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Abstract This paper considers the stable coordination problem of two vehicles equipping with inter-
nal moving mass actuators. The coordinating and stabilizing control are derived by energy shaping.
The proposed method is physically motivated and avoids cancelation or domination of nonlinearities.
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Internally actuated systems are enjoying more and
more attention from engineers as well as control the-
orists. For example, internal moving masses are used
as actuators for a hypersonic re-entry vehicle, because
the temperature and pressure outside are very high for
external control devices.1 Moving mass actuators have
also been proposed for precise orbit control in spacecraft
formations.2 A fleet of underwater gliders equipped with
buoyancy engines and internal mass redistribution sys-
tems are used to form underwater mobile sensor net-
works over long time periods,3 because actuators housed
internally are isolated from the environment and less
prone to physical damage. However, internally actu-
ated systems are often under actuated thus provide big
challenges for control design.

Mechanical systems with internal moving mass ac-
tuators form an important class of internally actuated
systems. The behavior of a mechanical system is closely
related to its energy, moving mass actuators influence
the system’s behavior by changing the kinetic metric
and/or the potential energy of the system. The actu-
ated system remains mechanical, of which many struc-
ture properties can be exploited to help the control
design. However, mechanical systems with only inter-
nal control are necessarily neither linearly controllable
nor feedback linearizable since the system’s momentum
is conserved. Energy-based control offers a promising
approach to design nonlinear control. First, energy
based methods preserve the mechanical structure and
do not rely on nonlinearity cancelation by lineariza-
tion or domination by high gain. Second, such methods
exploit structural properties of the mechanical system
and obtain stability and control results that hold over a
larger domain than can be obtained using linear design
method.

Energy shaping is a energy based method that
shapes the potential and/or kinetic energy of the sys-
tem in order to make the desired behavior a stable so-
lution of the “shaped” system. Feedback control imple-
ments the shaping procedure. Reference 4 initiates the
energy shaping design for stabilizing middle axis rota-
tions of a rigid spacecraft using a single internal rotor.
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Reference 5 employs kinetic energy shaping to stabi-
lize steady motions of underwater vehicles using inter-
nal rotors. Reference 6 uses the method of controlled
lagrangians, an algorithmic energy shaping approach, to
stabilize steady motions of vehicle systems using mov-
ing mass actuators. Without external control, a sta-
ble steady motion, i.e. relative equilibrium, is the best
one can hope for. However, stable relative equilibria
are low-energy, natural motions of mechanical systems
and provide attractive solutions to motion planning
problems.7

This paper investigates the stable coordination of
two vehicles using internal moving mass actuators.
Specifically, we aim to asymptotically stabilize a rela-
tive equilibrium which corresponds to two vehicles syn-
chronizing their rotations as well as moving mass posi-
tions. To coordinate, artificial potentials are introduced
to couple individuals such that the group acts like one
multi-body system. To stabilize, the energy of group is
shaped such that it takes extremum at the desired rela-
tive equilibrium. Asymptotical stability is achieved af-
ter feedback damping injection. As far as we know, the
only work solving the stabilization and synchronization
problem of a class of under actuated mechanical systems
using energy shaping is Ref. 8, wherein the control is
applied externally. This paper employs energy shaping
to stably coordinate internally actuated vehicles.

Consider a planar vehicle spinning about its geome-
try center O shown in Fig. 1.6 A moving mass m moves,
under the influence of a control force, along a slot which
is displaced at distance a from the center. Let I be the
moment of inertia of vehicle about its spin axis. Let y
be the displacement of moving mass along the slot. The
configuration space of the system is Q = SO(2) × R,

Fig. 1. Single vehicle with a moving mass along a slot

http://dx.doi.org/10.1063/2.1102302
http://dx.doi.org/10.1063/2.1102302


023002-2 F. Wu and Z. Y. Geng Theor. Appl. Mech. Lett. 1, 023002 (2011)

where SO(2) is the group of rotations in R2, and R is
the one dimensional Euclidean space. The Lagrangian
L : TQ → R is invariant under the action of SO(2). The
reduced Lagrangian l : TQ/SO(2) → R is the kinetic
energy of the system (assumes no potential). Define the
non-dimensional quantities6

ỹ =
y

a
, ω̃ =

ω

ω0
, t̃ = ω0t, α =

I

ma2
+ 1, l̃ =

l

ma2ω2
0

,

where ω0 > 0 is the equilibrium angular rate. Denote ˙̃y
the derivative with respect to t̃, and drop the tilde for
convenience, the non-dimensional reduced Lagrangian
is

l (ω, y, ẏ) =
1

2

(
ω
ẏ

)T(
α+ y2 1

1 1

)(
ω
ẏ

)
. (1)

In the absence of physical dissipation, the controlled dy-
namics are given by the Euler-Lagrange (EL) equations

d

dt

(
∂l

∂ω

)
= 0,

d

dt

(
∂l

∂ẏ

)
− ∂l

∂y
= u, (2)

where u is the control applied to the moving mass.
Clearly, the total angular momentum πs = ∂l/∂ω =
(α + y2)ω + ẏ is conserved at all times. Thus, the dy-
namics evolve on a constant momentum surface (α +
y2)ω + ẏ = const.

A relative equilibrium is an equilibrium for reduced
dynamics (2). The relative equilibrium e : (ω, y, ẏ) =
(1, 0, 0) corresponds to the vehicle spinning at a con-
stant angular rate ω0 and the moving mass being sta-
tionary at the center of the slot. However, the eigenval-
ues corresponding to the linearization of (2) at e have
positive real parts, thus e is unstable.6

Now, we extend the framework and consider a group
of two identical vehicles. The reduced Lagrangian lg of
the group is

lg(ω1, y1, ẏ1, ω2, y2, ẏ2) = l1(ω1, y1, ẏ1) + l2(ω2, y2, ẏ2),

where l1, l2 is given by Eq. (1). The controlled dynamics
are given by EL equations

d

dt

(
∂lg
∂ω

)
= 0,

d

dt

(
∂lg
∂ẏ

)
− ∂l

∂y
= u , (3)

where ω = (ω1, ω2),y = (y1, y2),u = (u1, u2). Let
πs1 = ∂l1/∂ω1, πs2 = ∂l2/∂ω2, the angular momentum
of the group πsg = πs1 + πs2 is also conserved at all
times.

If two vehicles evolve on the same angular momen-
tum surface, a family of relative equilibria (also unsta-
ble)

e : (ω1, y1, ẏ1, ω2, y2, ẏ2) = (1, ȳ, 0, 1, ȳ, 0) (4)

corresponds to both vehicles spinning at a common an-
gular rate, with two moving masses being stationary at
position ȳ in the respective slot. To stabilize Eq. (4),
we make the following assumptions.

Assumption 1 Two vehicles have the same initial
angular momentum π0.

Assumption 2 Two vehicles communicate to each
other about the relative position of their moving masses.

The objective is to design feedback control u1, u2 to
stabilize Eq. (4) with respect to perturbations that lie
on the surface πs1 = πs2 = π0.

The method of controlled lagrangians (CL)9 starts
with a system with lagrangian

L(q , q̇) =
1

2
q̇TM (q)q̇ − V (q),

where M (q) is the kinetic metric, V (q) is the potential
energy. Assume that the generalized coordinates q is
chosen such that the controlled EL equations can be
written as

M (q)q̈ +C (q , q̇)q̇ +
∂V

∂q
=

(
0
u

)
, (5)

where C is the Coriolis matrix associate with M .
The CL method provides a feedback control u(q , q̇),

and a modified lagrangian Lc such that the close-loop
equations are free EL equations

M c(q)q̈ +C c(q , q̇)q̇ +
∂Vc

∂q
= 0, (6)

where M c is a control modified kinetic metric, Vc is a
control modified potential energy. The conditions under
which such a feedback control exists are called matching
conditions.

Solving Eq. (6) for q̈ and substituting into Eq. (5)
relate M , V to the control modified M c, Vc,(

0
u

)
= MM−1

c

(
−C cq̇ − ∂Vc

∂q

)
+Cq̇ +

∂V

∂q
.

(7)

The matching conditions are given by the upper part of
Eq. (7). They are a set of nonlinear partial differential
equations (PDEs) in M c and Vc. Solving PDEs and
using the lower part of Eq. (7) give the feedback control
u . Usually, matchable M c and Vc are parameterized
functions, wherein the parameters in turn appear in the
feedback control as control parameters.

After matching, the close-loop system is a free la-
grangian system, of which the energy

Ec(q , q̇) =
1

2
q̇TM c(q)q̇ + Vc(q)

is conserved, thus qualifies as a Lyapunov function for
stability analysis and stabilization design. The control
parameters are chosen such that the desired equilibrium
is a minimum (maximum) of Ec, thus achieve Lyapunov
stability. One may add feedback dissipation to make
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Ėc ≤ 0 (Ėc ≥ 0) and assess asymptotic stability using
LaSalle’s principle.

Open-loop Eq. (3) can be written collectively as

M ψ̇ +Cψ = Gu , (8)

and ψ = (ψ1,ψ2), M = diag(M1,M2), C =
diag(C1,C2), G = diag(G1,G1), where G1 = (0, 1),
for i = 1, 2, ψi = (ωi, ẏi),

M i =

(
α+ y2i 1

1 1

)
,C i =

(
yiẏi yiωi

−yiωi 0

)
.

Let the close-loop equations be M cψ̇ + C cψ +
∂Vc/∂y = 0, and let G⊥

1 = (1, 0), Eq. (7) gives the
kinetic and potential matching conditions(

G⊥
1 0

0 G⊥
1

)(
−MM−1

c C cψ +Cψ
)
= 0,(

G⊥
1 0

0 G⊥
1

)
MM−1

c

∂Vc

∂y
= 0. (9)

To stabilize relative equilibrium (4), an artificial po-
tential Vc is introduced as

Vc =
k1
2
(y1 − y2)

2 +
k2
2
(y1 − ȳ)2, (10)

where parameters k1, k2 are to be designed in the stabil-
ity analysis later. Physically speaking, this artificial po-
tential acts like adding a linear spring connecting mov-
ing masses in the pair of vehicles.

To make Mc matchable with the limited control, a
solution to Eq. (9) can be constructed by simple linear
algebraic operations[6]

M c =

(
M c1 0
0 M c2

)
,

M ci =

(
α+ y2i 1

1 ρ/(α+ y2i )

)
, (11)

where ρ is a parameter. To make M c nonsingular, it
needs Det(M c) ̸= 0 ⇒ ρ ̸= 1.

However, Ref. 6 observes that matching solution
(11) does not lead to a proof of nonlinear stability.
Moreover, seeking other matching solutions involves
solving PDEs and do not ensure the existence of a stable
solution. Different from a spectral stability analysis,6

we apply matching solution (11) to the following sys-
tem

M̄ ψ̇ + C̄ψ = Gū , (12)

where M̄ and C̄ have the same form in Eq. (8),
wherein

M̄ i =

(
α+ (yi − ȳ)2 1

1 1

)
,

C̄ i =

(
(yi − ȳ)ẏ (yi − ȳ)ωi

−(yi − ȳ)ωi
−ωi(yi−ȳ)

[α+(yi−ȳ)2]2

)
.

Lemma 1 Two systems (8) and (12) produce the
same state solutions in coordinates (y1, y2,ψ), if and
only if two controls satisfy

u = GT
[
MM̄

−1 (
Gū − C̄ψ

)
+Cψ

]
. (13)

Proof Solve for ψ̇ in Eq. (8) and Eq. (12), respec-
tively

ψ̇ = M−1(Gu −Cψ),

ψ̇bar = M̄
−1

(Gū − C̄ψbar),

where the solution with subscript “bar” is to Eq. (12).

Straightly, ψ̇ = ψ̇bar if and only if Eq. (13) holds.
The energy shaping control implementing Eqs. (10)

and (11) for system (12) is

ūes =(GTG)−1GT×[
C̄ψ − M̄ M̄

−1
c

(
C̄ cψ +

∂Vc

∂y

)]
, (14)

where M̄ c has the same form of M c with yi replaced
by zi := (yi − ȳ), and

C̄ c = diag(C̄ c1, C̄ c2),

C̄ ci =

(
ziẏi ziωi

−ziωi −ρωizi/(α+ z2i )
2

)
.

We analyze the Lyapunov stability of relative equi-
librium ē : (ω1, z1, ẏ1, ω2, z2, ẏ2) = (1, 0, 0, 1, 0, 0) of sys-
tem (12), which corresponds to relative equilibrium (4)
of system (8).

Proposition 1 The energy shaping control ūes sta-
bilizes relative equilibrium ē with ρ < 1, k1 < 0, and
k2 < 0.

Proof Notice that the control-modified energy Ec =
1
2ψ

TM̄ cψ + Vc is conserved. A candidate Lyapunov
function for ē can be constructed as Eϕ = Ec + ϕ(πsg)
where

ϕ(πsg) =
σ

2
(π2

s1 + π2
s2)− (1 + σα)πs1 − (1 + σα)πs2.

One can check that grad(Eϕ)|ē = 0, and Hess(Eϕ)|ē is
negative definite provided

1 + ασ < 0, ρ− 1 < 0, k1 < 0, k2 < 0.

Therefore, ē can be made a maximum of Eϕ, thus proves
Lyapunov stability by Energy-Casimir method.

Adding the feedback dissipation6 as ū = ūes+ūdiss,
the close-loop equations become

M̄ cψ̇ + C̄ cψ +
∂Vc

∂y
= M̄ cM̄

−1
Gūdiss.

Ec is no longer conserved and its changing rate Ėc =

ψTM̄ cM̄
−1

Gūdiss. Choosing Gūdiss = M̄ M̄
−1
c Rψ
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Fig. 2. Time history for the states (a) y1, y2, (b) ẏ1, ẏ2,
(c) ω1, ω2, and the controlled energy (d) Eϕ

gives Ėc = ψTRψ. Let R = diag(R1,R1), R1 =
diag(0, kdiss), the feedback dissipation is

ūdiss = (GTG)−1GTM̄ M̄
−1
c Rψ. (15)

Proposition 2 The feedback control ū = ūes +
ūdiss asymptotically stabilizes relative equilibrium ē for
kdiss > 0.

The asymptotical stability can be directly proved
by LaSalles invariance principle. Invoking Lemma 1,
we immediately have

Fig. 3. Time history for the states (a) y1, y2, (b) ẏ1, ẏ2,
(c) ω1, ω2, and the controlled energy (d) Eϕ

Corollary 1 The feedback control

u = GT
{
MM̄

−1 [
G(ūes + ūdiss)− C̄ψ

]
+Cψ

}
asymptotically stabilizes relative equilibrium (4) of sys-
tem (8) with ρ < 1, k1 < 0, k2 < 0, and kdiss > 0.

We illustrate the above control design with a
numerical simulation. Let (ω1, y1, ẏ1, ω2, y2, ẏ2) =
(1, ȳ, 0, 1, ȳ, 0) be the desired relative equilibrium. The
physical parameters of vehicle are chosen such that
α = 2. The control parameters are k1 = k2 = −1,
ρ = 0.5, and kdiss = 0.5.
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The initial conditions are (ω1, y1, ẏ1, ω2, y2, ẏ2)(0) =
(0.5,−0.5, 0.875, 0.75, 0, 0.5). The controlled dynamics
evolve on a conserved angular momentum surface πs1 =
πs1(0) = 2, πs2 = πs2(0) = 2.

Let ȳ = 0, Fig. 2 shows the evolution of the states
and controlled energy of the two-vehicle group.

On the same constant momentum surface, let ȳ =
0.5. Figure 3 shows the asymptotical stabilization with
a nonzero equilibrium position for the moving mass.

In this paper, we have considered the stable coordi-
nation problem of two vehicles equipping with internal
moving mass actuators. The energy based control is de-
signed in the context of mechanics, and does not rely
on cancelation or domination of nonlinearities.

However, the academic model employed in this pa-
per dose not consider the effect of gravity. To include
forces and moments due to the gravity, and use energy
shaping to solve the coordination problem is our ongo-
ing work. It is also of interest to consider the coordi-
nation problem in a group of N > 2 individuals with
limited communications.
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