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Abstract: This paper studies the problem of finite-time optimal formation control for agents evolving on Lie groups SE(2), for
the situation when the formation time and/or the cost function need to be considered. The finite-time optimal formation control
laws are proposed for the two-agent case. Considering that disturbances exist after the terminal time, the trajectory tracking
control law is given to keep the formation. Finally, some numerical examples are given to illustrate the effectiveness of the
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Key Words: Finite-time Formation, Optimal, Lie Group, Trajectory Tracking.

1 Introduction

Recently, the formation control of multiagent systems has

attracted much attention for the potential applications, such

as satellite attitude control, unmanned aircraft formation fly-

ing and sampling, distributed sensor networks, automated

highway systems (AHS), etc [1–3]. Compared to the tra-

ditional monolithic systems, the formation control reduces

the systems cost, breaches the size constraints, and prolongs

the life span of the systems [4]. Furthermore, the robustness

and flexibility are enhanced.

For systems evolving on Euclidean spaces, various con-

sensus algorithms are designed to achieve the desired for-

mation and many relevant engineering issues are considered,

such as time-delays, switching topology, and finite-time for-

mation [5–8]. However, in many applications, the agents

evolve on nonlinear manifold such as satellite attitudes on

SO(3) and vehicles move in SE(2) or SE(3); these partic-

ular manifolds share the geometric structure of a Lie group

[9]. Formation control on nonlinear manifolds is inherently

more difficult than on Euclidean spaces [10]. For the forma-

tion problem on nonlinear manifolds, the designing methods

for control laws can be divided into two main categories.

The traditional method is to locally convert the formation

problem on nonlinear manifold into the consensus problem

on Euclidean space by parametrization [11–15]. The second

method is to directly design control laws on nonlinear mani-

folds [9, 10, 16–19]. The attitude control of multiple space-

craft is considered in [11–15]. In [11], the attitude of space-

craft is described in terms of the Modified Rodriguez Param-

eters, which have a geometric singularity. The unit quater-

nion is used to describe the attitude of spacecraft in [12–15],

and the derived results are local, because the unit quaternion

is not unique. By contrast, the methods in [9, 10, 16–19] can

apply to arbitrary initial conditions. The authors took into

account the geometry structure of the manifold, i.e. sym-

metries and directly design control laws on the nonlinear

manifold. In [17], the authors presented a Lie group set-

ting for the problem of control of formations, and the set of

all possible relative equilibria for arbitrary G-invariant cur-

vature control is described (where G = SE(2) is a sym-

metry group for the control law), and the proposed control
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law for the two-agent case is proved to stabilize the relative

equilibria, which is determined by the model of agents. The

coordination on Lie groups is considered in [9]. It gave a

general problem formulation, analyzed ensuing conditions

and proposed the control laws for the coordinated motion.

However, the relative configuration between the agents are

constants, which are determined by initial conditions, rather

than task requirements. The authors in [18] studied the op-

timal control problems on some 6-D Lie groups for the case

of one agent. The stable synchronization on Lie groups is

considered in [19]. The asymptotical control laws are pro-

posed to stabilize the desired relative equilibrium. In many

practical applications, the formation algorithms, that obtain

the formation in finite time, are more desirable, especially

when the multi-maneuver is needed and a high precision

control is required. However, it can be seen that for mul-

tiple agents evolving on Lie group the finite-time formation

problem with the general formation conditions is unsolved.

Furthermore, for the formation systems it is significant to

guarantee that some performance index is optimal in prac-

tical applications. For example, the minimal fuel consump-

tion for the satellites formation with limited fuel is crucial.

Therefore, studies of finite-time optimal formation control

on Lie groups make good sense in practical cases.

Motivated by the above analysis, the finite-time optimal

formation problem for agents evolving on Lie groups SE(2)
is considered in the present paper. For the given formation

time and the cost function, the finite-time optimal formation

control laws are proposed for the two-agent case to achieve

the formation in the terminal time and optimize the cost

function during the formation. Then, considering that dis-

turbances exist after the terminal time, the trajectory track-

ing control law is given to keep the formation. Compared to

the asymptotical formation control, this control laws derive

the formation in finite time, which is specified according to

the task requirements in advance, and the cost function is

guaranteed to be optimal.

The remainder of this paper is organized as follows. The

preliminaries and problem formulation are given in section

2. In section 3, the finite-time optimal formation control

laws are proposed for the two-agent systems evolving on Lie

group SE(2), and considering that disturbances exist after

the terminal time, the trajectory tracking control law is given
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to keep the formation. The numerical examples are given

in section 4 to illustrate the theoretical results. Concluding

remarks are made in section 5.

2 Preliminaries and Problem Formulation

2.1 Model of the Agent
In this paper, the agents are considered to evolve on Lie

group SE(2), i.e. the special Euclidean group in the plane.

SE(2) describes the configuration of the planar rigid body

(translations and rotations) and the element of SE(2) is de-

noted by

g =

[
R d
0 1

]
,

where d ∈ R
2 is the position vector in the plane and R ∈

SO(2) is an orthogonal matrix with positive determinant.

Let g−1 denote the group inverse of g ∈ SE(2). TgSE(2)
is the tangent space to SE(2) at the base element g, and for

g = e (identity element), TeSE(2) is denoted by se(2) and

is called Lie algebra of the group SE(2).
Suppose that the kinematics model of the agent is given

by

ġ = gξ̂ = gê1u+ gê2v + gê3w,

where the matrix ξ̂ ∈ se(2) is called a twist which can be

written as a linear combination of the basis of se(2), i.e.

êi(i = 1, 2, 3) defined as follows,

ê1 =

⎡
⎣ 0 0 1

0 0 0
0 0 0

⎤
⎦ , ê2 =

⎡
⎣ 0 0 0

0 0 1
0 0 0

⎤
⎦ ,

ê3 =

⎡
⎣ 0 −1 0

1 0 0
0 0 0

⎤
⎦ ,

and [u, v, w]T ∈ R
3 is considered as the control input.

Let ξ = [u, v, w]T . There exists an invertible mapping ∧ :

R
3 → se(2).

∧ :

⎛
⎝ u

v
w

⎞
⎠ −→

⎛
⎝ 0 −w u

w 0 v
0 0 0

⎞
⎠

It is easy to prove that se(2) is isomorphic to R
3. The inverse

mapping is denoted by ∨ : se(2) → R
3.

2.2 Linear Functionals on TgSE(2) and se(2)

Let Pg ∈ T ∗
g SE(2) denote the linear functional on

TgSE(2), where T ∗
g SE(2) is the cotangent space at g,

which is dual to TgSE(2). Using the left-invariant property,

it is easy to obtain that

Pg(ġ) = g∗Pg(g
−1ġ) = p̂∗(ξ̂),

where p̂∗ ∈ se(2)∗ is the linear functional on se(2). For the

matrix Lie group concerned, we have

Pg = g−T p̂∗. (1)

For the linear functional on se(2), the following definition

is given.

Definition 1. p̂∗(ξ̂) = tr(diag( 12 ,
1
2 , 1)p̂

T ξ̂).

Define the dual basis of se(2)∗ as ê∗i = êTi (i = 1, 2, 3),
such that

ê∗i (êj) = δij (i, j = 1, 2, 3),

where δij is the Kronecker delta. Let pi = p̂∗(êi) (i =
1, 2, 3). Thus, p̂∗ can be expressed as

p̂∗ = p1ê
∗
1 + p2ê

∗
2 + p3ê

∗
3,

and [p1, p2, p3]
T ∈ R

3 is the coordinates of p̂∗ with respect

to the dual basis ê∗i (i = 1, 2, 3). Then we have

Pg(ġ) = p̂∗(ξ̂) = 〈p, ξ〉,
where 〈·, ·〉 presents the inner product on R

3.

Next, in order to describe the formation condition in the

following, the definition of relative configuration is intro-

duced.

Definition 2. [9] The relative configuration on SE(2) of
agent j with respect to agent k is gjk = g−1

k gj .

Remark 1. In the present paper, the left-invariant relative
configuration gjk = g−1

k gj is considered. However, the pro-
posed designing methods can also been applied for the case
of the right-invariant relative configuration ρjk = gjg

−1
k .

2.3 Problem Formulation
Consider two identical agents evolving on Lie group

SE(2). The kinematics model of the agent i is described

by

ġi = giξ̂i = giê1ui + giê2vi + giê3wi, i = 1, 2. (2)

Suppose the cost function is given as

J = 1
2

∫ tf

t0

(
ξT1 (t)ξ1(t) + ξT2 (t)ξ2(t)

)
dt, (3)

where t0 and tf are the initial time and terminal time, re-

spectively. In general, the minimization of the above cost

function is to minimize the length of geodesics or the con-

trol energy.

The agents are said to achieve a formation defined by a

given relative configuration g21 ∈ SE(2), if their configura-

tions satisfy the following condition

g−1
1 (tf )g2(tf )− g21 = 0, (4)

where g21 is given according to the formation requirements.

Let g12 denote the inverse of g21.

In this paper, the objective is to design ξi (i = 1, 2) for

system (2) such that the specified formation condition (4) is

achieved at the given terminal time tf , and the cost function

(3) is minimized.

3 Main Results

3.1 Finite-time Formation
In the above section, the problem of finite-time optimal

formation control is converted into the optimal control prob-

lem. Therefore, the next task is to solve the optimal control

problem.
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Considering the system (2), the Hamiltonian is written as

H = − 1
2

(
ξT1 ξ1 + ξT2 ξ2

)
+ Pg1

(
g1ξ̂1

)
+ Pg2

(
g2ξ̂2

)
, (5)

where Pgi ∈ T ∗
giSE(2) (i = 1, 2) represents the costate.

For convenience, Pgi (i = 1, 2) is denoted by Pi. Then,

it follows from Pontryagin’s maximum principle (PMP) that

the necessary conditions of optimality are written as [20]

ġi =
∂H

∂Pi
= giξ̂i, (6)

Ṗi = −∂H

∂gi
= −Piξ̂

T
i , i = 1, 2. (7)

Lemma 1. For the given formation condition (4), the
transversality condition is given by

P1(tf ) = −P2(tf )g
T
21.

Proof . For the given formation condition (4), let

f = g−1
1 (tf )g2(tf )− g21,

and f ij is the (i, j)th entry of f . According to PMP [20],

we have

P pq
i (tf ) =

3∑
j,k=1

λjk
∂f jk

∂gpqi
(tf ),

where P pq
i (tf ) and gpqi are the (p, q)th entry of Pi(tf ) and

gi(tf ), respectively, and λjk (j, k = 1, 2, 3) is the undeter-

mined parameter.

Let Λ ∈ R
3×3 denote the undetermined matrix with λjk

being the (j, k)th entry. Thus

P pq
i (tf ) = tr

(
ΛT ∂f

∂gpqi
(tf )

)

= tr

(
ΛT ∂(g−1

1 g2)

∂gpqi
(tf )

)
.

For i = 1,

P pq
1 (tf ) = tr

(
ΛT ∂(g−1

1 g2)

∂gpq1

)
(tf )

= tr

(
−ΛT g−1

1

∂g1
∂gpq1

g−1
1 g2

)
(tf )

= tr
(−ΛT g−1

1 Epqg
−1
1 g2

)
(tf )

= −tr
(
Epqg

−1
1 g2Λ

T g−1
1

)
(tf )

= − (
g−1
1 g2Λ

T g−1
1

)qp
(tf ),

where Epq ∈ R
3×3 is a constant matrix with only (p, q)th

entry being 1 and the others being 0. For i = 2,

P pq
2 (tf ) = tr

(
ΛT ∂(g−1

1 g2)

∂gpq2

)
(tf )

= tr

(
ΛT g−1

1

∂g2
∂gpq2

)
(tf )

= tr
(
ΛT g−1

1 Epq

)
(tf )

=
(
g−T
1 Λ

)pq
(tf ).

In the matrix form,

P1(tf ) = − (
g−1
1 g2Λ

T g−1
1

)T
(tf ) = −(g−T

1 ΛgT21)(tf )

P2(tf ) =
(
g−T
1 Λ

)
(tf ).

Thus

P1(tf ) = −P2(tf )g
T
21.

Lemma 2. Pi(t)g
T
i (t) is a constant.

Proof . From (6), the control input is written as

ξ̂i = g−1
i ġi.

Substituting the above equality into (7), we obtain

Ṗi = −Pi(g
−1
i ġi)

T = −Piġ
T
i

(
gTi

)−1
.

Thus

Ṗig
T
i + Piġ

T
i = 0.

From the equality

d
dt (Pig

T
i ) = Ṗig

T
i + Piġ

T
i ,

it is easy to see that Pig
T
i is invariant with respect to time t,

i.e.

d
dt (Pig

T
i ) = 0.

Consequently, Pig
T
i is a constant.

From Lemma 2, it can be assumed that

Pi(t)g
T
i (t) = ĉ∗i , (i = 1, 2), (8)

where ĉ∗i is an unknown constant. From (1), it is obtained

that

g−T
i (t)p̂∗i (t)g

T
i (t) = ĉ∗i .

Using the coadjoint operator, we have

Ad∗
g−1
i (t)

p̂∗i (t) = ĉ∗i .

Thus

p̂∗i (t) = gTi (t)ĉ
∗
i g

−T
i (t) = Ad∗gi(t)ĉ

∗
i ,

p̂i(t) = g−1
i (t)ĉigi(t) = Adg−1

i (t)ĉi. (9)

In a similar manner to [18], the Hamiltonian (5) is func-

tion on the cotangent bundle T ∗SE(2) which can be trivial-

ized such that T ∗SE(2) = SE(2) × se(2)∗. Therefore the

appropriate Hamiltonian is a function on se(2)∗, the dual of

the Lie algebra se(2) of SE(2). The Hamiltonian (5) can be

pulled back by the left transformation and then is written as

H = − 1
2

(
ξT1 ξ1 + ξT2 ξ2

)
+ p̂∗1

(
ξ̂1

)
+ p̂∗2

(
ξ̂2

)

=

2∑
i=1

−1

2
〈ξi, ξi〉+ 〈p1, ξ1〉+ 〈p2, ξ2〉
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Then, it follows from the PMP [20] that the optimal control

laws are determined from the following condition:

∂H

∂ξi
= −ξi + pi = 0.

Thus

ξopi = pi, i = 1, 2.

Using (9), we have

ξ̂opi (t) = p̂i(t) = Adg−1
i (t)ĉi. (10)

For the problem of finite-time optimal formation control

on Lie group SE(2), the following theorem is proposed.

Theorem 1. For system (2), the specified formation (4) is
achieved at the given terminal time tf , and the correspond-
ing cost function (3) is optimal with the following control
laws

ξ̂op1 (t) = 1
2(tf−t0)

Adg−1
1 (t) log

(
g2(t0)g12g

−1
1 (t0)

)
,

ξ̂op2 (t) = 1
2(tf−t0)

Adg−1
2 (t) log

(
g1(t0)g21g

−1
2 (t0)

)
.

(11)

Proof . From Lemma 1, the transversality condition is

given by

P1(tf ) = −P2(tf )g
T
21.

Thus

P1(tf )g
T
1 (tf ) = −P2(tf )g

T
2 (tf ).

Using Lemma 2 and (8), it is obtained that

P1(t)g
T
1 (t) = −P2(t)g

T
2 (t), ∀t ∈ [t0, tf ].

Therefore,

ĉ∗1 = −ĉ∗2, ĉ1 = −ĉ2.

Substituting the above equality into (10) gives

ξ̂op1 (t) = Adg−1
1 (t)ĉ1, ξ̂

op
2 (t) = −Adg−1

2 (t)ĉ1.

For the system (2), we have

ġi = giAdg−1
i (t)ĉi = ĉigi.

Solving the above equation gives

gi(t) = eĉi(t−t0)gi(t0), i = 1, 2. (12)

Substituting (12) into the formation condition (4) gives

g−1
1 (t0)e

−2ĉ1(tf−t0)g2(t0) = g21.

Thus

ĉ1 = − 1

2(tf − t0)
log

(
g1(t0)g21g

−1
2 (t0)

)

=
1

2(tf − t0)
log

(
g2(t0)g12g

−1
1 (t0)

)
.

Then the optimal control laws are given by

ξ̂op1 (t) =
1

2(tf − t0)
Adg−1

1 (t) log
(
g2(t0)g12g

−1
1 (t0)

)
,

ξ̂op2 (t) =
1

2(tf − t0)
Adg−1

2 (t) log
(
g1(t0)g21g

−1
2 (t0)

)
.

3.2 Trajectory Tracking
For the above finite-time optimal formation problem, the

proposed control laws are imposed on agents until the de-

sired formation is achieved. However, it is common that dis-

turbances exist after the terminal time. For this reason, the

following trajectory tracking algorithm on SE(2) is given to

keep the formation.

Considering the following systems

ġ0 = g0ξ̂0, (13)

ġ1 = g1ξ̂1, (14)

where ξ̂0 ∈ se(2) is the external input signal. Our goal is to

design ξ̂1 ∈ se(2) for system (14) to track the trajectory of

system (13).

For arbitrary elements g0, g1 ∈ SE(2), it is not ensured

that g1 − g0 also belongs to SE(2). So, the state differ-

ence which is used in the Euclidean space can not be used to

the tracking problem on SE(2). For the general linear group

GL(n), a sufficiently small open neighborhood U of identity

element I in GL(n) is diffeomorphic to an open neighbor-

hood of zero element in matrix group M(n) (see the theorem

3.2.4 in [21]). It is assumed that gi(t) ∈ SE(2) (i = 0, 1)
belongs to an open neighborhood UI of identity element I .

Thus, there exists the unique Xi(t) ∈ log(UI)
⋂
se(2) (i =

0, 1) such that gi(t) = eXi(t) or log(gi(t)) = Xi(t).
Let

d

dt
log(gi(t)) = ξ̂i(t), (i = 0, 1).

Using Baker-Campbell-Hausdorff formula (see theorem

10.4 in [22]),

log(exp(−X0) expX1) = −X0 +X1 +
1

2
[−X0, X1]

+
1

12
[−X0, [−X0, X1]]− 1

12
[X1, [−X0, X1]]

− 1

24
[X1, [−X0, [−X0, X1]]] + · · · .

Thus,

log(g−1
0 g1) = log(g1)− log(g0) + [log(g1), log(g0)]

+higher order term,

where [·, ·] is the Lie bracket defined on se(2). Let

δξ̂ = ξ̂1 − ξ̂0 +
d

dt
[log(g1), log(g0)]

+higher order term.

When log(g0) and log(g1) are sufficiently close to each

other, it follows that

δξ̂ ≈ ξ̂1 − ξ̂0. (15)

Therefore, considering the following system

d

dt
(log(g−1

0 g1)) = δξ̂, (16)

the problem of trajectory tracking is converted into the sta-

bilization of system (16).
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As mentioned above, se(2) is isomorphic to R
3 . For con-

venience, the system (16) is written as

d

dt
([log(g−1

0 g1)]
∨) = δξ. (17)

This problem is solved by the classical Euclidean space state

feedback control. For control input δξ, the state feedback

matrix K ∈ R
n×n is designed such that

δξ = K[log(g−1
0 g1)]

∨, (18)

and system (17) is asymptotically stable. Solving (17) gives

[log(g−1
0 (t)g1(t))]

∨ = eK(t−t0)[log(g−1
0 (t0)g1(t0))]

∨.

Obviously, eK(t−t0)[log(g−1
0 (t0)g1(t0))]

∨ → 0 implies that

g1(t) → g0(t). Following from (15,18), the desired tracking

control law for system (14) is given by

ξ̂1(t) = ξ̂0(t) + [K[log(g−1
0 (t)g1(t))]

∨]∧. (19)

For the problem of trajectory tracking, the following the-

orem is proposed.

Theorem 2. Considering the systems (13,14) and assuming
that the initial conditions for systems (13,14) are sufficiently
close, the trajectory tracking control law is given by

ξ̂1(t) = ξ̂0(t) + [K[log(g−1
0 (t)g1(t))]

∨]∧, (20)

where K ∈ R
n×n is chosen such that all the eigenvalues

have negative real parts.

For system (2), the desired formation is achieved at the

given terminal time. Then, for each agent, the control law

switches to the tracking control law to keep the formation.

The tracking control laws are given by

ξ̂1(t) = [K[log(g1(tf )
−1(t)g1(t))]

∨]∧,

ξ̂2(t) = [K[log(g2(tf )
−1(t)g1(t))]

∨]∧.

Remark 2. The above theorem requires that the initial con-
ditions are sufficiently close. It restricts the application
range. However, for the problem concerned, the initial con-
ditions are justified when the desired formation is achieved
at the terminal time. Besides, the simulation indicates a
large basin of attraction.

4 Numerical Examples

In this section, some numerical examples are given to il-

lustrate the effectiveness of the control laws proposed in the

above sections. For simplicity, the initial time is given by

t0 = 0.

Example 1. Consider the system with two agents de-

scribed by (2). The desired formation is that the configura-

tions of these two agents achieve consensus, so the formation

condition is given by g21 = [1, 0, 0; 0, 1, 0; 0, 0, 1]. And the

desired formation time is 3. Select the initial configurations

as follows

g1(t0) =

⎡
⎣ cosα1 − sinα1 3

sinα1 cosα1 2
0 0 1

⎤
⎦ ,

g2(t0) =

⎡
⎣ cosα2 − sinα2 0

sinα2 cosα2 4.5
0 0 1

⎤
⎦ ,

0 0.5 1 1.5 2 2.5 3 3.5

2

2.5

3

3.5

4

4.5

Agents on SE(2)

(a)

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3
X axis of Agents

0 1 2 3 4
2

2.5

3

3.5

4

4.5
Y axis of Agents

Agent 1
Agnet 2

(b)

Fig. 1: Formation of two agents and tf = 3, (a) Finite-time

formation in the plane, (b) the position curves for two agents.

where α1 = −10, α2 = 1.2. The simulation time is 4.

Fig.1 (a) shows the formation for system (2) using the

finite-time optimal control laws (11). The dark-colored

agent and the light-colored agent represent Agent 1 and

Agent 2, respectively. The agents without color are the ini-

tial configurations. The position curves for the agents are

presented in Fig.1 (b), which indicate that the formation is

achieved at terminal time 3. Besides, the performance index

is 3251.9.

Example 2. Consider the systems (13,14). The external

input is given by

ξ̂0 =

⎡
⎣ 0 −0.2t 1

0.2t 0 2
0 0 0

⎤
⎦ ∈ se(2).

Select the initial configurations as follows

g0(t0) =

⎡
⎣ cosα0 − sinα0 −2

sinα0 cosα0 4.5
0 0 1

⎤
⎦ ,

g1(t0) =

⎡
⎣ cosα1 − sinα1 1

sinα1 cosα1 2
0 0 1

⎤
⎦ ,

where α0 = −1.2, α1 = 1. The state feedback matrix is

−E, where E is the unite matrix. The simulation time is 8.

Fig.2 (a) shows the trajectory tracking result for system

(14) using the trajectory tracking control law (20). The dark-
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Fig. 2: Trajectory tracking for two agents (a) Tracking result

in the plane, (b) the position curves.

colored agent and the light-colored agent represent Agent

1 and Agent 0, respectively. The position curves for the

agents are presented in Fig.2 (b), which show that the Agent

1 asymptotically tracks the trajectory of Agent 0.

5 Conclusions

In this paper, the finite-time optimal formation control

laws are proposed for the two-agent system evolving on

SE(2). The formation time is given in advance according

to the task requirements and during the formation, the given

performance index is optimal. Additionally, for the case

when disburses exist after the terminal time, the trajectory

tracking control law is designed to keep the formation.

Nevertheless, there are still some problems remained to

be solved, such as the finite-time optimal formation control

for the case of multiple agents and considering the dynamics

model of the agents. The solving of these problems could be

important both for theoretical research and practical applica-

tions.
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