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Abstract: In this paper the problem of eliminating the drift from affine control systems is discussed. We investigate the problem 
from two perspectives:  the state extension system with particular form and the quotient driftless system. We give sufficient and 
necessary conditions on the affine control system such that it admits the above two structures respectively. Relations between the 
conditions are discussed.  Some global results are given.  
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1. Introduction 

Motion planning problem (MPP) for a given control 
system is to design the control law such that it steers the 
control system from a given initiated state to a given final 
state in an assigned time. The existing results for MPP 
mainly focus on the driftless control systems [1-6]. For 
affine control systems, MPP appears more challenge. In the 
recent years some researchers have developed the optimal 
control methods to solve the MPP [7-9]. Another 
consideration is based on the existing results for driftless 
control systems. Some results have appeared for a special 
class of affine control systems-the simple mechanical 
control systems [10-13].  

In this paper, we consider the methods of eliminating the 
drift from the affine control system such that we can apply 
the existing motion planning methods for driftless control 
systems. Two perspectives are investigated: we first study 
the state extension system for the affine control system such 
that MPP for the new system is easy to solve. More precisely, 
(Problem 1) given an affine control system Q  
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on the n-dimensional manifold Q, we seek conditions on the 
vector fields 0 1, , , mf f f such that there exists a control 

system having Q  as its subsystem and it is state feedback 
equivalent to the control system having the following form 
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A related paper is [14] where the authors focused on 
invariant control systems on matrix Lie group. We identify 
that the diffeomorphsim of the state space defined there is 
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actually a diffeomorphsim of the extension state space. 
Motivated by this, we will work on state extension for 
general affine control system as described above.  

From the perspective of quotients, we consider the 
following problem (Problem 2): given an affine control 
system Q  as above, when does it admit a quotient driftless 

control system Q with trajectory lift property? That is, if 

there exists a driftless control system Q on the manifold 

Q with : Q Q a submersion such that for every 
trajectory ( )x t of Q , there exists a trajectory ( )x t  of Q , 

such that ( ( )) ( )x t x t . In [15], the trajectory lift map 
between two general control systems was studied. Here we 
refine the map between affine and driftless control systems. 
We will investigate the conditions on Q such that it admits 
such a quotient driftless system. Then relations between 
Problem 1 and Problem 2 will be discussed since they seem 
to be independent. 

The paper is organized as follows: Preliminaries are given 
in section 2. Problem 1 is investigated in section 3. In 
section 4 we study Problem 2 and discuss the relations 
between these two problems. Some global results are given 
in section 5. We make a conclusion in section 6. As a 
reference for notation employed and geometric concepts, 
see [16, 17]. 

2. State  Feedback Equivalence 

Definition 2.1: The affine control system  
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on the manifold M is said to be state feedback equivalent to 
the system (1) if and only if  there exist a global 
diffeomorphism : M N and a feedback 
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transformation ( ) ( )i i j i
jv z u z with ( )i

j

nonsingular such that  

* 0 0

*
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z g z f z
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If the diffeomorphism above is locally around 
some 0z M , then (3) is said to be locally state feedback 
equivalent to the system (1). 

3. State extension control Systems 
The state extension systems are very important in the 

proof of Pontryagain’s Maximum Principle for optimal 
control [18]. Here we consider whether the drift can be 
eliminated by state extension. We have: 
Theorem 3.1: Let Q  be an affine control system having 
the form (1). Locally, there exists a control system having 

Q  as its subsystem and is state feedback equivalent to the 

system with the form (2) if and only if 2m functions 
j

i and m functions j on Q such that 

0[ , ] [ , ], 1, ,j j
i i j i jf f f f f i m  

Proof: (Necessity) 
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be the control system state feedback equivalent to the 
system (2). 
Then there exists feedback transformation  

 ( , ) ( , )i i j i
ju x y v x y  

where the matrix ( )i
j is nonsingular and a local 

diffeomorphism  
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Since ( )i
j  is nonsingular,  

We have 

0[ , ] [ , ], 1, ,j l
i i j i lf f f f f i m   

For 0[ , ], ,[ , ]i j i lf f f f f are vector fields on the manifold Q, 

there exist 2m functions j
i and m functions j on Q  

such that  
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(Sufficiency)  
If 0[ , ] [ , ], 1, ,j j

i i j i jf f f f f i m , 
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Since 0( )j
jf f

x y
is nondegenerate, we have 

local coordinates 1 1( , , , )n nx x x on Q R  such that  

0 1
j

jf f
y x

. 

Then (4) becomes  

                                  
1 ( ) 0j k k

i j ix
                        (5) 

Let ( )(0)j
i I ,  then (5) has solutions j

i such that the 

matrix ( )i
j is nonsingular in sufficient small 

neighborhood of zero point according to the theory of 
ordinary differential equation.  

Denote the involutive distribution 1( , , )mD Lie f f , 

we have 0[ , ]f D D  because 

0 0[ , ] [ , ]j
i j if f f f f D
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Then there exists local coordinates ( , )x y on Q R  such 

that 
1 , , kD span

x x
with dim D k , and  

0f y
according to Proposition 3.50 in [19]. 

Since 0[ , ] 0j
i jf f ,  

we have 1
1( ) ( )j k

i j i i kf h x h x
x x

. 

That is the control system 0
1

( ) ( )
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is 

locally state feedback equivalent to the system with the form  
(2). 

Remark 3.1: From the proof of the above theorem, we 
know when Q has a state extension system which is state 
feedback equivalent to the system with the form (2), we can 
always choose the state extension system as 

0
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, then (2) becomes 
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That is, a state extension with time variable is always 
enough to eliminate the drift.  

4. Quotient Driftless Control Systems 

Theorem 4.1 [15]: If :f M TM and 

:h N TN  be 1C  control systems. If  
: M N is a 1C mapping, and if  every compactly 

defined trajectory :[ , ]a b N of h  satisfying 
( ) ( )a M can be locally lifted from h  to f via . 

then for every x M we have  

( , ) ( ( ), )p
xd f x R h x  

Theorem 4.2:  Let Q  be an affine control system having 
the form (1). Then locally it admits a quotient driftless 
control system Q with trajectory lift property if and only if 

there exists an involutive distribution D such that 

0f D F and [ , ]D F D F where 

1, , mF span f f and F is a distribution contained 

in F . 

Proof: According to Theorem 4.1, if 
1
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satisfies the trajectory lift property, then for every x Q  
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We know there exist m functions i on Q such that  

0
1

( ( ) ( )) 0
m

i
x i

i
d f x f x , for every x Q               (6) 

And there exists a k-dimensional distribution F  contained 
in the distribution spanned by 1, , mf f such that  

( ( )) ( ( ))x id F x span g x                                           (7) 

For : Q Q is a submersion, we know ker( )d is an 

involutive distribution. We denote it by D . 
So (6) is equivalent to 0f D F , 

and (7) is equivalent to  [ , ]D F D F . 
On the other hand, if the conditions in Theorem 4.2 hold, 
then D is a controlled invariant distribution for the 
subbundle 0f F . Locally, the existence of the quotient 
driftless system with trajectory lift property is ensured by 
the local form of Q induced by D . 
Remark 4.1: On considering the trajectory preserving 
property, we should let F F in the above theorem. The 
existence of quotient driftless system makes it possible to 
solve the MPP first for driftless system in the base space.                    
Remark 4.2: A special case that links Theorem 3.1 with 
Theorem 4.2 is when  

0 1[ , ] , , , 1, ,i mf f span f f i m . 

With local feedback transformation i i j
ju v , Q can be 

transformed into the form   
1

( )i
i

x
y v g y

. MPP for Q  is 

locally equivalent to MPP for the driftless system 
( )i

iy v g y .

5. Corollaries  
In this section, we give some examples of control systems 

where they admit global results for eliminating the drift. 
Corollary 5.1: Consider the left-invariant control system on 

( )GL n :                    0
1

m
i

i
i

g gX g u X . 

With the conditions that  

0 11{ , , , , , }
mX j m X j X jad X span X X ad X ad X  

1, ,j m
 

a global diffeomorphsim defined by  
0X tg ge  
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together with a feedback  transformation with the  form  

( )u B t v U  

where mU R is a constant vector field transform the 

control system into a  driftless system 
1

m
i

i
i

g g v X . 

Remark 5.1: Here we correct the conditions given by 
Theorem 1 in [14]. 
Corollary 5.2:  Consider the left-invariant control system 

on ( )GL n :                  0
1

m
i

i
i

g gX g u X . 

If there exists a Lie subalgebra ( )A gl n such that 

0 1{ , , }mX A span X X and  

1[ , ] { , , }j mA X A span X X , 
then there exists a driftless control system on the 

homogenous manifold ( )GL n
H where H is the Lie 

subgroup of ( )GL n with Lie algebra ( )A gl n , such that  
the trajectory preserving and lifting property are satisfied 

under the map ( ): ( ) GL nGL n H . 

6. Conclusion  
In this paper we considered eliminating the drift from an 
affine control system. Two perspectives have been shown: 
from state extension and quotient systems. The sufficient 
and necessary conditions under which the methods are 
locally applicable have been given. The relations between 
these two methods were discussed. Some global results were 
given for invariant control systems on Lie groups. 
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