控制方法在过去的十多年里

得到很大发展，已经被用于解决一大类非线性系统的控制问题。本章的工作就基

于 Olfati-Saber 变换和反步控制技术，探索近似严反馈规范形变换和鲁棒反步控制
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技术在非 SLIP 模型欠驱动跳跃机器人控制中应用。本章的主要贡献在于证明非

SLIP 模型腿式跳跃机器人这种周期运动系统可通过以上控制方案实现支撑相的运

动控制。这一结果一方面扩展了反步控制技术的应用领域，另一方面为非 SLIP 模

型跳跃机器人的系统设计提供了技术基础。 

本章是如下安排的，第 4.2 节介绍本章的研究对象并分析对该机器人系统的动

力学特征；第 4.3 节基于 Olfati-Saber 变换实现研究对象的规范形变换；第 4.4 节

基于近似严反馈规范形变换，给出鲁棒反步控制器；第 4.5 节是数值仿真结果；最

后是结论。 

4.2 机器人动力学模型 

 本章研究图 3.1 所示跳跃机器人支撑相的动力学和控制问题。该机器人由被动

伸缩腿和两个结构完全相同的驱动臂组成，其中被动腿由有质量段 1l 和无质量段 2l

两段组成，腿部质量为 1m ，质心位于有质量段的中部。被动伸缩腿中安装了直线

弹簧，当机器人站立平衡时， 202 ll = ，当弹簧处于自由状态时， 02 ll = 。两臂的质

量和长度分别为 2m 和 r ，假设质心位于臂的末端。定义两臂的关节角变量分别为

1θ ， 2θ ，即两臂相对于腿轴线的夹角。机器人腿部与地面之间的夹角表示为ϕ。

该机器人在支撑相的广义坐标可定义为 [ ]T212 θθϕl=q ，所有角变量的正向定

义为逆时针方向。显然该机器人系统不符合 SLIP 模型跳跃机器人的特征，不能把

系统动力学简化为质点动力学。 

 该机器人系统中只有双臂是驱动的，而腿部摆动和伸缩运动没有直接驱动输

入，即该机器人在支撑相是四自由度机械系统，但只有两个独立驱动输入，因此

图 3.1 所示跳跃机器人是欠驱动机械系统。其拉格朗日函数可表示为 

)()(
2
1)(),(),( T qqqMqqqqqq VVKL −=−=      (4.1) 

其中， ),( qq K 表示系统的动能， )(qV 表示系统的势能。更准确地，对于图 3.1 所

示机器人系统，其支撑相的拉氏能量函数可表示为 
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其中， [ ]T2p ϕl=q ，表示被动坐标变量部分， [ ]T21a θθ=q ，表示主动坐标变量

部分。惯性矩阵 









=

aaap

papp
ap ),(

mm
mm

qqM         (4.3) 

根据附录 E 所示，系统惯性矩阵 ),( ap qqM 是变量 ),,( 212 θθl 的矩阵函数，而与变量

ϕ无关，因此系统动能 ),( qq K 与ϕ无关。从经典力学的观点看，若拉格朗日函数

),( qq L 与系统的某个广义坐标 iq 无关，则表示 ),( qq L 关于坐标 iq 是对称的， iq 被

称为循环坐标，且有 

0),(
=

∂
∂

iq
L qq           (4.4) 

对于保守力系统，其拉格朗日动力学方程可表示为 
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qqqq 
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      (4.5) 

若满足式(4.4)，则式(4.5)意味着 0),(
d
d

=
∂

∂

iq
L

t 

qq
，即 

constant),(
=

∂
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=
i

i q
Lp


qq        (4.6) 

表示 ip 是守恒量，且在经典力学中被定义为系统广义动量，它对高阶系统的降阶

和可控性有重要作用。然而对于图 3.1 所示机器人系统，尽管系统动能 ),( qq K 与

广义坐标ϕ无关，但因系统势能 )(qV 是所有广义坐标 [ ]T212 θθϕl 的函数，即

有 0)( ≠∂∂ ϕqV ，因此广义坐标ϕ不是循环坐标，图 3.1 所示机器人系统在支撑相

不存在守恒量。 

 尽管本章研究的欠驱动跳跃机器人系统没有拉格朗日意义下的对称性，但系统

动能关于变量ϕ对称，这被 Olfati-Saber[17]定义为动能对称(Kinetic Symmetry)。在

动能对称条件下，系统动能是关于坐标 iq 的不变量，即有 

0),(
=

∂
∂

iq
K qq           (4.7) 

显然，动能对称与拉格朗日对称不同，动能对称不意味着系统存在守恒量。实质

上，从控制机械系统的观点看，系统广义动量 ip 守恒通常导致系统不可控，例如
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Acrobot 系统，在重力作用下(动能对称)，该系统是可控的，而在无重力环境中(拉

格朗日对称)，Acrobot 系统是不可控的[17]。因此动能对称对于控制机械系统更有

价值，因为它在保持系统可控性的同时，在适当附加条件下允许通过坐标变换，

使高阶系统降阶。在下一节我们将展示，这对于(强)非线性系统控制器设计具有重

要意义。 

 考虑式(4.2)所示拉氏函数，忽略机械摩擦，该机器人系统的动力学方程可表示

为 

0
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d
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         (4.8a) 
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         (4.8b) 
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22d

d τ
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=
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∂

−
∂
∂ LK

τ 

        (4.8d) 

其中考虑了 0=∂∂ iqV  ， ,,, 12 θϕlθi = 或 2θ ，以及 0=∂∂ ϕK 。式(4.8c),(4.8d)右边

的 2,1, =iiτ 分别对应于两臂关节 2,1, =iiθ 的驱动力矩。式(4.8a),(4.8b)的右边为零，

表示对应广义坐标 [ ]T2p ϕl=q 无驱动。由于 0
2

≠
∂
∂
l
L

， 0≠
∂
∂
ϕ
V

，式(4.8a)，(4.8b)

表示的二阶微分方程不可积，它们可看作式（4.8c）和(4.8d)组成的系统的二阶微

分“约束”，即“二阶非完整约束”。在一阶非完整约束机械系统的拉格朗日力学

研究中，众所周知，这类系统的拉格朗日动力学方程必须采用考虑非完整约束的

形式，即需要引入拉格朗日乘子，采用拉格朗日－达朗伯方程（Lagrange-d’Alembert 

equations）来描述系统的运动[67]。因此把式(4.8a)和(4.8b)所示的二阶微分方程称

为系统(4.8c)－(4.8d)的二阶非完整约束，在力学概念上有些混淆。但是近十余年来

关于欠驱动机械系统的研究表明，有浮动基础的机械系统，如欠驱动水面船舰系

统[18]，以及有被动关节的欠驱动机械臂[5]等均为二阶非完整约束系统。而星载空

间机器人、在飞行相的跳跃机器人[32]等，因不可积角动量守恒，均为一阶非完整

约束系统。这些系统的动力学建模过程与传统非完整约束系统（如滚盘、冰刀、

轮式机器人等）不同，不需要引入拉格朗日乘子，但运动规划和控制方法却具有
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相同的特征，它们都不能通过光滑时不变反馈实现系统稳定，而只能采用时变或

非光滑反馈设计稳定控制器。 

 基于以上分析，图 3.1 所示机器人系统的特征可总结如下： 

(1) 该机器人系统是一种非 SLIP 模型欠驱动跳跃机器人。在支撑相系统具有四个

自由度，而只有两个独立输入。系统腿部的运动只能通过动力学耦合由双臂驱

动实现。 

(2) 该机器人系统是二阶非完整约束系统。虽然机器人系统动能相对于腿部姿态变

量ϕ是对称的，但因系统势能关于ϕ不对称，机器人系统不存在守恒量。 

4.3 动力学模型的规范形 

 一般欠驱动机械系统，除具有微分平坦[42]性质外，通常不能通过静态或动态

反馈[11]实现线性化，因此欠驱动机械系统的运动规划和控制问题本质上均是非线

性的。已有非完整约束、非线性系统控制方法通常依赖于系统具有特殊的几何或

代数结构。例如若一般非线性系统可通过输入和状态变换，把非线性控制系统变

为严反馈形 (strict feedback form)或前馈形 (feedward form)等三角形规范形

（triangular normal form）[17]，则可以分别采用反步法[107,110]或嵌入饱和(nested 

saturations)状态反馈[112]实现系统稳定。对于非完整约束系统，若其控制向量场的

李积具有幂零性[5,32]，则系统可变换为三角形规范形。若进一步该三角形规范形

可变换为链式规范形，则更多的方法可用于系统控制器的设计 [58-65,68,69, 

73,75-77]。然而遗憾的是，对于更一般的非三角形规范形非线性系统，目前还缺少

设计指数稳定控制器的有效系统方法。 

 为揭示系统动力学(4.8)的控制问题的特征，本节考虑其规范形变换问题。把式

(4.8)写为矩阵形式，即 

τqqcqmqm

qqcqmqm

=++
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0),(

aaaap
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papappp
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       (4.9) 

其中， ),(p qqc  ， ),(a qqc  中包括离心力、哥氏力、以及重力。首先考虑采用 Spong [28]

提出的部分反馈线性化(partial feedback linearization)变换，即采用输入变换 

)()( p
1

pp
T
paaapa

1
pp

T
paaa cmmcqmmmmτ −− −+−=      (4.10) 
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系统动力学(4.9)可变换为如下部分线性化系统 

uy
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ummcmy

yq

=
=

−−=

=
−−

a

aa

pa
1

ppp
1

ppp

pp









        (4.11) 

其中， aqu = 为附加输入。从式(4.11)可以看出，虽然子系统 ),( aa yq 变为线性系统，

但是子系统 ),( pp yq 依然是高度非线性的，而且控制输入u出现在两个子系统中，

这使得从部分线性化规范形(4.11)出发设计系统控制器依然是困难的。 

进一步考虑 Olfati-Saber[17]提出的基于规范化广义动量的状态变换方法。

Olfati-Saber 曾广泛研究了二阶非完整约束欠驱动系统的规范形变换问题，该方法

针对具有动能对称性的欠驱动二阶非完整约束系统，提出采用规范化广义动量及

其积分设计状态变换，可以把式（4.11）所示的部分线性化规范形变换为级联非线

性规范形(cascade nonlinear form)，使输入 u不出现在非线性子系统 ),( pp yq 中，从

而使控制系统降阶为低阶非线性子系统的控制问题。在不同附加条件下，该级联

规范形可进一步简化为严反馈形[17,110,111]或前馈形[112]，从而使几类欠驱动系

统的大范围渐近稳定控制问题得到解决。然而遗憾的是，正如 Olfati-Saber 所证明

的[17]，对于一般多自由度欠驱动系统，该级联规范形多数是非三角形的，非三角

形规范形非线性系统的控制问题目前依然是有待研究的问题。要利用 Olfati-Saber

变换研究图 3.1 所示欠驱动跳跃机器人的控制问题，需要明确一些概念。 

 

定义 4.1：(外变量和形变量[17]) 对于具有拉格朗日函数(1)的机械系统，若机器人

的某些位形变量不出现在系统动能中，则这些变量被称为外变量；除外变量之外

的其余位形变量被称为形变量。 

 

定义 4.2：(规范化广义动量[17]) 对于欠驱动系统(4.9)，定义 
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分别为对应于 ap ,qq 的规范化广义动量。 

 

定义 4.3：(严反馈形[17]) 把具有如下三角形结构的非线性系统称为严反馈形 
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定理 4.1：(严反馈形变换定理[17]) 对于欠驱动系统(4.9)，若系统关于被动坐标 pq

动能对称，即 pq 均为外变量，而 aq 为全驱动形变量。假设广义动量

[ ] aapaa
1

pp d)()( qqmqmw −= 是可积的，且 )(d aqγw = ，则利用如下基于规范化广义动

量的坐标变换 
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以及部分反馈线性化(4.10)，可把欠驱动系统(4.9)变换为严反馈形 
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评注 4.1：定理 4.1 的证明是很直观的，只要把式（4.12）和（4.10）带入式（4.13）

即可证明。 

 

评注 4.2：本章研究的机器人系统不完全满足定理 4.1 的条件。从附录 E 中可以看

出，该机器人系统的动能虽然关于被动坐标ϕ对称，但关于被动坐标 2l 不对称。

这导致广义动量 [ ] aapaa
1

pp d)()( qqmqmw −= 不可积，因此对于系统(4.8)，定理 4.1 不

能直接应用。 
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定理 4.2：(近似动量可积定理) 对于欠驱动跳跃机器人系统(4.9)，若把系统动能

),,( 212 θθlK 近似为 ),,(~
2120 θθlK ，即令非动能对称被动坐标 202 ll ≈ ，则： 

① 近似动能 ),,(~
2120 θθlK 关于被动坐标 [ ]T2p ϕl=q 对称； 

② 若进一步令子惯性矩阵 ),,(~
2120pp θθlm 近似为常矩阵 ),,(~ *

2
*
120pp θθlm ，则近似广

义动量向量 [ ] a2120pa
*
2

*
120

1
pp d),,(~),,(~~ qmmw qqqq ll−= 是可积的。 

证明： 

① 根据附录 E 中列出的机器人系统动能 ),,( 212 θθlKK = 可以看出，若令 202 ll ≈ ，

则近似动能 ),,(~
2120 θθlK 与被动坐标 [ ]T2p ϕl=q 无关。因此 ),,(~

2120 θθlK 关于

[ ]T2p ϕl=q 对称。 

② 若令子惯性矩阵 ),,(~
2120pp θθlm 近似为常矩阵 ),,(~ *

2
*
120pp θθlm ，根据附录 E 所示

机器人惯性矩阵，近似广义动量向量可表示为 
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由于上式右边为精确 1-形，则存在函数向量 ),,( 2120 θθlγ ，使 ),,(d~
2120 θθlγw = ，

且 ),,( 2120 θθlγ 可表示为 
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证毕。□ 

 

评注 4.3：定理 4.2 证明，通过把图 3.1 所示机器人系统质量惯性矩阵 ),,( 212 θθlM 中

的变量 2l 近似为 202 ll ≈ ，则 2l 近似为系统外变量，从而使欠驱动系统(4.9)的被动坐

标 ( )ϕ,2l 均为外变量，使系统（4.9）满足定理 4.1 的第一个条件。把惯性子矩阵 pp
~m

近似为常阵，从而使近似广义动量w~ 可积，使系统（4.9）满足定理 4.1 的第二个

条件。基于以上近似，根据定理 4.1，系统（4.9）可变换为近似严反馈形。 
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评注 4.4：在利用定理 4.2 和定理 4.1 进行近似严反馈规范形变换时，我们必须对

模型误差进行分析，以便设计鲁棒控制器。考虑式(4.1)所示拉格朗日函数，由于势

能 )(qV 只是广义坐标变量的函数，即 0)(
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q
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V
，因此广义动量可写为 
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我们感兴趣的是对应于被动坐标的广义动量部分，即 
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考虑定理 4.2 中的动量近似条件 202 ll = ， ),,(~),,()( *
2

*
120pp212pppp θθθθ ll mmqm ≈= ，

式(4.16)所示广义动量的可积近似形式可写为 
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式（4.16）和（4.17）对应的规范化广义动量为 
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规范化广义动量的误差为 
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基于规范化动量误差分析，我们可以给出下面的定理。 

 

定理 4.3：(摄动严反馈形规范形变换定理) 对于欠驱动跳跃机器人系统(4.9)，通过

式(4.10)所示部分反馈线性化输入变换，并采用如下坐标变换 
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可把欠驱动系统（4.9）变换为带摄动项的严反馈形 
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其中， 
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摄动项为 
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~ ppε −= ，
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22 l
K

ε

 
 

证明：根据部分反馈线性化输入变换式(4.10)，欠驱动系统动力学(4.9)可变换为 
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pq

qqcqmqm
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
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       (4.23) 

规范形（4.22）的后两式得到证明。 

为证明规范形（4.22）的前两式，考虑式(4.23)的第一式是通过式（4.8a）和（4.8b）

得到的，即 

0),(
d
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    (4.24) 

考虑到 0p =∂∂ qV ，则式（4.24）可表示为 

p
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p 0d
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         (4.25) 

考虑式（4.16），式（4.25）可写为 
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令 
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
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ε          (4.27) 

由式（4.25），（4.26）有 

2
p

r ε
q

p +
∂
∂

−=
V

          (4.28) 

因势能函数是关于所有广义坐标的函数，即 ),( ap qqVV = ，考虑给定的坐标变换

（4.21）的第一式，有 
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      (4.29) 

其中， I 为单位矩阵。根据式（4.28）和（4.29）有 

2arrr ),( εqqhp +=          (4.30) 

因此规范形（4.22）的第二式得到证明。 

规范形（ 4.22 ）的第一式可通过定义的坐标变换直接验证，即由

),,( 2120pr θθlγqq += 有 
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其中， 

rr1
~ ppε −=           (4.31) 

证毕。□ 

 

评注 4.5：若令 ),(),( rr21 pqzz = ， ),(),( aa21 pqξξ = ，则式（4.22）所示摄动严反馈

规范形可表示为 
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uξ

ξξ

εξzfz

=

=

=

2

21

1 ),,(







         (4.32) 

由于系统（4.32）中存在非线性摄动项，标准反步方法不能直接应用，需要采用具

有更强鲁棒性的控制方法。 

 

评注 4.6：近似严反馈规范形（4.32）与部分反馈线性化形（4.11）相比，其主要

优点在于使高阶非线性系统降阶为低阶 ),( 21 zz 子系统， ),( 21 zz 子系统的控制输入

为驱动坐标 a1 qξ = ，而部分反馈线性化系统（4.11）的控制输入为 aqu = 。 

评注 4.7：根据式（4.28）可以看出，若欠驱动系统（4.9）的所有被动坐标均为外

变量，即满足 0p =∂∂ qK ，且广义动量（4.16）是可积的，则摄动项 0
2

1 =







=

ε
ε

ε ，

此时有势力项 0
p

≠
∂
∂
q
V

是保证欠驱动系统（4.9）可控的必要条件，否则由于广义动

量守恒 constantr =p ，若 0r ≠p ，则任何控制输入不能把系统稳定到静止状态。 

4.4 鲁棒反步控制 

   反步方法是解决可化为严反馈规范形非线性系统控制问题的有效方法，标准反

步方法可参考文献[110,111]，这种方法的主要奠基人包括 Kokotović[110,111], 

Isidori[107], Freeman[111]等。为利用反步方法实现式（4.22）所示摄动严反馈规范

形系统的控制，定义扰动变量， r
d
r1 qqz −= ， r

d
r2 ppz −= ， a

d
a1 qqξ −= ，

a
d
a2 ppξ −= ，其中 d)(⋅ 表示对应变量的期望轨迹。式（4.22）可重写为扰动系统 
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     (4.33) 

扰动系统（4.33）的无摄动名义系统( 2,1,0 == iiε )为 
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      (4.34) 

由于式（4.34）的 z子系统中，函数向量 rh 关于变量 1ξ 是非仿射的，因此单纯 z子

系统的控制器设计一般都是困难的。在经典反步控制中[110]，函数向量 rh 关于变

量 1ξ 的仿射特征是必要的，在文献[6]中虽然有对应非仿射形系统的反步稳定定理，

但它基于 z子系统存在已知的 Lyapunov 函数 )(zH ，这对于一般非线性系统也是不

便应用的。为此，我们只能从具体系统（4.34）本身的特点出发，研究其近似仿射

系统的控制问题，并进一步探索其摄动系统的鲁棒控制方法。 

 根据式(4.29)并参考附录 E，函数向量 rh 具有以下形式 


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




=

∂

∂
−=

2

1

p

ap
arr

),(
),(

h
hV

q
qq

qqh        (4.35) 

其中， 

 )(sin)2( 02211 llkgmmh −−+−= ϕ  

 [ ] [ ])cos()cos(cos)(2)5.0( 2122122112 θϕθϕϕ +++−+++−= grmgllmllmh  

显然 21 ,hh 均为 [ ]T21a1 θθ== qξ 的非仿射函数。考虑跳跃机器人腿部的小角度摆

动跳跃运动[21]，即 πϕ 5.0≈ ， 1sin ≈ϕ ， ϕπϕ −≈ 5.0cos ，并令 2h 中 202 ll ≈ ，则 21 ,hh

可近似为 

)sin(sin)5.0(~
)()2(~

21202

02211

θθπϕ ++−=

−−+−=

grmgHh

llkgmmh
     (4.36) 

其中， )(2)5.0( 201220110 llmllmH +++= ，显然近似式（4.36）等价于机器人腿部

的摆动与腿部的伸缩运动是解耦的。根据式（4.14）、式（4.21）的第一式，以及

附录 E，重新定义的广义坐标向量 rq 可写为 
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从式（4.37）中解出 ϕ,2l 代入式（4.36），并考虑 2,1,sin,cos =iii θθ 在点 ),( *
2

*
1 θθ 附

近的一阶线性近似，可得到 rh 的仿射近似形 
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其中 
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显然当 *
2

*
1 θθ ≠ 时，矩阵 1h 是可逆的。考虑式（4.38），系统（4.22）可在（4.33）

的基础上变为结构更简单的带摄动项的严反馈形 
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其中， rr23
~hhεε −+= 。尽管系统（4.39）对应的名义系统（当 03 =ε ）进一步引

入模型摄动项 rr
~hh − ，但是我们容易证明以下定理。 

 

定理 4.4：（摄动项有界定理） 对于图 3.1 所示跳跃机器人系统，系统（4.39）中

的摄动项 1ε ， 3ε 是有界的，即总能给定 2,1,0 =>Γ ii ，使 11 Γ≤ε ， 23 Γ≤ε 。 

证明：跳跃机器人是周期运动系统，系统的广义坐标 [ ]T212 θθϕl=q 、广义速
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度 [ ]T212 θθϕ 





 l=q 以及广义加速度 [ ]T212 θθϕ 





 l=q 中的所有变量均为有界

周期函数，根据式（4.16），定义的广义动量 rp 是有界周期的，根据式（4.27）和

（4.31）可以看出摄动项 1ε ， 2ε ， 3ε ， 4ε 是有界周期的，且有 )max( 11 ε=Γ ，

)max( 32 ε=Γ 。□ 

 

 为明确起见，把式（4.39）写为更紧凑的形式 

ugfξ

ξgfξ

εξgfz
εzgfz

442

2331

31222

12111

+=

+=

−+=
−+=









        (4.40) 

其中， 
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r
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d
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~ pmqf −−=              1
pp1

~ −= mg  

 d
a10

d
r2 qhhpf −−=           12 hg =  

 03 =f                      Ig =3  

 d
a4 pf =                     Ig −=4  

I 为单位矩阵。 

 系统（4.40）对应的无摄动名义系统（当 0=ε ）可以采用标准反步进行控制，

但由于存在未建模有界摄动项 ε，因此这里考虑鲁棒反步控制方法。针对系统

（4.39），可以给出以下定理。 

 

定理 4.5：（鲁棒反步定理）对于有界摄动严反馈形系统（ 4.40），若令

5,,2,1,0 = iki ， 2,1,0 => iiη ， )max( 11 ε=Γ ， )max( 32 ε=Γ ，以及如下定义

的正定函数 
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采用以下反馈 

( )





+

∂
∂

++
∂
∂

++
∂
∂

+






−








∂
∂

−−−= −

)()()( 211
1

3
122

2

3
233

1

3

4

T

3
1

3
324

1
4

zgf
z
α

ξgf
z
α

ξgf
ξ
α

fg
ξ

αξgu
H

k
    (4.41) 

其中， 
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可使该系统状态 ),( ξz 一致有界，且能收敛到紧残集 
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其中， 
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σ 为任意小的正数。 

 

证明： 对系统（4.40）中的 1z 子系统，设 2z 为虚拟控制输入，取 )( 11 zH 为候选

Lyapunov 函数，令 01 >∀η ，并利用杨氏不等式 222 baab +≤ 和 Cauchy-Schwarz 不

等式 yxyx ⋅≤T ，有 
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1
1

T
1111 4

1)(
η

+−≤ zzz kH        (4.42) 

进一步，取 ),( 212 zzH 为 1z , 2z 子系统的候选 Lyapunov 函数，取 1ξ 为虚拟输入，并

设 )( 1122
zαze −=z ，则有 
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考虑式（4.42），由式（4.43）有 
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其中，
21 4
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4
1

ηη
δ += 。若令 
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其中 02 >∀k ，则由式（4.44）有 
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进一步，取 ),,( 1213 ξzzH 为子系统 ),,( 121 ξzz 的候选 Lyapunov 函数，取 2ξ 为虚拟控
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若令 
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其中 03 >∀k ，则式（4.46）变为 
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最后，取 ),,,( 21214 ξξzzH 为系统（4.40）的候选 Lyapunov 函数，并令 322
αξ −=ξe

有 
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令实际控制输入为 
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其中， 0,0 54 >∀>∀ kk ，则由（4.48）有 
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若令 0
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即有 

4,3,2,1),(2 0 =+< ii λ
δδρ      (4.53) 

其中， 11 zρ = ，
22 zeρ = ，

13 ξeρ = ，
24 ξeρ = 。通过调整参数 21 ,, ηηλ ，可使 Tt ≥ 时，

系统（4.40）的状态误差 iρ 任意小。根据以上反步过程，控制输入u即为式（4.41），

而任意小正数 λδσ ≤ 。证毕。□ 

 

评注 4.9：基于定理 4.4，定理 4.5 证明图 3.1 所示跳跃机器人可通过反步方法实现

支撑相运动的鲁棒稳定，这得益于跳跃机器人是周期运动系统，因此系统（4.40）

中的目标运动 ),( d
a

d
r qq 应是周期的，且其平衡点应为 [ ]T*

2
*
120 5.0 θθπle =q 。 

4.5 数值仿真 

 为验证控制器（4.40）对有界摄动严反馈形系统（4.39）的有效性，本节通过

数值仿真来模拟图 3.1 所示跳跃机器人在支撑相的运动。图 4.1 为跳跃机器人稳态

运动示意图，其中 1,Txs 分别表示在支撑相跳跃机器人质心在水平方向的位移和支

撑相时间周期， 2,Tx f 分别表示在飞行相跳跃机器人质心水平移动距离和飞行相时

间周期。 ϕ∆ 表示机器人在支撑相时腿部偏离垂直位置的摆角（假设支撑相腿部摆

角关于垂直位置对称）。 

从图 4.1 可以看出，在支撑相跳跃机器人的腿部伸缩运动应为共振运动 

)sin()()(
202

d
2 lnttAltl βω ++=        (4.54) 

其中， 02l 为站立平衡时被动腿的长度， )(tA 为期望腿部振幅， mkn =ω 为机器

人的固有角频率，
2l

β 为腿部伸缩运动相位角，且由下式确定 

))(arcsin( 22
tAll ∆−=β         (4.55) 

其中， 20022 )(0 ltll −=∆< (在机器人不受外力作用下，被动腿的初始长度总满足

2002 )( ltl ≥ )。在稳态跳跃过程中的支撑相，机器人腿部摆动运动应满足下式 

)
2
1sin()()( 0

d
ϕβωϕϕϕ +∆+= ttt n      (4.56) 
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其中， π5.00 =ϕ ， )(tϕ∆ 为机器人腿部摆角， ϕβ 为腿部摆动运动相位角，且由下

式确定 

[ ])())((arcsin 00 tt ϕϕϕβϕ ∆−−=       (4.57) 

图 3.1 所示机器人的双臂运动范围是受限的，因此设计双臂周期运动的平均位置为 

π5.0)(
2
1 maxmin* =+= iii θθθ        (4.58) 

仿真中机器人的物理参数列于附录 D，该机器人的 3D 模型如图 3.2 所示。给定机

器人的初始静止位形为 

[ ] [ ]Tooo
200

T
212 110-130100m01.0)( += ltl θθϕ  

利用第 4.4 节给出的鲁棒反步控制器，机器人从不平衡初始位形被控制到站立平衡

位形 

[ ] [ ]Tooo
20

Td
2

d
1

dd
2 90-9090ll =θθϕ  

的仿真结果如图 4.2 所示。 

 

1,Txs 2,Tx f

ϕ∆ ϕ∆  
图 4.1 单腿跳跃机器人跳跃运动示意图 
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图 4.2 控制机器人系统到站立平衡位形 
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 基于相同的初始位形条件，并令式（4.54）中 m02.0)( =tA ，式（4.56）中

o10)( =∆ tϕ ，则机器人在支撑相的周期运动仿真结果如图 4.3 所示。图 4.4－图 4.6

分别表示位形变量 ,,2 ϕl 以及 1θ 的运动相平面图，其中的数据取自图 4.3 中 2s-20s

的数据。变量 2θ 的运动相平面图与图 4.6 十分类似(略去)。显然，机器人系统的运

动被稳定到目标周期运动。 

 值得一提的是，在定理 4.5 的证明中，假设反步过程中的每一步所取的反馈放

大系数 4,3,2,1,0 => iki 可以是相同的，但是通过大量的数值仿真显示， ik 可以取不

同的正数，而且更有利于把控制器调节到稳定状态。 

 

0 5 10 15 20
0.3

0.4

0.5
)(o

2l

time(s)   
0 5 10 15 20

60

80

100

120

)(oϕ

time(s)  
（a） （b） 

 

0 5 10 15 20
-200

0

200

400

)(, o
21 θθ

time(s)   

)Nm(, 21 ττ

τime(s)
0 5 10 15 20

-20

0

20

40
1τ
2τ

 
（c）                                （d） 

 

图 4.3 把机器人系统控制到站立平衡位置附近的小幅周期运动的仿真结果 
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图 4.4 根据图 4.3 的后 10 秒数据绘制的各广义坐标的相平面运动图 
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图 4.5 根据图 4.3（d）的最后 2 秒数据绘制的控制力矩曲线 
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图 4.6 图 4.3 中的稳态运动的控制力矩曲线 
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4.6结论 

 腿式跳跃机器人或跑步机器人在支撑相一般为二阶非完整约束欠驱动机械系

统，除非采用特殊的机械设计（例如 SLIP 模型腿式跳跃机器人），该二阶非完整

约束方程通常是高度复杂的不可积非线性二阶微分方程，给系统控制器设计带来

巨大困难。本章证明在一定条件下，非 SLIP 模型欠驱动腿式跳跃机器人在支撑相，

依然能实现平衡位形镇定和平衡点附近周期运动的轨迹跟踪稳定（该周期运动可

模拟连续跳跃运动中的支撑相运动）。本章给出的鲁棒控制方法基于 Olfati-Saber

提出的基于规范化动量状态坐标变换的严反馈形变换方法和反步控制方法。尽管

不满足 Olfati-Saber 提出的精确严反馈形变换条件，由于腿式跳跃机器人在支撑相

的运动一般为站立平衡点附近的周期运动，本章研究的欠驱动跳跃机器人可通过

Olfati-Saber 变换转化为带摄动项的近似严反馈形。基于摄动项有界条件，该机器

人系统支撑相的运动可通过鲁棒反步方法进行控制。这为非 SLIP 模型腿式跳跃机

器人的机械系统设计和控制器设计提供了一条新的技术途径。 
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5 一种新型仿生单腿跳跃机器人飞行相的指数稳定 

5.1 引言 

 在重力环境下，腿式动态移动机器人系统（这里指能实现跳跃或奔跑运动的机

器人系统）需要克服自身重力实现腾空动作，因此对系统驱动功率有较高要求。

为减小系统能量消耗，改善机器人的运动能效性，近年来如 Buehler、Ahmadi 和

Gregorio等[101，113,96,97,114,115]、Hyon、Mita和 Emura 等[24-27]、Zeglin

和 Raibert 等[99]、Papadopoulos 和 Cherouvim 等[21,98]以 Raibert的单腿机

器人模型——SLIP(Spring Loaded Inverted Pendulum)模型为对象，对腿式跳跃

机器人的被动动力学运动规划和控制问题进行了理论[92,115,24-27,21,98]或实

验研究[91,93-97,99,101,106,113,114,116]。Raibert[91-94,116]、Buehler 和

Ahmadi[96,113-115]等基于线性控制器就能实现 SLIP模型跳跃机器人的稳定跳跃

控制。为简化跳跃机器人系统的控制器设计问题，SLIP 模型跳跃机器人通常需要

通过精心设计使系统满足假设[95]：腿部的质量与惯量与系统总质量和惯量相比

充分小；机器人系统的质心与机器人髋关节尽可能接近。基于这种设计，机器人

身体的俯仰运动与腿部的伸缩运动近似解耦，且在飞行相摆动腿时不导致身体姿

态的大幅变化使得下一支撑相的平衡控制易于实现。勿庸置疑，这种设计思路对

促进腿式机器人技术发展，帮助深入理解动态腿式机器人的平衡原理具有重要意

义。然而，作为一类重要仿生机器人系统，SLIP 模型腿式跳跃机器人与实际仿生

对象有很大区别[95]，例如动物的腿部通常是关节式的，身体的质心位置偏离髋

关节，并且在机器人高速奔跑中身体质心位置相对于髋关节位置是变化的。若采

用非 SLIP模型设计，跳跃机器人系统的动力学将表现出十分复杂的非线性特征，

给系统控制器设计带来很大困难，因此无论从理论或实践方面，关于非 SLIP模型

跳跃机器人的研究都较少，除 Zeglin的“Uniroo”[106]和 Hyon的“Kenken”[95]

外，几乎再没有其他较为成功的非 SLIP 模型跳跃机器人实验系统。而且 Uniroo

的控制采用了 SLIP模型机器人的控制方法，正如 Zeglin给出的实验结果，Uniroo

能跳跃 40次左右。而 Kenken的控制器是基于精确动力学仿真的经验控制方法。 

 基于 Raibert等给出的关于跑步机器人被动动态运动的实验结果，即当机器人
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运动于被动动态方式时可节省 93％的能量[21,98]，Ahmadi 和 Buhler[97,114]、

Papadopoulos 和 Cherouvim[21,98]、Hyon 和 Emura 等[24-27]对单腿跳跃机器人

的被动动力学运动规划问题进行了研究。更多的关于腿式机器人的被动动力学研

究主要集中于两腿[27,117-120,2-3]和多腿机器人[121-124]，这些研究也多基于

SLIP模型进行理论分析或实验，Seipel and Holmes[125]还把平面 SLIP模型推广

到三维空间。除单腿机器人通常可以设计为近似 SLIP模型系统外，实际两腿或多

腿机器人一般不具有 SLIP模型的基本特征（例如系统质心位置偏离髋关节位置），

因此以 SLIP近似模型为基础的两腿或多腿机器人的被动动力学运动规划将存在较

大误差，其实际效果还有待实践检验。 

 以上提到的关于跳跃机器人控制的研究中，多数并未考虑在飞行相机器人的非

完整约束特征，这使跳跃机器人在飞行相的状态不能得到完全控制，例如通常只

控制机器人腿部的姿态，而机器人身体姿态并未得到控制，使机器人在飞行相身

体俯仰角有较大变化，这给下一支撑相稳定控制带来困难，例如 Hyon通过实验已

经发现[95]，当跳跃机器人大步跳跃（快速跳跃时），这种在飞行相摆动腿导致的

身体姿态的变化使机器人在下一支撑相的运动变得不稳定，因此对于小步幅跳跃

或奔跑，SLIP模型是有效的，但是对于大步幅高速跳跃或奔跑，SLIP模型的局限

性是明显的，正如 Hyon基于实验结果[95]建议跳跃机器人飞行相应采用非完整约

束系统控制方法。为通过较少的独立输入实现多自由度机械系统的运动控制，考

虑非完整约束条件下，跳跃机器人飞行相的运动规划和控制问题也有一些研究，

例如[32,40,66,102]，这些研究多针对 Raibert 的直线伸缩腿式机器人系统，其

腿部伸缩运动可以主动控制并且没有设计尾巴。一阶非完整约束系统的线性近似

模型通常不可控[75]，并且不能通过时光滑不变状态反馈实现稳定[40]，只能采

用光滑时变[76,68,58]、非连续反馈[63,64,109]、或非光滑时变反馈[69,73]方

法，而且这些控制方法通常表或现出慢的收敛速度，或表现出缺乏鲁棒性，对干

扰比较敏感的缺陷[62]。 

 为研究具有更好仿生学特征的动态腿式机器人的运动控制及其能效优化问题，

综合改善以往腿式机器人的运动灵活性、自治运动性能和成本经济性，本章提出

一种新的非 SLIP模型跳跃机器人设计方案，并着重讨论其飞行相的姿态控制问题。

该跳跃机器人采用欠驱动设计，其腿部为弹性被动关节式结构，以最大程度减小
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腿部的质量，从而降低机器人的总体质量，提高机器人的运动能效性(关于该机器

人系统的主要特点在第 5.2节介绍)。为实现跳跃机器人在飞行相姿态的指数鲁棒

稳定，本章基于链式规范形变换和类三角形变换，采用反步控制方法实现跳跃机

器人飞行相的姿态稳定。本章是如下安排的。下一节介绍机器人机构模型并建立

其动力学模型；第 5.3 节讨论跳跃机器人飞向相动力学的规范形变换；第 5.4 节

是控制器设计；第 5.5节是仿真结果；最后是结论。 

5.2 机器人模型 

5.2.1 机器人机构模型 

本章研究的弹性欠驱动单腿跳跃机器人的机构模型如图 5.1所示，为平面机械

系统。它主要由小腿骨、大腿骨、身体和尾部组成（与图 5.2 所示袋鼠骨骼相比

较）。所有刚体之间的关节为弹性转动关节，尾部、大腿骨和身体三个刚体铰接于

同一点（即髋关节与尾关节同轴）。膝关节，即大腿与小腿之间的关节 2θ ，为被动

关节且其中安装的扭转弹簧的刚度为
2θ

k ；髋关节，即大腿与身体之间的关节 3θ ，

为主动关节且其弹簧刚度为
3θ

k ；尾关节，即大腿与尾部之间的关节 4θ ，为主动关

节且关节刚度为
4θ

k 。为简化问题，该机构模型的脚被简化为点，即机器人以小腿

末端（脚踝）为支撑实现跳跃运动。用 1m ， 2m ， 3m 和 4m 分别表示小腿骨、大腿

骨、身体和尾部刚体的质量，对应刚体绕各自质心的转动惯量分别为 4,3,2,1, =iI i ，

其中刚体 3m 为一惯性轮，其质心位于髋关节轴线上，即 03 =cl ，其余各刚体 1m ， 2m

和 4m 分别为长度为 1l ， 2l 和 4l 的均质连杆，且各连杆质心与其对应关节之间的距

离分别为 1cl ， 2cl 和 4cl （见图 5.1所示）。 

 图 5.1所示机器人机构模型的主要特点包括： 

(1) 刚体 3m 的质心与髋关节同轴，使得该机器人动力学方程中与 3cl 有关的哥氏力

和离心力等非线性力项为零，从而使机器人的动力学模型得到很大简化。采用

这种设计受到 Spong 等提出的惯性轮摆[126]的启发。惯性轮摆是两自由度微

分平坦欠驱动机械系统，具有微分平坦性能极大地简化欠驱动机械系统的运动
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规划和控制问题[52]。 

(2) 膝关节 2θ 采用弹性被动关节设计。由于该关节没有驱动元件，因此该机器人

的腿部可设计为具有较大比刚度的轻质机械结构，降低腿部的质量和转动惯

量，有利于提高跳跃机器人的运动效率。例如 Ahmadi 和 Buehler 等[97,114]

关于 SLIP 模型单腿跳跃机器人的研究表明，在跳跃机器人稳态运动中，摆动

腿所消耗的能量占总能量消耗的 40％，因此减小腿部的转动惯量，有利于降

低系统能耗。这也遵循了 Hyon 在文献[95]中所指出的，减小腿部的惯量有利

于稳定跳跃机器人的高速跳跃运动。与 SLIP 模型设计不同，机器人的膝关节

采用转动关节方式也有利于简化机械设计，但与直线伸缩腿相比，使机器人系

统的动力学非线性特征增强，给系统控制带来困难。 

(3) 具有尾部机构。除 Zeglin 和 Raibert 等[106]于 1990 年前后设计的单腿跳跃

机器人“Uniroo”外，由于非 SLIP 模型跳跃机器人系统的复杂性，几乎所有

较成功的腿式跳跃机器人系统都没有尾部机构。为明确揭示尾部运动对机器人

稳定运动的作用，本章图 5.1所示机器人模型中膝关节采用非驱动设计且采用

踝关节（无脚掌）支撑运动，因此该机构具有两个非驱动广义坐标，正如本章

后面将揭示的，在这种情况下其尾部关节为主动关节对保证该机器人系统可控

具有重要作用。 

1θ

2θ

3θ
4θ

1cl

111 ,, Ilm

2cl

222 ,, Ilm

33, Im444 ,, Ilm

4cl

2θk

4θ
k

o

z

x

),( 00 zx

3θ
k

       

图 5.1  机器人模型                           图 5.2 袋鼠骨骼 
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5.2.2 飞行相动力学 

 在飞行相（即机器人的任何位置与地面不接触），图 5.1 所示跳跃机器人的所

有广义坐标 [ ]T432100 θθθθzx=x 均为变量，若令 VKL −= 为飞行相拉格

朗日函数，其中 ),( xx KK = 和 ),,,,( 43210 θθθθzVV = 分别为飞行相的动能和势能。

忽略摩擦，则飞行相的拉格朗日动力学方程可表示为 

0
d
d

0

=
∂
∂
x
K

t 

 

0
d
d

00
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∂
∂

+
∂
∂

z
V
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K
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方程（5.1）详见附录 F。注意到，方程（5.1）的前两个方程存在拉格朗日守恒量，

即跳跃机器人沿平面上两笛卡儿坐标方向的线动量守恒，其中第一式显然有

)( 00 txxK c =∂∂ ，其中 cx 表示机器人质心水平方向速度，即在飞行相机器人质心沿

水 平 方 向 匀 速 运 动 ， 且 )()( 00 txttxx ccc +=  。 第 二 式 中 gmzV c=∂∂ 0 ，

4321 mmmmmc +++= 为系统总质量，因此 )( 00 tzgtmzK cc  +−=∂∂ ，其中 cz 表示

机器人质心沿垂直方向速度，且 )()(
2
1

00
2 tzttzgtmz cccc ++−=  ，即机器人在垂直

方向为抛物线运动。由于线动量守恒方程完全可积，因此方程（5.1）可缩减为 

τhcqmqm

hcqmqm

=+++

=+++

aaaaapap

ppapappp 0





       (5.2) 

其中， 
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其中考虑了 01551 == mm ， 02552 == mm ， 06556 == mm ， 01 =h （参见附录 F）。

跳跃机器人或跑步机器人系统在飞行相因满足角动量守恒，通常被当作一阶非完

整约束机械系统处理。需要指出的是，这是以假设机器人机械系统为刚体系且忽

略系统摩擦为前提的。对于图 5.1 所示跳跃机器人，其中被动关节 2θ 包含弹性元

件，因此在飞行相机器人系统的动能与内部弹性势能之间存在能量交换过程，若

在这种能量交换过程中有能量损耗（例如由关节摩擦等因素导致的能量损耗），则

系统的角动量将不再守恒。即使在飞行相机器人的动能与弹性势能交换的过程中

没有能量损耗，则该系统的角动量也是周期守恒的。为简化问题，但并不存在理

论和技术障碍，若图 5.1所示机器人的连杆 1l 的质量和惯量与系统总体质量和惯量

相比很小，即 ∑
=

<<
4

1
1

i
imm 且 ∑

=

<<
4

1
1

i
iII ，使机器人在飞行相关节角被动关节 2θ 的

角位移 0)( 202 ≈−θθ ，其中 20θ 表示被动关节 2θ 的自由平衡位置，则在飞行相机器

人的动能 
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因此基于机器人在飞行相其被动关节 2θ 无运动的假设，等效动力学（5.5）的第一

式存在首次积分 
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其中， 0P 为常向量，即机器人在飞行相的动力学（5.2）可简化为 
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    (5.3) 

显然，式（5.3）的第一式可看作第二式表示的子系统的一阶非完整约束。因此多

自由度（三自由度以上）跳跃机器人在飞行相一般为一阶非完整约束系统。值得

一提的是，Mita[4]的研究表明，对于简单二体自由飞行系统则是例外，其角动量

守恒方程是可积的。 

5.3 飞行相动力学规范形 

 为设计控制器方便，本节考虑机器人动力学的规范形变换，使已有非线性控制

方法能被应用于图 5.1所示跳跃机器人的运动控制。若定义 uq =a 为新控制输入，

飞行相动力学方程（5.2）可通过输入变换 

))(()( pp
1

pp
T
paaapa

1
pp

T
paaa hcmmhcummmmτ +−++−= −−    (5.4) 

变换为部分线性化规范形 
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ummhcmq
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−+−= −−

a
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1

pppp
1

ppp )(




      (5.5) 
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基于机器人在飞行相满足假设 )0,(),( 2022 θθθ ≈ ，则系统广义坐标缩减为

),,,,( 43100 θθθzx ，姿态坐标从四维降低为三维 [ ]T431 θθθ=θ 。式（5.5）的第

一式不仅存在首次积分（见第 5.2.2.节式（5.3）的第一式），而且可简化为 

044433141 )()( p=++ θθψθψθθψ         (5.6) 

其中，
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m 为变量 4θ 的函数，

0p 为常数。通过直接计算， )( 41 θψ 和 )( 44 θψ 可表示为 
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其中， 
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因此式（5.5）可变换为以下形式 
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     (5.7) 

其中， 1p θ=θ ， [ ]T43a θθ=θ 。当初始角动量 00 ≠p 时，由于系统（5.7）没有平

衡点，机器人的旋转运动不能停止。这种情况可用来实现杂技机器人或体育机器

人的空中翻腾动作[116,4]。但是当控制输入受限时，这是十分困难的控制问题。

尽管在文[116]中完成了类似的实验，但我们必须指出，其中机器人实验系统采用

的是气动方式以提供强大的控制输入使机器人系统在下一支撑相能够稳定。本章

不考虑这种情况，我们假设跳跃机器人在起跳时，系统的角动量已被控制为零，

即 00 =p 。在这种情况下，系统（5.7）变为 
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      (5.8) 

本章就以（5.8）为基础讨论图 5.1所示跳跃机器人在飞行相的动力学规范形变换

和姿态控制问题。 

Murray 和 Sastry [40,32]发现很多一阶非完整约束机械系统具有一类特殊规

范形，即链式规范形。在文[39]中，Murray 给出了一个两输入系统可转化为链式

系统的充要条件，并在文[40]中给出了具体的链式变换算法。为应用该算法实现

系统（ 5.8）链式变换，首先需明确一些符号的含义。本章中，定义
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∂
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的李括号，为简便起见，定义 )](,[ xgfg =fad ， )](,[ 1 xgfg −= k
f

k
f adad 。

{ }kggg ,,,span 21 =∆ 定义为由一组光滑向量场 kggg ,,, 21  张成的分布，若对于任

意向量场 ∆∈1α ， ,2 ∆∈α 有 ∆∈21
αααd ，则称分布∆是对合的。 

 基于以上符号定义，针对两输入非完整系统，Murray 等给出的链式规范形变

换算法通过以下命题的证明给出[40]： 

 

命题 5.1：（链式变换）考虑可控系统 

2211
~)(~)( uu xgxgx +=  

其中， 21 g,g 为线性无关光滑向量。定义 
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若对于某开集U ，对于所有 nRUx ⊂∈ 有 nR=∆ )(0 x 且 1∆ 和 2∆ 在U 上对合，并存

在光滑函数 RUy →:1 使得 0d 11 =∆⋅y ， 111
=yLg ，则存在局部反馈变换 

)(xz Φ= ， vxu )(~ β=  

使变换系统为链形 

.11

123

22

11

vzz

vzz
vz
vz

nn −=

=
=
=











         (5.9) 

 

评注 5.1：命题 5.1的证明主要基于 Frobenius定理[32]。事实上，基于存在光滑

函数 1y 满足 0d 11 =∆⋅y ， 1d 11 =⋅ gy 的假设，以及 2∆ 对合则存在光滑函数 2y 满足

0d 22 =∆⋅y ， 0d 2
2

2 1
≠⋅ − gn

gady 。若定义映射 
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





















=Φ=

−

2

2

2
2
1

1

1

)(

y
yL

yL
y

g

n
g

xz         (5.10) 

则 

)~~( 2211 uu gg
x

z +
∂
Φ∂

= 2

22
2

1

2

2
2

2
1

~

0

0
d

0

~

d
d

d
1

1

1

1

1

u
yL

u

yL
yL

yL n
g

g

g

n
g






















⋅

+























=

−−





g
   (5.11) 

显然若取输入变换 

22
2

12
1

2

11

~)(~)(:

~:

121
uyLLuyLv

uv
n
gg

n
g

−− +=

=
     (5.12) 

则式（5.11）即为链形（5.9）。坐标变换（5.10）的局部有效性由 n=





 ∆
∂
Φ∂

0rank
x

保证，而输入变换（5.12）的可逆性基于 =⋅ −
2

2
2 1

d gn
gady 02

2
12

≠− yLL n
gg 。 

 

评注 5.2：要应用命题 5.1，需解两组偏微分方程，即 0d 11 =∆⋅y ， 1d 11 =⋅ gy 和

0d 22 =∆⋅y 。求解这些偏微分方程可通过与 Frobenius 定理充分性证明的构造过

程类似的方法来进行[107]。令 [ ]T431 θθθ=x ，考虑系统（5.9）的子系统

),( ap qq ( ),,( 431 θθθ= )，则有 

2211
~)(~)( uu xgxgx +=          (5.13) 

其中，

T

1

3
1 01 








−=
ψ
ψ

g ，

T

1

4
2 10 








−=
ψ
ψg 。容易计算 

T

1

3

4
2 00

1 















∂
∂

=
ψ
ψ

θ
ggad  

若定义 
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{ }
{ }
{ }.span:

,sapn:

,,span:

22

221

2210

1
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g

gg

ggg

=∆
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=∆

g

g
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显然， 3
0 )( R=∆ x ，且 1∆ 和 2∆ 是对合的，并有 31 θ=y 满足偏微分方程组 0d 11 =∆⋅y ，

1d 11 =⋅ gy 。通过求解偏微分方程 0d 22 =∆⋅y ，其解为 

04
41

44
112 d

)(
)(

µθ
θψ
θψ

θµ +







+= ∫ψ        (5.14) 

其中， 01 ,µµ 为常数且 01 ≠µ 。为简便起见，令 0,1 01 == µµ ，则关于系统（5.13）

的链式变换可由以下命题给出: 

 

命题 5.2：（系统（5.13）的链式变换）系统（5.13）通过以下反馈变换 

∫+=

−=
=

4
41

44
13

132

31

d
)(
)(
θ

θψ
θψ

θ

ψψ
θ

z

z
z

             

2
1

3

4
2

11

~

~

uv

uv

ψ
ψ

θ∂
∂

−=

=
   (5.15) 

可转化为链式系统 

123

22

11

vzz
vz
vz

=
=
=







         (5.16) 

证明：只要把偏微分方程的解 

31 θ=y , 04
41

44
112 d

)(
)(

µθ
θψ
θψ

θµ +







+= ∫ψ  

代入式（5.10）和（5.11）即可验证。□ 

 

评注 5.3： 由于分布定义在开集U 上，命题 5.1 是一个局部变换充分条件。但应

用于命题 5.2，反馈变换（5.15）显然是全局变换，除非机器人的惯性参数碰巧满

足 04 =ψ 时坐标变换（5.15）具有奇点。 

 

评注 5.4：多亏 )( 41 θψ 和 )( 44 θψ 是三角函数有理多项式，虽比较繁琐但偏微分方程
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0d 22 =∆⋅y 的解可显式表示（因数值仿真要用到该积分，因此列于附录 G）。 

 

 针对链式非完整约束系统（5.9），已有很多研究结果，例如位置镇定[102,76,68, 

73]或轨迹跟踪控制[75,58,62]都已经得到较多研究。这些控制方法多基于非完整

约束链式系统的控制输入为速度，但实际物理系统通常采用力或力矩作为控制输

入[75,69]。尽管式（5.5）显示，广义坐标的加速度也可作为控制输入，而且该

加速度与输入力或力矩之间存在可逆变换（5.4），但是若定义控制输入为

2211 ˆ,ˆ vuvu  == ，则链式系统（5.9）扩展为带积分器的链式系统 

 

22

11

11

123

22

11

ˆ
ˆ

.

uv
uv

vzz

vzz
vz
vz

nn

=
=
=

=
=
=

−















           (5.17) 

显然式（5.17）并不具有链式结构，因此许多基于链式系统的控制器设计方法[32]

不能直接应用。为实现系统（5.17）这类系统的稳定控制，下一节将探讨采用反

步控制方法实现这一目的。 

5.4 控制器设计 

 反步方法是适用于一类具有严反馈形结构的非线性系统控制设计方法[110]。

为实现系统（5.17）这类扩展链式系统的反步控制，首先要把该系统通过坐标变

换转化为类三角形结构。为清楚起见，这里具体研究链式系统（5.16）的扩展系

统的反步控制，即系统 

 

22

11

123

22

11

ˆ
ˆ
uv
uv

vzz
vz
vz

=
=
=
=
=











         (5.18) 

采用全局可逆坐标变换 1+−= ini zξ ， 31 ≤≤ i ，定义扰动变量 d
iii ξξζ −= ， 3,2,1=i ，
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并考虑镇定控制问题（即 3,2,1,0d == iiξ ），系统（5.18）的扰动方程可表示为如

下“类三角形”规范形 

22

11

13

22

121

ˆ
ˆ
uv
uv
v

v

v

=
=
=

=

=











ζ

ζ

ζζ

        (5.19) 

借鉴文[127]提出的方法，一个基于积分器反步方法的全局指数稳定控制器由以下

命题给出： 

 

命题 5.3：针对系统（5.19），令 5,,1,0 = iki ，且 31 kk > ，定义如下正定函数 

2
111 2

1)( ζζ =H  

2
2211212 )(

2
1)(),( αζζζζ −+= HH  

2
32

2
1121221213 )(

2
1)(

2
1),(),,,( ααζζζζ −+−+= vvHvvH  

采用反馈 

2
2

3
1

3

3
2

1

3
223252

131141

)()(ˆ

)(ˆ

vvvku

vkvku

ζ
α

ζ
α

ζ
ζ
α

αζα

α

∂
∂

+







∂
∂

+
∂
∂

+−−−−=

−−−=

  (5.20) 

其中， 

3331 )( ζζα k−= ， 

33

11
312 ),(

ζ
ζ

ζζα
k
k

= 且 0)( 03 ≠tζ ， 

3

1
1212223133213 )(),,(
ζ
ζ

ζαζζζζζζα kkkk +−−−= 。 

则系统（5.19）的原点 )0,0(),( =vζ 指数稳定。 

证明： 

首先，考虑系统（5.19）的第一式，即 121 vζζ = ，若取 )( 11 ζH 为候选 Lyapunov
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函数（李氏函数），并采用反馈 33311 )( ζζα kv −== ，其中 03 >k ，则有 

231311 )( ζζζζ kH −=        (5.21) 

取虚拟输入
33

11
3122 ),(

ζ
ζ

ζζαζ
k
k

== ， 03 ≠ζ 且 01 >k ，则从式（5.21）有 

2
1111 )( ζζ kH −=         (5.22) 

显然，通过反馈 331 ζkv −= ，有 333 ζζ k−= ，该微分方程的解为 )(
033

03)()( ttkett −−= ζζ 。

考虑到 2
111 2

1)( ζζ =H 及式（5.22）有 111 2 HkH −= ，其解为 )(2
011

01)()( ttketHtH −−= ，

有 )(
011

01)()( ttkett −−= ζζ 。若取 031 >> kk ，且 0)( 03 ≠tζ ，则有 

0
)(
)(

lim
)(
)(

lim ))((

03

01

3

1 031 ==








 −−−
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ttkk

tt
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t
t

t
t

ζ
ζ

ζ
ζ

    (5.23) 

其次，针对子系统 ),( 21 ζζ ，取 2
2211212 )(

2
1)(),( αζζζζ −+= HH 为候选李氏函数，

并令 222
αζζ −=e ，则有 





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
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
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





(5.24) 

若取虚拟控制输入
3

1
12123133213 2

),,(
ζ
ζ

ζζζζζζα ζ kkekk +−−= ， 02 >∀k ，则式

（5.24）有 

)(),( 32
2

2
2

11212 22
αζζζ ζζ −+−−= veekkH      (5.25) 

最后，对子系统 ),,,( 2121 vvζζ ，取 

2
32

2
1121221213 )(

2
1)(

2
1),(),,,( ααζζζζ −+−+= vvHvvH  

为候选李氏函数，并令 111
α−= vev ， 322

α−= vev ，则有 
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   (5.26) 

显然，若取控制输入为 
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  (5.27) 

则式（5.26）有 

2
5

2
4

2
2

2
11213213 212

),,,,( vv ekekekkvvH −−−−= ζζζζζ  

不失一般性，若令 025421 >==== λkkkk ，则有 33 HH λ−= ，该微分方程的解

为 

)(
033

0)()( ttetHtH −−= λ  

因 0)(lim )(
03

0 =−−

∞→

tt

t
etH l 并考虑到式（5.23），因此命题 5.3得证。□ 

 

评注 5.4：命题 5.3给出的控制器（5.20）的有效性依赖于 031 >> kk 且 0)( 03 ≠tζ ，

其中 031 >> kk 容易保证，而 0)( 03 ≠tζ 依赖于系统的初始状态，若 0)( 03 =tζ ，则

可采用开环命令使 0)( 13 ≠tζ ，然后在 [ )∞∈ ,1tt 上，控制器（5.20）是一致有效的。 

 

评注 5.5：对于带积分器的链式系统（5.17），或具体系统（5.18），若存在有界干

扰（特别是匹配不确定性），通过类似的递推设计过程，相应鲁棒反步控制器也不

难设计[110]。 

5.5 仿真结果 

 本节通过数值仿真验证命题 5.3给出的控制器的有效性。在仿真中图 5.1所示
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机器人的物理参数列于附录 H 中。尽管通过大量数值仿真证明从任意初始姿态到

任意目标姿态均可通过控制器（5.20）实现镇定，下面图 5.3 和图 5.4 只给出机

器人在飞行相从零速度初始姿态 )90,50,60())(,,( ooo
0431 =tθθθ 到零速度目标姿态

)60,0,90())(,,( ooo
1431 =tθθθ 的镇定控制仿真结果。从该初始姿态到目标姿态的运

动过程，是跳跃机器人在飞行相的典型摆动腿的过程，初始姿态表示机器人的起

跳姿态，目标姿态是机器人落地姿态。显然，在稳态跳跃运动中，跳跃机器人在

支撑相的运动过程应为以上初始姿态和目标姿态交换后的姿态镇定过程，同时伴

随弹性被动关节 2θ 的一次周期运动（因为在起跳和落地时刻，假设没有反弹作用，

该弹性被动关节的位置处于其零重力平衡点 *
22 θθ = ）。 

 图 5.3(a)显示机器人从初始姿态到目标姿态的运动轨迹，图 5.3(b)显示机器

人姿态各变量的误差收敛过程。图 5.4 给出了对应于图 5.3 所示机器人运动过程

中的驱动力矩。为清晰显示图 5.1 所示机器人在飞行相的位形变化，图 5.5 以动

画方式显示了机器人姿态控制过程中的位形变化，图中参考点为机器人质心位置。

图 5.5 中假设机器人质心位置不变，在机器人实际跳跃过程中，在飞行相机器人

系统质心运动轨迹为弹道轨迹。 
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(a)                                     (b) 

图 5.3 姿态镇定数值仿真结果 
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(a)                                   (b) 

图 5.4 姿态镇定输入力矩 
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图 5.5 机器人姿态镇定中的位形变化过程 

5.6 结论 

 尽管通过实验已经证明，基于 SLIP 模型设计的跳跃机器人在飞行相可通过部

分状态控制实现稳定跳跃，但通过实验也证明，当跳跃机器人大步幅跳跃或采用

非 SLIP模型设计时，跳跃机器人在飞行相的运动控制需要考虑非完整约束，即通

过少输入实现多自由度运动控制，而基于部分状态控制的控制方法难以应用。借

鉴惯性轮摆的可控性特点，本章提出一种新的非 SLIP模型跳跃机器人设计方案，
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对该机器人的动力学特征和飞行相的姿态镇定问题进行了讨论，基于链式变换和

积分反步控制，实现了该跳跃机器人在飞行相姿态的指数稳定控制。 

 本章仅考虑了零初始角动量条件下，跳跃机器人飞行相的姿态镇定问题。在非

零初始角动量条件下，跳跃机器人飞行相的姿态镇定不可能。只能通过姿态的轨

迹控制，使跳跃机器人在飞行相，在给定时刻通过某一目标姿态（例如在落地时

刻，到达期望落地姿态）[4]，从而间接实现姿态控制。在文[4]中只考虑了两体

系统飞行相的姿态轨迹控制问题，对于多体系统非零初始角动量条件下的飞行姿

态控制问题还需进一步进行研究。 
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6 单输入微分平坦欠驱动机械系统的最优运动规划 

6.1引言 

 本章研究具有微分平坦性的欠驱动系统的最优运动规划问题。微分平坦这一概

念首先由 Fliess[42]提出，近十余年来，Rouchon[43-46]、Martin[44-46]、

Murray[47-50]、Rathinam[49-51]、Nieuwstadt[48] 等许多学者在这方面都进行

了深入研究。若一个非线性系统具有微分平坦性，则其运动规划和控制问题容易

解决[52,53]。然而遗憾的是，到目前为止，针对单输入非线性系统才存在判断它

是否为微分平坦系统的充要条件。对于一般多输入系统，只有一个必要条件[46]。

微分平坦系统的运动规划和控制方法通常依赖于能找到一组平坦输出，寻找一般

多输入非线性系统的平坦输出还没有普遍适用的方法，通常只能依靠猜测试凑

[52]。对于单输入非线性系统，判断它是否具有微分平坦性和对应平坦输出的求

解都有系统方法。 

 对于具有微分平坦性的欠驱动机械系统，若其平坦输出能被解析表出，则系统

运动规划问题可转化为平坦输出空间的轨迹规划问题。如文献[128]所述，平坦输

出空间轨迹规划实质上是一个代数方程的求解问题。本章研究进一步显示，通过

构造具有冗余待定系数的光滑多项式来拟合平坦输出空间轨迹，可实现平坦欠驱

动机械系统的运动优化，改善欠驱动机械系统运动能效性。这对于仿生机械系统

这类有限能源系统具有特别重要的意义。 

 本章是如下安排的。第 6.2节分析欠驱动系统的特征并给出一般欠驱动系统的

状态空间方程；第 6.3 节给出单输入欠驱动系统的平坦输出的求解方法的严格理

论依据；第 6.4 节给出微分平坦欠驱动系统的运动优化规划方法；第 6.5 节通过

惯性轮摆系统来验证提出的运动优化规划方法的可行性和有效性。第 6.6 节是结

论。 

6.2欠驱动机械系统动力学 

 考虑 n自由度机械系统，设 nR∈q 表示系统广义坐标，在无外加约束的情况下，
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系统的欧拉－拉格朗日(Euler-Lagrange)方程可写为 

τq
qq

)(
d
d FLL
t

=
∂
∂

−
∂
∂


        (6.1) 

其中， L 表示系统的拉氏函数， mR∈τ 表示广义驱动力矩矢量。若 nm < ，则

[ ]T,0)( mF Iq = ，其中 mm
m R ×∈I 表示单位矩阵。对应矩阵 )(qF ，若把系统广义坐

标写为 [ ] mmn RR ×∈= −
ap qqq ，其中 pq 和 aq 分别表示被动和主动广义坐标，则

动力学方程（6.1）可写为以下形式 
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其中， 







=

aaap

papp

mm
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M 为系统质量惯性矩阵， 







=

),(
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2

1

qqc
qqc

c

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包含系统离心力、哥

氏力、重力、以及系统摩擦力。方程（6.2）的前 mn − 行方程为 

0),(1apappp =++ qqcqmqm         (6.3) 

由于无直接广义驱动，方程(6.3)可看作有驱动子系统 

τqqcqmqm =++ ),(2aaapap         (6.4) 

的微分约束。该微分约束(6.3)存在首次积分的充要条件是被动广义坐标是循环坐

标[129]，即存在关系式 

0
p

=
∂
∂
q
L

         (6.5) 

式（6.5）表示动力学方程（6.1）关于被动坐标部分有广义动量守恒关系式 

constant
p

=
∂
∂
q
L

        (6.6) 

即二阶微分方程（6.3）可降阶为一阶微分方程，例如空间自由漂浮机器人系统

[22]。文献[12]给出了方程（6.3）完全可积的充要条件。本章考虑方程（6.3）

不可积的情况，即系统（6.2）是“二阶非完整约束”欠驱动机械系统。这种称谓

与经典非完整约束力学概念有所区别。经典非完整约束力学系统（一阶非完整约

束系统）需要采用带拉格朗日乘子项的欧拉－拉格朗日动力学方程建立系统动力

学，以考虑附加在系统上的非完整约束。显然这里我们考虑的欠驱动系统（6.2）
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并无附加微分或代数约束，该系统的动力学满足无拉格朗日乘子的欧拉－拉格朗

日动力学方程，其所谓二阶非完整约束是由于系统内部存在被动关节引起的。 

 由于独立控制输入的数目少于系统自由度数目，欠驱动机械的主要困难在于系

统运动规划和控制方面。直接从系统动力学方程（6.2）或（6.3）和（6.4）研究

欠驱动机械系统的运动规划和控制问题是困难的，一般需要把动力学方程（6.2）

变换为一阶微分方程形式——状态空间方程。为简化问题，这里首先考虑 Spong[28]

提出的部分反馈输入变换，即对于系统（6.3）-(6.4)，作输入变换 

),(),()( 1
1

ppap2pa
1

ppapaa qqcmmqqcummmmτ 

−− −+−=     (6.7) 

其中， aqu = 为新的控制输入。系统(6.3)-(6.4)可变换为部分线性化形式 
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进一步系统（6.8）可写为状态空间形式 

mn RR ∈∈+= uxuxgxfx ,,)()( 2
       (6.9) 

其中，
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6.3 微分平坦欠驱动系统 

 微分平坦这一概念首先由 Fliess et al.[42]采用微分代数方法定义。粗略地

讲，若能找到一组平坦输出变量，使得系统的所有状态和输入变量可表示为平坦

输出变量及其有限阶导数的代数式，则称该系统是微分平坦的。更准确地，若

nR 2∈x 表示系统状态变量， mR∈u 表示系统输入，若能找到一组输出 mR∈y 具有

形式 

),,,,( )(αuuuxhy 
=  

使得状态和输入可表示为 
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=

=
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则称该系统是微分平坦系统。由于平坦输出与系统状态和输入之间的这种代数结

构，微分平坦系统的运动规划和控制问题得到较多研究。然而遗憾的是，到目前

为止，对于一般多输入非线性系统，寻找微分平坦输出还没有普遍适用的方法，

多数研究针对具体系统通过猜测尝试来确定平坦输出，判断微分平坦系统只有一

个必要条件[46]。对于单输入系统则不同，存在如下定理[52]： 

 

定理 6.1：单输入非线性系统， RRu n ∈∈= uxxfx ,,),( ，是微分平坦的，当且

仅当它可反馈线性化。 

 

 精确反馈线性化是上世纪 90年代前后几何非线性控制理论的重要成果[107]。

定理 6.1 阐明的单输入非线性系统的微分平坦性与反馈线性化之间的内在联系，

证明通过基于微分几何的反馈线性化方法为寻找单输入非线性系统的微分平坦输

出提供了可行途径。 

 

定理 6.2[107]:仿射系统 RuR n ∈∈+= ,,)()( xuxgxfx 是可反馈线性化的，当

且仅当存在 0x 的一个邻域U 和定义在U 上的一个实值函数 )(xh ，使得输入－输出

系统 

)(
)()(

x
xgxfx

hy
u

=
+=

       (6.10) 

满足条件： 

  a. 1,0)( −<= nkhLL k
fg x  

b. 0)(1 ≠− xhLL n
fg . 

 

 定理 6.2 中系统（6.10）可反馈线性化所应满足的两个条件也定义为系统

（6.10）的关系度，且关系度满足 nr = 。定理 6.2 表明当系统（6.10）的关系度

严格小于系统状态空间维数 n， nr < ，则系统（6.10）不可反馈线性化，只有当

系统关系度等于系统状态空间维数时，该输入－输出系统(6.10)才是可反馈线性

化的。显然系统的关系度与输出 y 的选择有关。对于满足定理 6.2 的单输入非线
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性系统（6.10），即有 
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因此定义坐标变换 

nihLxz i
fii ≤≤== − 1),()( 1 xf       (6.12) 

和输入变换 
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其中， v为新定义的输入，则系统（6.11）可变换为线性系统 
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显然系统（6.14）是可控的。应用定理 6.2 来解决非线性系统控制问题的关键在

于找到满足关系度条件 nr = 的输出函数 )(xh 。对于单输入非线性系统，该函数的

存在性由以下定理保证[107]： 

定理 6.3：仿射系统（6.10）存在满足关系度 nr = 的输出函数 )(xh 的充要条件是： 

a. 矩阵 [ ]gggg 12 −− n
f

n
ff adadad  的秩为 n； 

b. 分布 { }ggg 2,,,span −=∆ n
ff adad  是对合的。 

 

根据定理 6.3 的第二个条件，利用 Frobenius[107]定理可知，必然存在光滑

函数 )(xh 满足 

[ ] 0,,,)( 2 =
∂

∂ − ggg
x
x n

ff adadh
       (6.15) 

考虑式（6.15）及如下等式[23]  
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若 0)()(1 ≠=− xhLL n
fg δx ，则根据式（6.15）和（6.16）由 
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   (6.17) 

定义 

[ ]ggggxC 12 ,,,,)( −−= n
f

n
ff adadad       (6.18) 

由式（6.17）有 

[ ] )()(,0,,0,0)( 1 xCx
x
x −=

∂
∂ δ

h
      (6.19) 

式（6.19）表示满足定理 6.2 的单输入非线性系统的输出 )(xh 所应满足的条件，

这也给出了求解输出函数 )(xh 的系统方法。因此容易证明如下定理： 

 

定理 6.4：单输入非线性系统 RuR n ∈∈+= ,,)()( xuxgxfx 是微分平坦的，当

且仅当 

a. 矩阵 [ ]gggg 12 −− n
f

n
ff adadad  的秩为 n； 

b. 分布 { }ggg 2,,,span −=∆ n
ff adad  是对合的。 

且系统的微分平坦输出由式（6.19）确定。 

 

证明：根据定理 6.1－定理 6.3，直接得到以上结论。 

 

 由于定理 6.4中考虑的非线性系统对象的一般性，该定理也适用于单输入欠驱

动系统，对解决具有微分平坦性的欠驱动机械系统的运动规划和控制问题具有重

要意义。把由式（6.19）定义的函数 )(xh 定义为系统输出 )(xhy = ，式（6.12）

定义的坐标变换可表示为 

)(xΦz =           (6.20) 

其中 
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n yyyzzz 


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[ ]T1 )()()()( xxxxΦ hLhLh n
ff
−=   

对于满足 0))(1 ≠− xhLL n
fg 的任意点 x，由于矩阵 )(xΦ

x∂
∂

满秩，即存在全局(除奇点

外，即除满足 0))(1 =− xhLL n
fg 的点 x外)逆坐标变换 

),,,()( )1(11 −−− == nyyy 
ΦzΦx       (6.21) 

考虑式（6.21），由输入变换（6.13）有 
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显然式（6.21）和（6.22）表示系统状态和输入都可表示为平坦输出 y 及其有限

阶导数的函数。 

6.4 微分平坦欠驱动系统的最优运动规划 

 具有微分平坦性不仅使一般非线性系统的不动点调节问题容易得到解决，而且

特别对于欠驱动系统，能使系统的运动规划和轨迹跟踪控制问题得到有效简化

[52]。由于欠驱动系统的独立控制输入的数目少于系统自由度数目，一般欠驱动

系统的运动规划和控制问题是困难的。若欠驱动系统具有微分平坦性，由于存在

可逆坐标变换（6.20），显然在状态空间任意初始点 )( 0
0 txx = 和目标点 )( 1

1 txx = 之

间的运动规划问题可转化为平坦输出空间中满足边界条件 

[ ] )(T)1(0
o

n tyyy −= 
z ， [ ] )( 1

T)1(1 tyyy n−= 
z  

的曲线插值问题。例如定义平坦输出为多项式 
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其中， [ ]10 , ttt ∈ ， rsas ,,2,1,1 =− 表示待定系数， 01T tt −= 。定义 [ ]1,0TT ∈= tt 为

新时间变量，并令 nk 2> ，其中 n为系统状态空间维数，即构造式（6.23）为具有

冗余待定系数的多项式，则有 
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其中， [ ]T10 kaaa =a ，矩阵 knR ×∈ 2A 为 
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其中， 1)1(,0)0( TT == ττ ，显然，矩阵 A是行满秩的，且有 n2)(rank =A 。根据矩

阵理论，方程（6.24）的一般解可写为 
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其中， +⋅)( 表示 Moore-Penrose广义逆，且有 1TT )( −+ = AAAA ， 0>µ 为比例系数，

I 表示适维单位矩阵，ε为任意矢量。当给定µ和 ε，从式（6.25）可以确定式（6.23）

中待定系数，从而确定出唯一的平坦输出空间曲线 [ ]10 ,
)(

ttt
ty

∈
。在逆坐标变换（6.21）

下，该曲线可投影到系统状态坐标空间中的唯一曲线 [ ]10 ,
)(

ttt
t

∈
x 且满足边界条件 

1
1

0
0 )(,)( xxxx == tt         (6.26) 

当式（6.25）中的自由矢量 0=ε 时，式（6.25）所表示的解

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






= +

1

0

z
z

Aa 是所有可

能解中使范数
2

a 最小的特解，式（6.25）右边第二项 εAAI )( +−µ 是矩阵 A的零

空间解。显然满足边界条件（6.26）的状态空间曲线和对应平坦输出空间曲线具

有无穷多条，这为实现系统最优运动规划提供了条件。 

在机械系统控制中，能量最小化通常是需要考虑的问题，作为实例，针对欠驱

动系统（6.2），定义评价指标为系统动能 

Gxx T
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其中，
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G 。考虑式（6.24），则式（6.27）可写为 
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显然式（6.28）为待定系数 [ ]T10 kaaa =a 的函数。若令 

)(a
a

ε K
∂
∂

−=          (6.29) 

并给定 0>µ ，则由式（6.25），（6.23）和（6.21）可确定系统优化轨迹。式（6.25）

是一种局域优化方法。采用全局优化算法，诸如进化算法（遗传算法）或随即方

法（概率图路径映射），式（6.25）依然可用。由于全局优化算法可不用求解指标

的梯度来确定自由矢量 ε，因此更便于应用。若采用全局优化算法，指标函数也就

不必定义为待定变量a 的函数，例如提高运动能效性的指标也可定义为 

∫=
1

0

da

t

t

tK qτ          (6.30) 

其中，τ 为驱动力矩。式（6.30）计算系统所作的总功。 

6.5 惯性轮摆的最优运动规划和控制 

 惯性轮摆是一种由惯性轮反作用驱动的倒立摆，如图 6.1所示。惯性轮摆系统

的转轮是驱动的，而与基础铰接的摆杆是无驱动的。该单输入两自由度欠驱动机

械系统首先由 Spong[126]提出。针对该系统通常的控制任务是通过转轮驱动使摆

杆稳定到上平衡点同时转轮停止转动。惯性轮摆是第一个单输入两自由度微分平

坦欠驱动机械系统的实例[54,17]。本节通过该系统验证本章提出的运动规划优化

方法的有效性。 
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图 6.1 惯性轮摆机构图 

6.5.1 惯性轮摆的微分平坦输出 

 图 6.1 所示惯性轮摆系统的摆杆长为 l，质心到与基础相连被动关节的距离为

cl ，连杆与转轮的质量分别为 1m 和 2m ，转动惯量分别为 1I 和 2I 。定义该系统的广

义坐标为 [ ]T21 θθ=θ 。利用式（6.1）所示欧拉－拉格朗日方程，该系统的动力

学方程可写为 

τθθ

θθθ

=++

=++

2222121

11212111 0)(

cmm

cmm




      (6.31) 

其中， 

0
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令 [ ]T2211 θθθθ =x ，
21

2
2

2
1

21
0

)(
IIlmlm

glmlm
h

c

c

+++
+

= ，
21

2
2

2
1

2
1 IIlmlm

Ih
c +++

−
= ，系

统（6.31）的状态空间方程可写为 

u)()( xgxfx +=         (6.32) 

其中， 

[ ]T4102 0sin)( xxhx=xf  
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[ ]T1 100)( h=xg  

4xu =  

根据式（6.18）的定义有 
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32
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    (6.33)
 

令式（6.19）中 110 cos)( xhh−=xλ ，则由式（6.19）可得输出函数为 

311)( xhxxhy −==          (6.34) 

为验证式（6.34）所示函数是系统（5.31）的平坦输出函数，对式（6.34）求微

分有 

412 xhxy −= ， 10 sin xhy = ， 120 cos xxhy =      (6.35) 

由式（6.34）和（6.35）有 

)arcsin( 01 hyx =           

( )2
002 )(1 hyhyx  −=          

( )yhy
h

x −= )arcsin(1
0

1
3        (6.36) 

( )( )yhyhy
h

x  −−= 2
00

1
4 )(11

       

由式（6.22），（6.34），（6.35）有 
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
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)4(

2
0101 )(1)(1
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

      (6.37) 

由于系统（6.32）的状态变量和控制输入都可表示为输出 y 及其有限阶微分的代数

式，因此式（6.34）所示输出是系统（6.31）的平坦输出。 

 从式（6.37）可以看出，取式（6.34）为微分平坦输出时，控制输入具有奇点

,2,1,0,π
2
π

11 =±== kkx θ 。除奇点外，正如式（6.14）所示，若取控制输入为 
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      (6.38) 

并取坐标变换（6.34）和（6.35），系统（6.32）可变换为四阶线性系统 

vy =)4(            (6.39) 

6.5.2 惯性轮摆的运动优化和轨迹跟踪控制 

 6.5.1 节证明惯性轮摆系统是微分平坦系统，其平坦输出为式（6.34），且可

变换为四阶线性系统（6.39），其控制问题可通过经典线性系统控制技术来解决，

但是在某些情况下，微分平坦机械系统，例如微分平坦双腿机器人[55]、微分平

坦空间机器人[56]，其运动能效性是必须考虑的实际问题。因此这里通过惯性轮

摆系统来验证第 6.4节提出的运动优化方法的可行性。 

 取 8阶多项式 

19

1
1 T

)(
−

=
−∑ 






=

s

s
s

taty         (6.40) 

作为待定平坦输出空间运动轨迹。设惯性轮摆的状态空间初始位置和目标位置分

别为 0x 和 1x ，则由式（6.20）可得到对应平坦输出空间初始和目标位置分别为 0z

和 1z 。考虑式（6.40），式（6.25）中矩阵 A为 
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A  (6.41) 

惯性轮摆的动能为 [ ] [ ]T42422
1 xxxxK M= ，考虑式（6.36），则式（6.29）所示

自由矢量为 

[ ]T42
42)( xxxxK M

aa
a

a
ε 





∂
∂

∂
∂

−=
∂
∂

−=      (6.42) 
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这里 1842 , ×∈
∂
∂

∂
∂ Rxx

aa
是列向量。给定 0>∀µ ，考虑式（6.41）和（6.42），则平坦

输出空间轨迹（6.40）可由式（6.25）唯一确定，且轨迹（6.40）对应的状态空

间轨迹 )(tx 自然地满足边界条件（6.26）。 

 正如式（6.39）所示，惯性轮摆这种单自由度微分平坦欠驱动系统，在区间

[ ]2π,2π1 −∈θ 上，可通过同胚坐标变换（6.35）和非线性反馈（6.37）把原非线

性系统（6.32）变换为线性系统。因此非线性系统（6.32）的控制问题可转化为

线性系统（6.39）的控制问题来解决。针对线性系统（6.38），我们容易设计控制

器 

)()()()( 0223
)4( yykyykyykyykyv ddddd −+−+−+−+=    (6.43) 

通过设计参数 4,3,2,1, =iki ，使得闭环系统的特征多项式 01
2

2
3

3
4 kkkk ++++ λλλλ

是 Hurwitz 多项式，则系统平坦输出空间坐标 [ ]Tyyyy =z 能精确跟踪规划

平坦输出轨迹 [ ]Tddddd yyyy =z ，该规划轨迹由式（6.40）给出。 

6.5.3 数值仿真 

 惯性轮摆的模型参数如附录 IA所示。针对初始状态 [ ]To

0

0 00030
0

=
= st

x 和

目标状态 [ ]T
10

1 0000
1

=
= st

x ，则式（6.40）中 stt 10T 01 =−= 。通过遗传算法

确定的自由矢量为 [ ]101150000 −−=ε ，比例系数为 4106×≠µ 。

运动规划结果如图 6.2 和图 6.3 所示。其中图 6.2 对应于 0=µ ，图 6.3 对应于

4106×≠µ 。不同规划运动条件下系统所消耗的能量通过 ∫=
T

0
2 dtE θt  来计算。比较

图 6.2 和图 6.3 所示仿真结果可以看出，式（6.25）中矩阵 A的零空间解对运动

规划结果有明显影响，从图 6.2(d)和图 6.3(d)可以看出，后者（ 0≠µ ）所消耗

的能量比前者（ 0=µ ）明显要少。 

假设系统的实际初始状态为 ( )[ ]To3o

0

0 0103070
0

×−=
= st

x ，通过式（6.42）

所示控制器，跟踪图 6.2和图 6.3所示规划运动轨迹的闭环控制结果分别如图 6.4
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和图 6.5所示，其中虚线表示规划运动（与图 6.1和图 6.2相同），实线表示闭环

控制器作用下系统的运动。比较图 6.4(d)和图 6.5(d)可以看出，闭环控制作用下

系统的能量消耗也得到有效减小。 
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图 6.2 运动规划结果 0=µ  
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图 6.3 运动规划结果 0≠µ  
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图 6.4 规划轨迹跟踪控制 0=µ  
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图 6.5规划轨迹跟踪控制 0≠µ  
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6.6 结论 

 由于单输入欠驱动机械系统的微分平坦性与系统可反馈线性化是等价的，因此

可反馈线性化的单输入欠驱动机械系统的微分平坦输出可通过寻找具有满关系度

（ nr = ，即关系度等于系统状态空间维数）的系统输出来确定。在非线性控制理

论中，存在满关系度输出的充要条件显示，寻找该输出函数归于求解一组偏微分

方程。该偏微分方程组的解即为单输入欠驱动机械系统的微分平坦输出。一旦平

坦输出被找到，则微分平坦欠驱动系统的运动规划问题可转化为平坦输出空间的

轨迹规划问题。平坦输出空间的轨迹规划实质上是寻求满足一给定组边界条件的

光滑曲线。由于满足给定边界条件的平坦输出空间光滑曲线不唯一，因此针对微

分平坦欠驱动机械系统，提出了一种最优运动规划方法，通过惯性轮摆系统的节

能运动规划进行了数值仿真验证，仿真结果证明了本章提出的方法的有效性。 
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7 工作总结 

7.1 研究总结 

 在站工作期间，作者针对当前二阶非完整约束机械系统研究中存在的问题，根

据其应用环境的不同，分别对零重力环境中的欠驱动机械臂和重力环境中弹性欠

驱动机构腿式动态移动机器人的动力学非线性控制问题进行了研究。 

 有自由摆动被动关节的欠驱动机械只有在零重力环境中才可能实现轨迹跟踪

控制，在航天机器人中具有明显应用价值。根据当前国内外研究现状，针对只有

单个驱动关节的平面二自由度欠驱动机械臂，较系统地分析了其可控性、非最小

相位特征、非 STLC 特征、非微分平坦特征以及不可反馈幂零化特征。所有分析

结果表明，这种欠驱动机械臂虽然具有简单的机械结构，但其控制问题却是难度

很大的。采用近似幂零化和参数化周期输入提出了一种非线性控制方法，理论和

仿真计算证明设计的控制器具有一致渐近稳定性。这一部分的主要贡献在于验证

了Hermes提出的幂零近似技术的重要价值。证明对于一个非线性动力学控制系统，

只要它是可达的，利用幂零近似技术可将原系统转化为幂零近似系统，幂零近似

系统不仅保留了原系统的可控性，而且幂零近似系统具有严格的三角规范形，为

设计系统控制器提供了方便。然而幂零近似算法十分复杂，获得的具有三角规范

形的幂零近似系统的控制器设计依然比较困难，设计具有指数收敛性能的控制器

还有待进一步研究。 

 本报告的主要研究内容在于探索重力环境中弹性欠驱动机构在仿生机器人系

统的应用，试图找到一条设计高能效灵巧移动仿生机器人系统的可行途径。 

 首先，根据生物体袋鼠的骨骼结构，提出一种双臂驱动弹性被动直线伸缩单腿

跳跃机器人模型。这种机构模型没有考虑逼真的仿生学特征，主要目的在于从一

般机构的角度研究采用弹性欠驱动机构设计仿袋鼠机器人的可行性，探讨其支撑

相的可控性和可行控制方法。证明了这种机构模型用于仿袋鼠机器人时在支撑相

时是可控的。并通过建立其近似微分平坦系统模型，通过非线性反馈变换，把原

系统的非线性系统控制问题转化为高阶线性时不变系统的控制问题，从而使原系
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统的控制问题得到解决。 

 其次，考虑到上面所采用的近似微分平坦方法只在支撑相平衡点临域有效，而

且控制器鲁棒性不足，进一步探讨了该机构模型在支撑相的模型简化方法及其对

应鲁棒控制方法。基于 Olfati－Saber 针对一类二阶非完整约束机械系统提出的基

于规范化广义动量的控制模型规范形变换方法，给出了研究对象的近似严反馈控

制规范形，基于此提出一种鲁棒反步控制方法用于实现双臂驱动弹性欠驱动单腿

跳跃机器人系统支撑相的运动控制。证明了控制器的指数收敛性并通过数值仿真

验证了控制器的性能。 

 再次，基于上面的研究结果，进一步综合考虑机械仿生设计和弹性欠驱动机构

动力学控制模型的规范形设计，依据惯性轮摆系统的特征，提出一种新的关节结

构式欠驱动单腿跳跃仿袋鼠机构模型。这种机构模型既具有较好的仿生学特征，

其飞行相控制模型又具有较好的扩展链式规范形特征。针对这种机构模型，设计

出该系统飞行相的积分反步控制器，证明了该控制器的指数收敛性并通过数值仿

真验证了控制器的性能。 

 再次，通过前面的研究发现，提出的控制器输入较大，与引入欠驱动机构设计

仿生机器人以提高系统的能效性的目标有差距。因此在本报告主要内容的最后部

分，进一步探讨了欠驱动机械系统的最优运动规划问题。考虑最小能耗运动规划，

针对具有微分平坦性质的欠驱动系统提出一种具有冗余待定系数的光滑多项式拟

合最优运动规划方法。这种最优运动规划方法的实质是通过构造具有冗余待定系

数的多项式来拟合微分平坦轨迹，则形成的待定系数矩阵为非方阵。利用待定系

数矩阵的零空间解可实现微分平坦轨迹的最优化，达到最小能耗运动规划的目的。

通过人们熟悉的惯性轮摆这一典型微分平坦欠驱动系统验证了这种运动规划方法

的可行性。 

 总之，本报告在多个方面涉及到二阶非完整约束机械系统控制问题的难点，所

取得的研究结果对引导进一步深入研究该类机械系统的动力学优化设计、最优运

动规划和指数稳定鲁棒控制器设计具有一定积极意义。但是通过取得研究结果也

揭示了欠驱动机械系统控制问题的多样性和复杂性，使研究者了解到把欠驱动机

构应用于实际还有大量的研究工作要做。 
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7.2研究展望 

 本报告初步探讨了弹性欠驱动机构在高能效灵巧腿式动态移动机器人中的应

用，取得的研究结果的一个重要方面就是对这一研究目标有了进一步的认识，对

其可能性和可行性有了更好的理解。大致上，下一步关于这方面的研究应从以下

方面进行： 

(1) 探索弹性欠驱动仿生机械系统的一般设计理论和方法。由于目前欠驱动机械系

统种类还十分有限，主要集中在欠驱动单刚体、类摆系统、以及平面欠驱动机

械臂等对象，这对系统总结一般具有实际应用价值的欠驱动机械系统的一般设

计理论和方法十分不利。 

(2) 利用现代数学和力学方法研究欠驱动机械系统的动力学问题，获得更多便于设

计控制器的力学理论模型。例如已经发现的链式系统、幂式系统、微分平坦系

统等，期待更多具有特殊性的欠驱动系统动力学模型被发掘出来。 

(3) 进一步探索更多可行的欠驱动机械系统的鲁棒控制方法。目前针对无漂移一阶

非完整约束系统的控制问题已有较多研究，但是对二阶非完整约束系统的控制

问题的研究成果还十分有限。已有研究结果主要限于几类简单欠驱动机械系

统，获得研究结果具有太多的个性，没有形成系统的欠驱动机械系统控制器设

计的理论和方法，因此严重阻碍了欠驱动系统的推广应用。 

(4) 探索切换组合控制方法在欠驱动系统控制中的应用。大量欠驱动机械系统的动

力学模型是变化的，特别对于可重构欠驱动机械系统。如何实现多态欠驱动系

统的指数稳定控制是有价值的研究课题。 

(5) 复杂欠驱动机械系统的实验研究。欠驱动机械系统是复杂的非线性动力学系

统，其控制器设计无疑更多地依赖于非线性控制理论方法。非线性控制器的实

时实现目前还存在很大技术障碍。如何利用当前超大规模可编程逻辑器件、高

性能数字信号处理器、嵌入式控制器等器件设计非线性实时控制器是有价值的

研究课题。 

总之，欠驱动系统的设计、控制和应用目前还没有得到国内外足够的重视，它

对约束力学、运动生物力学、机械学、非线性控制理论、智能控制理论、计算机

科学与技术等学科领域潜在的巨大推动作用还没有被广泛认识。这一研究领域期
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待更多学者和工程技术人员的参与，使动力学和控制科学为人类社会的技术进步

做出更多贡献。 
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附录 A 

方程（2.37）中各项的系数为： 
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方程（2.38）中各项的系数为： 
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方程（2.45）中各系数为： 

114
2

1211 b+−= dbdbp  

334
2
3212 bdbdbp +−=  
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5341431213 2b bdbdbddp +−−=  

4441214 2 dbddbp −=  

4431215 2 dbddbp −=  

2
4216 dbp =  

 

方程（2.46）中各系数为： 

114
2

1221 cdcdcp +−=  
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2
3222 c cdcdp +−=  

5341431223 2c cdcdcddp +−−=  
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4431225 2c dcddp −=  

( ) ( ) 11
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2
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附录 B 支撑相动力学方程 

1111 QCqM =+  

其中, 
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其中， c为被动直线伸缩腿中的摩擦系数。 
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附录 C 支撑相近似动力学方程 
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附录 D  仿真模型物理参数 

系统固有频率： ( )Hz5.2=nf ； 

系统质量： ( )kg2.11 =m ， ( )kg0.12 =m ； 

弹簧刚度： ( )N/m7904 22 ≈= nmfk π ； 

无质量腿总长度： ( )m4.00 =l ； 

有质量腿长度： ( )m3.01 =l ； 

驱动臂长度： ( )m4.0=r ； 

弹簧腿静态平衡时的长度：
( ) ( )m0.3602 21

020 ≈
+

−≈
k

gmmll  
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附录 E 机器人质量惯性矩阵 

 图 3.1 所示欠驱动单腿跳跃机器人系统各刚体的质心位置分别为 

腿部： 
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系统动能为 
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其中， k 为弹簧刚度。 
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令 [ ]T212 θθϕl=θ ，则机器人的动能可表示为 
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附录 F  飞行相动力学方程 

22222 QHCqM =++  
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附录 G  偏微分方程 0d 22 =∆⋅y 的解的显式表示 

考虑式（14），令 0,1 01 == µµ ，且定义 
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



















−

+

−









−

+











++






++
















++=

+= ∫

2
2

2
2

2

2

2

24

2
2

2
2

2

2

2
2

23

2

4

2

24

2

2
2

4

2

3
42

2
4

11

4
41

44
12

4

22
tan

arctan

4

2

2
tan

2
tanln

22
1

2
tan1ln

2
1

d
)(
)(

a
b

a
c

a
b

a
b

a
c

a
bd

a
d

a
c

a
b

a
d

dd

y

θ

θθ
θ

θ
θ

θ
θy
θy

θ

 

 



 152 

 

[空白页] 

 

 

 

 

 

 



 153 

附录 H 仿真用机器人物理参数 

腿部连杆 1的惯性参数 

质量： Kg3.01 =m ，长度： m5.01 =l ，质心位置 211 llc = ，质心惯量 122
111 lmI =  

腿部连杆 2的惯性参数 

质量： Kg5.02 =m ，长度： m4.02 =l ，质心位置 222 llc = ，质心惯量 122
222 lmI =  

惯性轮的惯性参数 

质量： Kg0.33 =m ，长度： m5.03 =l ，质心位置 m03 =cl ，质心惯量 42
333 lmI =  

尾巴的惯性参数 

质量： Kg0.14 =m ，长度： m5.04 =l ，质心位置 244 llc = ，质心惯量 122
444 lmI =  

关节扭转刚度 

 radNm3000
2
=θk ， radNm1000

3
=θk ， radNm500

4
=θk  
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附录 I 惯性轮摆的物理参数 

摆杆的长度: m3.0=l ; 

摆杆的质心: llc 5.0= ; 

惯性轮的半径: m1.0=r ; 

摆杆的质量: Kg5.01 =m ; 

惯性轮的质量: Kg0.21 =m ;  

摆杆的惯量: 2
11 12

1 lmI = ; 

惯性轮的惯量: 2
22 2

1 rmI = 。 
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