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Abstract— Indirect optimization for the continuous low-
thrust minimum time orbital maneuvers including the transfer,
intercept and rendezvous are studied in this paper. The dif-
ference among the three maneuvers mainly lie in the terminal
constraint conditions. By the Pontryagin Maximum Principle,
the trajectory optimization problem is converted into the two-
point boundary-value problem, and the terminal constraint
conditions of the three orbital maneuver missions are also
investigated respectively. The single shooting method is used
to solve the corresponding boundary-value problem, and the
simulations show that the product of the minimum flight time
and the maximal thrust is near constant in the three maneuver
problems.

I. INTRODUCTION

An important problem in astronautics is to transfer a satel-

lite between elliptic orbits, which have been widely studied

by many researchers in the impulse case and the continuous

low-thrust case [1], [2]. Recently, much attention has been

focused on computing optimal trajectories of the low-thrust

orbital transfer, which can be performed by minimizing the

cost of the final time or the final mass [2]–[8].

The movement of the satellite is usually described by

Keplerian equation using the position-speed variables in

the so-called Cartesian coordinates or Gauss equation using

the modified equinoctial elements in the Gauss coordinates.

The research group of B. Bonnard and J. Gergaud studied

the low-thrust time-optimal and minimum fuel-consumption

orbital transfer problem using the Gauss equation, and the

controllability properties of the system, the existence of the

optimal control and the π-singularity observed in the problem

were also proposed in the geometrical analysis viewpoint

[3]–[5]. In numerical experiment of the minimum transfer

time problem, some researchers found that the minimum time

and the modulus of the maximal thrust have the relationship

tfmin ×Tmax ≈ c where c is a constant [5], [7], but whether

there exists a positive constant c or not such that tfmin×Tmax

tends to c when Tmax tends to zero is still an open problem

[8].

The orbital maneuver also include the orbital rendezvous

and intercept problems, which are different from the orbital

transfer problem mainly in the terminal constraint conditions.

As early as the 1950s-1960s, the rendezvous and intercept

problems had been widely investigated in the impulse thrust

case [9]. As for the rendezvous problem, the relative dynam-

ics of the satellites (for example: Hill equation) is mainly
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used lately [10]. The relative dynamics using the position-

speed variables has also been used to deal with the orbital

intercept problem [11]. However, the research of these two

maneuvers are not as wide as the transfer problem in the low

thrust time optimal case using the Gauss coordinates.

So in this paper, we study the low-thrust time-optimal

orbital maneuver such as transfer, intercept and rendezvous

under the unified framework using the Gauss equation ex-

pressed by the modified equinoctial elements. The trajec-

tory optimization problem is deduced into the two-point

boundary-value (TPBV) problem by using the Pontryagin

Maximum Principle [12], and the corresponding terminal

conditions of the orbital transfer, intercept and rendezvous

problems are studied respectively.

The main contributions of this paper are as follows. Firstly,

the indirect optimization method is applied to the discussion

of the continuous-thrust orbital intercept and rendezvous

problems in the Gauss coordinates, which is quite different

from the previous results on these problems obtained in the

impulse thrust mode and/or by using the relative dynamics

of the spacecrafts. To the best knowledge of the authors, this

is new in dealing with these problems. Secondly, the results

of the numerical simulations show that the phenomena of the

product of the minimum flight time and the maximal thrust

being nearly constant appears also in the orbital rendezvous

and intercept problems. The simulation further shows that

the orbital transfer and rendezvous problem share almost the

same optimal trajectory with a fixed maximum magnitude of

thrust.

In this paper, we use the following notations: Let 〈,〉 and
∧

indicate the inner product and cross product of two vectors.

We denote by ∂
∂ (•) the natural bases and by | • | the finite-

dimensional Euclidean norm.

II. PROBLEM STATEMENT AND PRELIMINARIES

In order to give the mathematical formulation of the

orbital maneuver problem, the satellite can be supposed to

be modeled as a particle and the high-order terms of the

earth gravitational field and perturbations are neglected. We

denote by m the mass of the satellite and TTT = (T1,T2,T3) the

thrust of the engine which is bounded by |TTT | ≤ Tmax. In the

inverse square law field, the equation describing the satellite

dynamics in Cartesian coordinates is

r̈rr = −µ
rrr

|rrr|3
+

TTT

m
(1)

Where rrr = (r1,r2,r3) is the position vector of the satellite

measured in a fixed inertial frame I,J,K whose origin is the

Earth’s center, and µ is the gravitation constant.
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If rrr ∧ ṙrr 6= 0, the three-dimensional control, which is ex-

pressed in the mobile referential coordinate attached to the

satellite, can be decomposed into the tangential-normal frame

and radial-orthoradial frame [3].

Because of the large number of revolutions and strong os-

cillations of the variables in Cartesian coordinates described

by 1, the Gauss coordinates system which describe the move-

ment of the satellite in a more orbit-related point of view is

preferred [4], [6]. There we use the first five components of

the state vector to characterize the osculating orbit, while

the sixth component indicates the current position of the

satellite on the orbit. The state variables (P,ex,ey,hx,hy,L)
are now defined by [2] : P is the semi-latus rectum; (ex,ey)
is the eccentricity vector, in the orbit plane, oriented towards

perigee; (hx,hy) is the rotation vector, in the equatorial plane,

collinear to the intersection of orbit and equatorial plane; L

is the cumulative longitude. The state variables are labeled

as the modified equinoctial elements of Gauss coordinate,

which are expressed by the classical orbital elements as

P = a(1− e2),ex = ecos(ω +Ω),ey = esin(ω +Ω)

hx = tan(i/2)cos(Ω),hy = tan(i/2)sin(Ω),L = Ω+ω + f

where in the classical orbital element, a is semi-major axis, e

is eccentricity, i is inclination, Ω is longitude of the ascending

node, ω is argument of perigee, and f is true anomaly. We

set the coordinates xxx = [P ex ey hx hy L]T ∈ R
6 and the thrust

is decomposed into the radial-orthoradial frame [3]

ẋxx = fff 0(xxx)+
1

m
∑

3

i=1
Ti fff i(xxx) (2)

In these coordinates,

fff 0 =

√

µ

P

W 2

P

∂

∂L

fff 1 =

√

P

µ
(sinL

∂

∂ex

− cosL
∂

∂ey

)

fff 2 =

√

P

µ

1

W
(2P

∂

∂P
+(W cosL+ηx)

∂

∂ex

+(W sinL+ηy)
∂

∂ey

)

fff 3 =

√

P

µ

1

W
(−Zey

∂

∂ex

+Zex

∂

∂ey

+
C

2
cosL

∂

∂hx

+
C

2
sinL

∂

∂hy

+Z
∂

∂L
)

with W = 1 + ex cosL + ey sinL,ηx = ex + cosL,ηy = ey +
sinL,Z = hx sinL−hy cosL and C = 1+h2

x +h2
y .

We also take into account the fact that the mass flow is

proportional to the modulus of the thrust [5]

ṁ = −
1

Ispg
|TTT | = −β |TTT | (3)

Where Isp is the engine specific impulsion, g is the earth

sea-level gravitational parameter. So that the state of the

satellite is in fact (xxx,m) ∈ M×R
+, where M is the smooth

submanifold of R
6.

We restrict ourselves to elliptic trajectories, and define

the path constraint P ≥ Π0(Π0 > 0) to prevent the satellite

from colliding with the earth. Analogously, the mass of the

satellite has to remain greater than the mass without fuel m0.

Accordingly, to ensure compactness of the set of admissible

trajectory, the trajectory is assumed to stay in a secure zone

A = {(xxx,m)|P ≥ Π0,e2
x + e2

y < 1,m > m0}

But we shall assume in the sequel that the final mass is free

and that the constraint m > m0 is not active [3].

For the orbital maneuver mission, the initial and terminal

orbits are prescribed, so we have the boundary constraints

Φ(t0,xxx(t0),m(t0)) = 0, Φ(t f ,xxx(t f ),m(t f )) = 0 (4)

We also suppose that the maximum thrust magnitude

Tmax is fixed during the orbital maneuver, so the control is

parameterized by [2]

TTT = Tmaxuuu, |uuu| ≤ 1 (5)

In our continuous low-thrust time-optimal orbital maneu-

ver problem, the performance index to be minimized is the

flight time t f (t0 = 0). For a given maximum thrust Tmax, the

minimum time orbital maneuver problem will be referred to

as (T P)t as follows:

(T P)t































min J =
∫ t f

0 dt

ẋxx = fff 0(xxx)+ Tmax
m ∑3

i=1 ui fff i(xxx)

ṁ = −βTmax|uuu|

Φ(0,xxx(0),m(0)) = 0,Φ(t f ,xxx(t f )) = 0

|uuu| ≤ 1

(6)

Since the drift fff 0 is periodic and the tangent space

at any point is spanned by the brackets of fff 0, ..., fff 3,

liexxx( fff 0, fff 1, fff 2, fff 3) = TxxxM , so that no matter how low the

thrust might be, the system remains controllable if the mass

of the satellite without fuel m0 is small enough. Hence, the

set of admissible trajectories and control is nonempty and

the existence of optimal control proceeds from the Filippov

theorem [13].

III. TIME OPTIMAL CONTROL

In this section, we study the optimal control for the

minimum time orbit maneuver problem (T P)t .The maximum

principle is applies and the associated Hamiltonian is

H = p0 +H0 +
Tmax

m
∑

3

i=1
uiHi −βTmax pm|uuu| (7)

In 7, p0 is a non-positive constant, the Hi is the Hamiltonian

lift 〈ppp, fff i〉, ppp being the dual to xxx, pm the dual to m. In the

normal case, p0 is negative and normalized to −1. Defining

Ψ = [H1 H2 H3], we have the following proposition.

Proposition 1: [3] In the secure zone, along an optimal

solution, whenever Ψ = [H1 H2 H3] is not zero, the optimal

control of (T P)t is given by

uuu =
Ψ

|Ψ|
(8)

Remark 1: In this paper, the Pontryagin Maximum Prin-

ciple is applied. If we use the Minimum Principle, p0 should

be normalized to 1, and the optimal control should be given
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by uuu = −Ψ/|Ψ|. But the two cases have the same optimal

trajectory.

Let (xxx,m, ppp, pm,uuu) be an extremal, the classification of

regular extremals is based upon the contact order of the

trajectory with the switching surface {Ψ = 0}, the extremal

is said to be of order zero if uuu is smooth and given by (8)

whenever Ψ 6= 0, and to be singular if {Ψ ≡ 0}, which is

a vector valued function of time corresponds to switching

points in the time domain [3]. It has been proved in [4] that

Ψ is continuously differentiable, and the geometric analysis

showed that there is only a finite number of switching points.

So we have the following result.

Proposition 2: [4] For a fixed magnitude of thrust Tmax,

if there exists an optimal trajectory (xxx,m) that keep staying

in the interior of the secure zone A, then the corresponding

optimal control of uuu of (T P)t will be such that |uuu|= 1 almost

everywhere.

Remark 2: In [3] and [4], the authors investigate the time

optimal orbital transfer problem, and obtain the results de-

scribed by proposition 1 and 2. By the Pontryagin Maximum

Principle, the difference between orbital transfer problem

and orbital intercept or rendezvous problem lies only in the

terminal constraint conditions. Hence, the proposition 1 and

2 can still be applicable to the orbital intercept or rendezvous

problem.

According to the proposition 2, |uuu|= 1 almost everywhere,

so the mass is known explictly as a function of the time,

m(t) = m0 −βTmaxt (9)

and (T P)t can be given by an equivalent nonautonomous for-

mulation. Further, for the simplicity, we recast the problem

by scaling the flight time on [0,1], treating the final time as

an additional constant state variable by letting τ = t/t f , so

(T P)t can be deduced into the model in the Mayer form as

follows:

(T P)τ































min J = t f (1)

ẋxx = t f

(

fff 0(xxx)+ Tmax

m(t f τ) ∑3
i=1 ui fff i(xxx)

)

,τ ∈ [0,1]

ṫ f = 0

Φ(0,xxx(0), t f (0)) = 0,Φ(1,xxx(1), t f (1)) = 0

|uuu| ≤ 1
(10)

If (xxx, t f ,u) is the solution of (T P)τ , there will be absolutely

continuous costates ppp = [pp pex pey phx
phy

pL]T and pt f

associated to xxx and t f , respectively, such that (xxx, t f , ppp, pt f
)

is a solution of the two-point boundary-value problem ob-

tained from first-order necessary condition of the Pontryagin

Maximum Principle [12].

ẋxx =
∂H∗

∂ ppp
(11a)

ṫ f = 0 (11b)

ṗpp = −
∂H∗

∂xxx
(11c)

ṗt f
= −

∂H∗

∂ t f

(11d)

with initial boundary condition

Φ(0) = (P(0)−P0,ex(0)− e0
x ,ey(0)− e0

y ,hx(0)−h0
x ,

hy(0)−h0
y ,L(0)−L0, pt f

(0)− p0
t f
) = 0

(12)

and final boundary condition

Φ(1) = Φ(1,xxx(1), t f (1), ppp(1), pt f
(1)) = 0 (13)

which is determined by the different orbital maneuver mis-

sion. And, in (11),

H∗ =

〈

ppp, t f

(

fff 0(xxx)+
Tmax

m(t f τ) ∑
3

i=1
u∗i fff i(xxx)

)〉

(14)

is the Hamiltonian of the (T P)τ , where the optimal control

uuu∗ = [u∗1 u∗2 u∗3] is still defined as a smooth function in (8).

Now, the continuous-thrust minimum time orbital maneu-

ver problem is deduced into the two-point boundary value

problem. In the next section, we shall discuss the terminal

boundary conditions for different orbital maneuver mission.

IV. BOUNDARY VALUE AND TRANSVERSALITY

CONDITIONS

The main difference in the orbital maneuver missions

such as transfer, intercept and rendezvous is the terminal

constraint conditions. In this paper, we suppose that the three

orbital maneuver missions have common initial boundary

conditions (12), where p0
t f

= 0 by transversality. For showing

the terminal condition, we will consider the position and

velocity. In Gauss coordinate, the cartesian position rrr and

velocity vvv of the satellite (in an inertial geocentric reference

frame) are given by [2]

r1 =
P

CW

(

(1+h2
x −h2

y)cosL+2hxhy sinL
)

(15a)

r2 =
P

CW

(

(1−h2
x +h2

y)sinL+2hxhy cosL
)

(15b)

r3 =
P

CW
(2Z) (15c)

v1 =
1

C

√

µ

P

(

2hxhy(ex + cosL)− (1+h2
x −h2

y)(ey + sinL)
)

(15d)

v2 =
1

C

√

µ

P

(

(1−h2
x +h2

y)(ex + cosL)−2hxhy(ey + sinL)
)

(15e)

v3 =
1

C

√

µ

P
(2hx(ex + cosL)+2hy(ey + sinL)) (15f)

In the sequel, we use (P f ,e f
x ,e f

y ,h f
x ,h f

y ,L f ) to denote the

final orbit of the satellite or the virtual object.

A. Orbital Transfer Problem

The orbital transfer problem has been widely studied, the

terminal boundary constraints meet [3], [4]
(

P(1)−P f ,ex(1)− e f
x ,ey(1)− e f

y ,hx(1)−h f
x ,hy(1)−h f

y

)

= 0

and (pL(1)− p
f
L, pt f

(1)− p
f
t f
) = 0. Where p

f
L = 0, p

f
t f

= −1,

which is determined by transversality condition applying the

Pontryagin Maximum Principle, because of the free final
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longitude and the Mayer form performance index, t f . So for

the orbital transfer problem, the terminal boundary vector

function is defined by

Φ(1) = (P(1)−P f ,ex(1)− e f
x ,ey(1)− e f

y ,hx(1)−h f
x ,

hy(1)−h f
y , pL(1), pt f

(1)+1) = 0
(16)

Remark 3: In fact, the fixed final longitude L f means that

both the position of the satellite on the final orbit and the

number of revolutions are fixed. This case can be considered

as the orbital rendezvous problem provided that the flight

time t f is also fixed [14]. However, in the minimum time

orbital maneuver problem, the longitude L is the same fast

variable as the time t, so the final longitude can not be chosen

optionally because that is related to the maximum thrust Tmax,

and the product of the minimum longitude and the maximal

thrust is near constant [2], [6]. Therefore, the problem of

minimum orbital transfer time with fixed final longitude can

not be simply seen as rendezvous.

B. Orbital Intercept Problem

The orbital intercept problem is that the relative position

of two satellites is zero but relative velocity is free in

the terminal. We call the two satellites as interceptor and

target respectively, and suppose that the target moves on a

fixed orbit without thrust. For a given target satellite, the

terminal constraint of the interceptor is not a fixed orbit but

a sub-manifold of the bundle TM satisfying the following

constraints

φ1
.
= r1(1)− r

f
1 = 0 (17a)

φ2
.
= r2(1)− r

f
2 = 0 (17b)

φ3
.
= r3(1)− r

f
3 = 0 (17c)

where (r f
1 ,r f

2 ,r f
3 ) is the position of the target which can

be obtained by substituting (P f ,e f
x ,e f

y ,h f
x ,h f

y ,L f ) into (15a-

15c). However, for a given initial position, the final position

on the orbit of the target is not fixed if the flight time is

not known prior, because the longitude L f varies with time

without thrust

dL f

dτ
= t f

√

µ

P f

(1+ e
f
x cosL f + e

f
y sinL f )2

P f
(18)

For convenience, we introduce a new variable L f described

by (18) into (T P)τ , so the state variables (xxx, t f ,L
f ) ∈ R

8 ×

R×R, and L f (0)− L f 0
= 0 is added into (12) as another

initial condition constraint. By virtue of the Maximum Prin-

ciple, the conditions of transversality are determined from

the terminal constraints (17):

pP(1) = −

(

λ1
∂ r1

∂P
+λ2

∂ r2

∂P
+λ3

∂ r3

∂P

)

(1)

(19a)

pex(1) = −

(

λ1
∂ r1

∂ex

+λ2
∂ r2

∂ex

+λ3
∂ r3

∂ex

)

(1)

(19b)

pey(1) = −

(

λ1
∂ r1

∂ey

+λ2
∂ r2

∂ey

+λ3
∂ r3

∂ey

)

(1)

(19c)

phx
(1) = −

(

λ1
∂ r1

∂hx

+λ2
∂ r2

∂hx

+λ3
∂ r3

∂hx

)

(1)

(19d)

phy
(1) = −

(

λ1
∂ r1

∂hy

+λ2
∂ r2

∂hy

+λ3
∂ r3

∂hy

)

(1)

(19e)

pL(1) = −

(

λ1
∂ r1

∂L
+λ2

∂ r2

∂L
+λ3

∂ r3

∂L

)

(1)

(19f)

pL f (1) =

(

λ1

∂ r
f
1

∂L f
+λ2

∂ r
f
2

∂L f
+λ3

∂ r
f
3

∂L f

)

(1)

(19g)

where λi(i = 1,2,3) is the Lagrange multiplier.

We can get λi by solving any three equations choosing

from (19), then obtain four terminal constraints by sub-

stituting λi into the remaining four equations of (19). So

the four terminal constraints, (17) and pt f
(1) = −1 form

eight terminal constraint conditions of the orbital intercept

problem.

C. Orbital Rendezvous Problem

Different from the orbital intercept problem, for the or-

bital rendezvous problem, both relative position and relative

velocity are required to be zero in the terminal, that is

φ1
.
= r1(1)− r

f
1 = 0 (20a)

φ2
.
= r2(1)− r

f
2 = 0 (20b)

φ3
.
= r3(1)− r

f
3 = 0 (20c)

φ4
.
= v1(1)− v

f
1 = 0 (20d)

φ5
.
= v2(1)− v

f
2 = 0 (20e)

φ6
.
= v3(1)− v

f
3 = 0 (20f)

Similarly, L f described by (18) is introduced into (T P)τ

as a new state variable, and by transversality, the costate

ppp = [pp pex pey phx
phy

pL]T dual to the state x meets terminal

constraint as follows

ppp(1) = −
6

∑
i=1

λi

∂φi

∂xxx (1)
(21)

Solving the algebraic equations (21), we can get the La-

grange multipliers λi, i = 1, · · ·,6, then substituting into the

next terminal constraint equation on L f

pL f (1) = (λ1

∂ r
f
1

∂L f
+λ2

∂ r
f
2

∂L f
+λ3

∂ r
f
3

∂L f

+λ4

∂v
f
1

∂L f
+λ5

∂v
f
2

∂L f
+λ6

∂v
f
3

∂L f
)(1)

(22)

So that, (20), (22) and pt f
(1) = −1 also form eight terminal

constraint conditions of the orbital rendezvous problem.
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TABLE I

BOUNDARY CONDITIONS

Variables Initial Condition Terminal Condition

P 15.6Mm 32.1Mm

ex 0.75 0.16

ey 0.0 0.30

hx 0.612 0.0

hy 0.0 0.1

L π free

L f 1.507 free

V. NUMERICAL SIMULATION

We examine now the numerical results of the orbital

maneuvers including transfer, intercept and rendezvous. In

section 3 and 4, the continuous-thrust time-optimal orbital

maneuver problem is deduced to the TPBV problem by

applying the Pontryagin Maximum Principle. In this section,

we use the single shooting method to solve the correspond-

ing TPBV problem. Taking the orbital transfer problem as

example, the boundary-value problem is equivalent to the

so-called shooting function: find (ppp0, t0
f ) ∈ R

6 ×R such that

S(ppp0, t0
f ) = b(Φ0(xxx0, t0

f , ppp0, p0
t f
)) = 0 (23)

where the boundary function b is defined by (16).

In numerical experiment example, the physical constants

in the system (T P)τ are listed in the following [3]

µ = 5165.8620912 Mm3/h2

β = 1.42×10−2 h/Mm

m0 = 1500 kg

And the boundary conditions are summarized in table I.

To begin with, we show in Fig.1 the solution of the state

for the orbital transfer, intercept and rendezvous problem in

the same figure with the maximum thrust of 4N. In Fig.1,

the graphs includes orbital elements P,ex,ey,hx,hy,L and the

mass m of the satellite with the time as the abscissa, and the

solid line, dashdot line and dashed line represent the orbital

transfer, rendezvous and intercept respectively. The desired

value of the final orbital elements are also showed by the

level solid line in this figure. For the maximum thrust of 4N,

the minimum flight time is 322.428h for the transfer problem,

318.986h for the rendezvous problem and 169.0513h for the

intercept problem respectively.

It can be seen from Fig.1 that the evolution of the state

variables is quite smooth, due to the use of the Modified

equinoctial orbital elements, and also to the low continuous

thrust of the propulsion. It also can be seen that the states of

the transfer problem and rendezvous problem almost share

the same trajectory, and the final values of the elements in

the orbital rendezvous also reach the desired orbital elements

same as that of the orbital transfer. However, the final value

of the elements in the orbital intercept problem are much

different from those of the elements of the object orbit, which

can be seen from Fig.2 that the final orbit of the interceptor

is nearly perpendicular to the orbit of the target.
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Fig. 1. Optimal solution of the state,thrust of 4N

Fig. 2. Optimal 3D trajectory of the orbital intercept,thrust of 4N

Fig.2 shows the 3D optimal trajectory in (r1,r2,r3)of the

orbital intercept problem, and the arrows picture the action

of the control. The solid line expresses the orbit of the

intercept, and dashdot line expresses the orbit of the target.

While the intercept point is labeled as a circle. From Fig.2,

we can see that the change in the inclination is lower than

that in orbital transfer problem shown in Fig.3. Because the

orbital rendezvous problem share almost the same trajectory

as that of the orbital transfer problem, so the trajectory of

the rendezvous problem is not shown here.

We also adjust the magnitude of the maximal thrust

and repeat the numerical experiment, and the results about

the relationship between the minimum flight time and the

maximal thrust are pictured in Fig.4. From the left graph of

this figure, one can see that the minimum flight time of the

orbital transfer and rendezvous problem are almost equal for

the same fixed maximum thrust Tmax, and the minimum time
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Fig. 3. Optimal 3D trajectory of the orbital transfer,thrust of 4N

of the orbital intercept is lower than that of the orbital transfer

or rendezvous. Though some researchers found that the

minimum time and the modulus of the maximal thrust have

the near relationship tfmin×Tmax ≈ c [5], [7], the result seems

to be also suitable for the orbital intercept and rendezvous

problem. However, we also can see from the local of the left

graph and the right graph that the relationship is not fit for

the case with higher thrust, the minimum flight time does not

decrease significantly with the increasing of the magnitude

of the maximal thrust when the thrust is greater than a

magnitude(for example:60N). Then, it becomes natural to

suppose the impulse thrust as the limit of the continuous low-

thrust orbital maneuver when the maximum thrust magnitude

grows, but which is not proven in theory.
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Fig. 4. Near constancy of the product tfmin ×Tmax

VI. CONCLUSIONS

We have considered in this paper the continuous low-thrust

minimum time orbital maneuver which include the transfer,

intercept and rendezvous problem. The modified equinoctial

elements in the Gauss coordinates are used to describe the

movement of the satellite, and the terminal constraints of

the three maneuver missions are studied respectively by

transversality conditions. Under the unified framework, the

time-optimal maneuver problem is deduced into the two-

point boundary-value problem by the Maximum Principle.

Numerically, we have used the single shooting method

which has been proved to be very efficient. The simulation

results demonstrate that: 1) for a fixed maximum thrust, the

orbital transfer and rendezvous problem share almost the

same optimal trajectory; 2)for the same maximum thrust,

the minimum flight time of the intercept mission is lower

than that of the transfer or rendezvous problem, which is

obvious; 3)the conjecture that the product of the minimum

time and the maximal thrust is nearly constant is also fit

for the intercept and rendezvous problem, but one also can

see that the relationship is not tenable in the high thrust

case. However, the above conclusions are just obtained from

the numerical experiment, we will try to make it clear

theoretically in the succeeded research.
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