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Abstract—In this paper the passivity-based finite-time attitude
control problem of a rigid spacecraft is addressed. Firstly, for
a certain class of nonlinear passive system we derive different
control laws according to different choices of storage functions.
Based on this result, combining the sliding mode control method,
we propose a passivity-based finite-time controller for a rigid
spacecraft. Performances of the proposed controllers are illus-
trated by simulation.
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I. INTRODUCTION

In recent years, the attitude control of a rigid spacecraft has
been extensively studied. It is a very interesting problem due
to its many different types of applications, such as pointing
and slewing of spacecrafts, helicopters, satellites, underwater
vehicles and robot manipulation [1], [2].

The attitude stabilization of a spacecraft using attitude and
angular velocity in the feedback control law has been inves-
tigated by many researchers and a wide class of controllers
has been proposed. Among the exiting control laws, most are
asymptotically stable control laws [2]-[6]. Asymptotic stability
implies that the system trajectories converge to the equilibrium
as time goes to infinity. In [5], the attitude tracking control
problem of a rigid spacecraft with external disturbances and an
uncertain inertia matrix is addressed using the adaptive control
method. The proposed quaternion-based hybrid feedback law
in [6] solves the global attitude tracking problem in three
scenarios: full state measurements, only measurements of
attitude, and measurements of attitude with angular velocity
measurements corrupted by a constant bias.

However, there is little result about finite-time attitude
control for a rigid spacecraft. Obviously, finite-time stabiliza-
tion of a dynamical system gives rise to a high-precision
performance and better disturbance rejection properties [7]
[8] [9]. In [8], the standard terminal sliding mode control
technique was employed. In [9], a finite-time attitude tracking
feedback control law using both attitude and angular velocity
has been designed for a single spacecraft and a distributed
finite-time attitude synchronization algorithm has also been
developed for a group of spacecrafts.

The attitude control of a spacecraft with full state measure-
ments has been directed towards removing the requirement of
the angular velocity measurement due to the lack of tachometer
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of manipulators [3], [6], [11], [12], [13] and [14]. The passivity
property was the main idea behind the design of controller
without angular velocity measurement. In [3], the authors
used the passivity-based adaptive control approach for robotic
manipulators to derive the adaptive attitude control scheme
without velocity measurement. The stabilization controller
proposed in [6] used a nonlinear filter of quaternion to replace
the angular velocity feedback. The authors in [12] showed that
linear asymptotically stabilizing controllers without angular
velocity measurements followed naturally from the passivity
properties established for attitude motion of a rigid body. In
[13], the velocity-free unit quaternion-based tracking controller
guaranteeing almost global asymptotic stability was derived by
using an auxiliary unit-quaternion dynamical system.

The existing finite-time attitude control laws mainly de-
pend on the methods which have been explored in designing
general nonlinear systems. It is possible to use the inherent
properties of the system to benefit the designing process.
Owing to the importance of the passivity properties of the
system, we focus on finding the possibility of designing a
finite-time attitude control law based on the passivity properties
of the system. Firstly, by combining the finite-time stability
theory with passivity approach, we derive a finite-time control
law for a certain class of nonlinear passive system. Secondly,
by combining the sliding mode control method, we derive
a finite-time control law for the whole dynamic system.
The performance of the proposed controller is illustrated by
simulation. To the best of authors’ knowledge, this is a new
result about finite-time attitude control problem based on the
passivity properties of the dynamical system.

The remainder of this paper is organized as follows. In
section 2, some preliminaries and problem statement are given.
For the set point control problem for a rigid spacecraft, the
finite-time attitude control law is proposed in section 3. The
numerical examples are given in section 4 to illustrate the
results. Finally, we make concluding remarks in section 5.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Rotation motion a rigid spacecraft

Fundamental to any problem in this area is the necessity
to identify and adopt a parameterization for attitude. Modified
Rodrigues parameters (MRPs) are an attractive set of three-
dimensional coordinates for attitude motions [15]. We adopt
the MRPs to represent the attitude motion of a spacecraft.



Let σ = η tan(θ/4) ∈ R
3,−2π < θ < 2π represent the

MRPs for a spacecraft, where η is the Euler axis and θ is
the Euler angle. Given a vector ν = [ν1, ν2, ν3]

T ,the symbol
s(·) denotes a 3 × 3 skew-symmetric matrix, that is s(ν) =
[0, ν3,−ν2;−ν3, 0, ν1; ν2,−ν1, 0]. It also performs the vector
cross product between any two vectors, i.e., s(a)b=−a × b,
a, b ∈ R

3.

Let u(t) ∈ R
3 be an external torque vector acting on the

spacecraft whose mass moment of inertia is given by the matrix
J ∈ R

3×3. Usually we can transform J to a diagonal matrix.
ω(t) ∈ R

3 is the angular velocity of the spacecraft with respect
to the inertial frame expressed in the body frame and J is the
symmetric inertia matrix. The dynamic motion the attitude of
the spacecraft are {

σ̇ = G(σ)ω (1a)
Jω̇ = s(ω)Jω + u (1b)

where the matrix G(σ) is given by

G(σ) =
1

2

[
1− σTσ

2
I3×3 − s(σ) + σσT

]
(2)

with I3 being the 3 × 3 identity matrix. For the matrix, the
following properties are known [14]:

σTG(σ)ω =
1 + σTσ

4
σTω,G(σ)G(σ)T =

1 + σTσ

4
I3×3

(3)

B. Passivity

Definition 1[16]: For a dynamical system represented by
the state model {

ẋ = f(x, u) (4a)
y = h(x, u) (4b)

wheref : Rn ×R
n → R

n is locally Lipschitz, h : Rn ×R
n →

R
n is continuous, f(0, 0) = 0, and h(0, 0) = 0.

The system is said to be passive if there exists a continu-
ously differentiable positive semi definite function (called the
storage function) such that [16]:

uT y ≥ V̇ =
∂V

∂x
f(x, u), ∀(x, u) ∈ R

n × R
n.

Moreover, it is said to be

1) Lossless if uT y = V̇ .
2) Output feedback passive if uT y ≥ V̇ + yT ρ(y) for

some function ρ.
3) Output strictly passive if uT y ≥ V̇ + yT ρ(y) and

yT ρ(y) > 0, ∀y �= 0.

In all cases, the inequality should hold for all(x, u).

Definition 2[16]: The system (4a)-(4b) is said to be zero-
state observable if no solution of ẋ = f(x, 0) can stay
identically in S = {x ∈ R

n|h(x, 0) = 0}, other than the
trivial solution x(t) ≡ 0.

Lemma 1[16]: Consider the system (4a)-(4b), the origin
of ẋ = f(x, 0) is asymptotically stable if the system is strictly
passive or output strictly passive and zero-state observable.
Furthermore, if the storage function is radially unbounded, the
origin will be globally asymptotically stable.

C. Finite-time stability

Lemma 2[17]: Consider the system ẋ = f(x), wheref(·) :
R

n → R
n is a continuous function. Suppose there exists

a continuous, positive definite function V (x) : U → R

defined on an open neighborhood U of the origin such
thatV̇ (x) + c(V (x))α ≤ 0 on U for some c > 0 and
α ∈ (0, 1), then the origin is a finite-time stable equilibrium
of system ẋ = f(x) and the finite settling time T satisfies
T ≤ (V (x(0)))1−α/c(1 − α). If U = R

n and V is radially
unbounded, the origin is a globally finite-time stable equilib-
rium.

Lemma 3[18]: For any xi ∈ R, i = 1, · · · , n, and a real
number p ∈ (0, 1],

(|x1|+· · ·+|xn|)p ≤ |x1|p+· · ·+|xn|p ≤ n1−p(|x1|+· · ·+|xn|)p

D. Problem Formulation

Given the dynamical system described by (1a) and (1b), our
control objective is to design a finite-time attitude controller
for a rigid spacecraft. Under this control law, the desired steady
state target attitude can be tracked in finite time.

III. FINITE-TIME ATTITUDE CONTROL FOR A RIGID
SPACECRAFT

A. Finite-time feedback control for a class of nonlinear passive
system

Passivity provides us with a useful tool for the analysis of
nonlinear systems, which relates nicely to Lyapunov stability.
Based on the properties of a passive system, one can obtain
the control law to globally stabilize the origin of a nonlinear
system.

Proposition 1[16]:If the system (4a)− (4b) is

1) Passive with a radially unbounded positive definite
storage function and

2) Zero-state observable,

then the origin x = 0 can be globally stabilized by u = −ϕ(y),
where ϕ is any locally Lipschitz function such that ϕ(0) = 0
and yTϕ(y) > 0 for all y �= 0.

The existing linear asymptotically stabilizing control laws
for the attitude motion of a rigid body using minimal three-
dimensional parameterizations are intimately related to the
passivity properties of the corresponding kinematic systems.
So it is natural to explore the possibility of designing the finite-
time control law for certain passive systems.

Theorem 1: For the n-input-n-output system{
ẋ = f(x, u) (5a)
y = x (5b)

where f : Rn × R
n → R

n is locally Lipschitz, f(0, 0) = 0,
for some real numbers c > 0 and α ∈ (0, 1)

1) If the system is passive with the storage function V =
2ln(1+xTx), choosing V as the candidate Lyapunov
function, the origin of the system is finite-time stable
with control u = −c · 2α · x2α−1.



2) If the system is passive with the storage function
V = 1

2x
TJx, where J is a diagonal positive defi-

nite matrix, choosing V as the candidate Lyapunov
function, then the origin of the system is finite-time
stable with control u = −c · ( 12 )α · Jα · x2α−1.

Proof:

1) If we choose control

ui = −c · 2α · x2α−1
i

then

uT y = uTx = −c · 2α ·
n∑

i=1

x2αi

since

(xTx)α = (x21 + · · ·+ x2n)
α ≤

n∑
i=1

x2αi

= (x1, · · · , xn) ·

⎛
⎜⎝

x2α−1
1

...
x2α−1
n

⎞
⎟⎠

we get

uT y + c · 2α ·
n∑

i=1

x2αi ≤ 0

and also the system is passive:

uT y ≥ V̇

we get

V̇ + c · 2α ·
n∑

i=1

(xTx)α ≤ 0

obviously
ln(1 + xTx) ≤ xTx

so we get
V̇ + c · V α ≤ 0

Choosing V as the Lyapunov candidate, then the origin of the
passive system is finite-time stable.

The proof for 2) are similar to 1), thus omitted.

Proposition 2[14]:

1) System (1a) with input ω and output σ is passive
2) System (1b) with input u and output ω is passive.

Proof:

1) Taking the time derivative of the function V1(σ) =
2ln(1 + σTσ) along the trajectories of (1a) yields
that V̇1(σ) = σTω. This shows the system is passive
(lossless).

2) Taking the time derivative of the function V2(ω) =
1
2ω

TJω along the trajectories of (1b) yields that
V̇2(ω) = ωTu. This shows the system is passive
(lossless).

Proposition 3: If we can find real numbers satisfy c > 0
and α ∈ (0, 1), then the origin of system (1a) is finite-time
stable with control

(
ω1

ω2

ω3

)
= −c · 2α ·

⎛
⎝ σ2α−1

1

σ2α−1
2

σ2α−1
3

⎞
⎠ (6a)

the origin of system (1b) is finite-time stable with control

(
u1
u2
u3

)
= −c · (1

2
)α · Jα

⎛
⎝ ω2α−1

1

ω2α−1
2

ω2α−1
3

⎞
⎠ (6b)

B. Finite-time set point control for a rigid spacecraft

Let σd, ωd denote the desired attitude and the desired
angular velocity, respectively. Define e = [e1, e2, e3]

T ∈ R
3

as the relative attitude error between the actual attitude and
the desired attitude, where

e = σ ⊗ σ−1
d =

σd(σ
Tσ − 1) + σ(1− σT

d σd) + 2s(σd)σ

1 + σT
d σdσ

Tσ + 2σT
d σ

.

Define ν = [ν1, ν2, ν3]
T = ω − Rb

dωd ∈ R
3 as the relative

angular velocity error, where Rb
d is the rotation matrix from

the desired reference frame to the body reference frame. The
rotation matrix Rb

d is a proper orthogonal matrix and is given
by Rb

d = R(e) , where

R(e) = I3+4((1−eT e)/(1+eT e)2)s(e)+8s2(e)/(1+eT e)2,

then the relative kinematic and dynamic equations are given
as in [9]

ė = G(e)ν

Jν̇ = s(ω)Jω + u− JRb
dω̇d − Js(ν)Rb

dωd

In this paper, we consider the set point control problem of
driving the attitude of a rigid spacecraft to a steady state target
attitude. So ωd = 0, ω̇d = 0 and the equation is given by{

ė = G(e)ω (7a)
Jω̇ = s(ω)Jω + u (7b)

Therefore, to solve the finite-time set point control problem,
we need to design a control law such that e→ 0 in finite time.

The relative attitude kinematics and dynamics rotation
equations (7a)-(7b) represent a system in cascade form. The
control input drives the angular velocity equation and the
angular velocity drives the kinematic equation .There is no
direct connection between the kinematics subsystem and the
torque input. The kinematic equation can be accessed and
manipulated only through the angular velocity vector. For
systems in cascade connection there is an intuitive way to
achieve closed-loop stability. The methodology involves a two-
step procedure. One can concentrate first on the stabilization
of the second driven subsystem(the kinematic equations in our
case) treating the driving state as a control-like variable (the
angular velocity vector in our case) and then proceed to the
stabilization of the complete system.

Our goal is to design a suitable controller which drives the
attitude of a spacecraft to a given desired point in finite time.
The technique based on sliding mode control approach was
used in designing a finite-time convergent controller in [7]. The
basic idea behind the technique is to choose a proper sliding



surface such that on it the objective of control is achieved in
finite time, and to design a control law which can drive the
motion of the system on the sliding surface in finite time.

Theorem 2: Consider the system (7a) and (7b), if the
control torque u is chosen as

u = −s(ω)Jω − kv · (1
2
)p2 · Jp2 · (ω − ω∗)2p2−1

−kp · (2p1 − 1) · 2p1 · (J · e2p1−2) ◦ (G(e) · ω)
(8)

where ω∗ = −p1 ·2p1 ·e2p1−1, kv > 0, kp > 0, 0 < p1, p2 < 1,
symbol ◦ denotes the Hadamard product. Then e converges to
zero in finite time.

Proof:

The proof procedure can be divided into two steps. First, ω
is taken as a virtual input for (7a) and is designed such that e
reaches zero in finite time. We design the sliding manifold z =
e−ψ(e) such that, when motion is restricted to the manifold,
the reduced-order model ė = G(e)ψ(e) has a finite-time stable
equilibrium point at the origin. Then, the control law u is
designed such that sliding surface z = e − ψ(e) goes to zero
in finite time and maintain it there for all future time.

Step 1: Virtual input ω design

Select a candidate Lyapunov function as

V0 = 2ln(1 + eT e)

along the trajectory of system (7a) and using (3) we have

V̇0 =
4

1 + eT e
eT ė =

4

1 + eT e
eTG(e)ω = eTω

using the Proposition 3, we can get

ω = ψ(e) = −kp · 2p1 · J · σ2p1−1

so we obtain

V̇0 = −kp · 2p1

3∑
i=1

σ2p1

i ≤ −kp · (2
3∑

i=1

σ2
i )

p1

since

V0 = 2ln(1 + σTσ) ≤ 2σTσ = 2

3∑
i=1

σ2
i

and
V̇0 + kpV

p1

0 ≤ 0

by Lemma 2, we obtain V0(t) reaches zero in finite time and
e reaches zero in finite time.

Step 2: Control law u design

The rotation equation of a rigid spacecraft can be trans-
formed into the form:{

ė = G(e)ψ(e) +G(e)(ω − ψ(e))

ω̇ = J−1s(ω)Jω + J−1u.

Design the sliding manifold z = ω − ψ(e) = 0 and let
J−1ν = J−1u− ψ̇, we obtain{

ė = G(e)ψ(e) +G(e)z

ż = J−1(s(ω)Jω + ν).

Taking ν = −s(ω)Jω + ϕ(z), the work reduces to design
ϕ(z) to bring z to zero in finite time and maintain it there for
all future time. Choosing a candidate Lyapunov function as
V1 = 1

2z
TJz, along the system (7b), we have V̇1 = zTϕ(z).

Taking

ϕ(z) = −kv · (1
2
)p2 · Jp2 · z2p2−1

and by lemma 4, one obtains

V̇1 ≤ −kv · (1
2
)p2 · Jp2 · (

3∑
i=1

z2i )
p2 = −kv · V p2

1

Thus we obtain z goes to zero in finite time and maintain it
there for all future time.

Combining step 1 and step 2, we get the result proposed
in Theorem 2.

IV. NUMERICAL SIMULATIONS

We now demonstrate the previous theoretical results by
means of numerical simulations. We first show the effective-
ness of the results of Proposition 3. Consider system (1a), we
suppose the initial MRPs vector is σ0 = [0.3, 0.5, 0.8]T . The
values for the gains are chosen as c = 1, 4, 6, 10, α = 0.8.
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Fig. 1: Stabilization for system (1a)

The results are shown in Figure 1. Under the control
law (6a), the origin of the system (1a) can be finite-time
stabilized. The finite time T will decrease as we increase
the value of parameter c which has a maximum value cmax

satisfyingV̇ (x) + c(V (x))α ≤ 0.

For system (1b), we suppose the initial angular velocity
ω0 = [0.3, 0.5, 0.8]T and the inertia matrix is represented by
J = diag(1, 0.63, 0.85). The values for the gains are chosen
as c = 1, 4, 6, 10, α = 0.8. Figure 2 shows that under the
control law (6b), the origin of the system (1b) can be finite-
time stabilized. The finite time T will decrease as we increase
the value of parameter c which has a maximum value cmax

satisfyingV̇ (x) + c(V (x))α ≤ 0.
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Fig. 2: Stabilization for system (1b)

In order to illustrate the results presented in Section 3, a
simple example considered in [2] is addressed here. A body
with the inertia matrix (expressed in the body frame) J =
diag(1, 0.63, 0.85) is considered.

The initial orientation corresponds to the identity matrix
I3×3 and the initial angular velocity is [

√
3
3 ,

√
3
3 ,

√
3
3 ]. In terms

of the equivalent axis and angle representation, the desired
orientation corresponds to an eigenaxis/angle representation
given by

η = [0.4896, 0.2032, 0.8480]T , θ = 2.4648rad.

The values for the gains are selected to be kp = 8 and
kv = 8. In order to satisfy the finite-time stability theorem, we
select p1 = 0.9 and p2 = 0.9. These values are chosen by trial
and error in order to achieve good attitude control performance.
Based on the control law (8), we get the following results:
Figure 3 depicts the behavior of the Modified Rodrigues
parameter vector, while Figure 4 shows the time history of
the associated control effort.
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Fig. 3: Stabilization for system (7a)-(7b).
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Fig. 4: Control input for system (7a)-(7b).

V. CONCLUSION

In this paper, a passivity-based finite-time attitude control
law for a rigid spacecraft is proposed. A finite-time control
law for a class of nonlinear passive system is derived. The
corresponding storage functions include a quadratic term in
the angular velocities and a logarithmic term in the attitude
parameters. Combining the sliding mode control method, we
derive the finite-time nonlinear control law for the whole
dynamic system.
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