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中文摘要

摘 要

近年来，多运载体的协同运动成为控制领域的一个研究热点。一致性和编

队作为两种重要的协同运动方式受到了研究者们的广泛关注，已有研究工作主

要分为两方面，一方面是运载体个体的动态特性，另一方面是多个运载体之间

的通讯方式，即通讯拓扑。考虑到在实际生活中，多运载体的通讯通常受到数

字信道容量有限的约束，本文针对运载体的质点模型，研究了量化通讯及其对

渐近一致性影响的问题；同时，针对运载体的刚体运动学模型和动力学模型，

本文设计了渐近一致性和渐近编队控制律，从而使得带有姿态的多运载体渐近

地达到一致和编队行为。研究成果如下：

1. 将运载体个体建模为质点模型，并用一阶积分器描述。在多个运载体组

成的网络中，假定通讯带宽受限，给出了使用均匀量化方法的理论依据。定义

了一致性水平(consensus level)概念，用以度量多运载体系统在使用量化方法之

前和之后，其系统最终状态值的差别。基于指定一致性水平要求，设计了参数

动态变化的量化器。针对均匀量化方法来说，是指动态调整均匀量化器的量化

步长；从而有效地减小了多运载体在使用量化方法控制时系统最终状态值，与

非量化方法控制下多运载体所达到的一致值之间的差别。

2. 将运载体个体建模为刚体，并用欧氏群SE(2)、SE(3)上的运动学模型

描述。针对多运载体刚体运动学模型的一致性问题，设计了对数渐近反馈控制

律；并将一致性控制律推广为编队控制律。其中，编队队形为刚性队形，并由

编队任务指定。本文将欧氏群SE(2)和SE(3)两个非线性流形上的一致性控制、

编队控制问题，转化为各自李代数空间里的系统镇定问题。在此过程中，讨论

了完全的、有向树状的通讯拓扑图在协同控制中的作用；并指出，在环形的通

讯拓扑图条件下，给定控制律，其一致和编队的渐近收敛性依赖于各运载体的

初始状态。

3. 将运载体个体建模为刚体，并用欧氏群SE(2)、SE(3)上的动力学模型

描述。本文首先定义了多个运载体刚体动力学模型的渐近一致和渐近编队；然

后，在完全的通讯拓扑图以及有向树状的通讯拓扑图条件下，针对渐近一致性

的协同目标，设计了比例-微分渐近反馈控制律，并将该一致性控制律推广到

编队控制律。其中，编队队形是根据任务任意指定的，且在多运载体系统运动

过程中始终保持刚性。本文利用运载体欧氏群上动力学模型所具有的对称性，
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中文摘要

将多运载体系统满足相对位形约束(即，编队队形)下的本体速度同步问题，转

化为多运载体系统相对平衡点镇定问题。沿着相对平衡点，系统本体速度和控

制输入为常值，物理上体现为一种匀速运动，从控制上讲，相对平衡点是系

统的稳态运动。多运载体系统沿相对平衡点的编队协同运动，体现为运载体

间保持相对位形，且每个运载体沿自身相对平衡点运动；针对本文多运载体

在SE(2)和SE(3)上的动力学模型，相对平衡点对应的匀速稳态运动有如下形

式：静止，直线运动，原地旋转或圆周运动，螺旋运动。最后，在树状通讯拓

扑下，针对多个动力学运载体以编队形式跟踪全局领导者运载体，设计了分布

式的控制律，数值仿真验证了理论的有效性。

最后总结全文，并给出后续研究方向。

关键词：多运载体，协同控制，一致性，编队，刚体模型，欧氏群，量化通讯
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英文摘要

Coordinating Control in Asymptotic Behavior of

Multiple Vehicle Systems

Runsha Dong (Mechanics(Dynamics and Control))
Directed by Professor Zhiyong Geng

Abstract

In recent years, the cooperative control of multi-vehicle systems becomes the high-
light of research in the community of control. Consensus and formation, as two impor-
tant ways of such cooperative working, have gained great attention. Previous research
works were developed from two different aspects; one is the dynamics of the individ-
ual member, and the other the communication topology among the vehicles. In this
paper, we first model each individual vehicle as a point of mass. Under the condition
that the communication channel for information changing between vehicles has limited
capacity, this paper considers the problem of quantized control for consensus. Then,
we model each individual vehicle as a rigid body, whose dynamics is described by me-
chanical and dynamical model defined on Euclidean groups and by which, both the
position and the attitude of the vehicle are considered. The distributed control laws are
proposed for vehicles to asymptotically achieve consensus and formation. The main
results of this paper are as follows.

First. Each individual vehicle is modeled as a point of mass, and described by first
order integrator. Under the constraint for communication bandwidth of the vehicle net-
work, the paper develops the theory for using uniform quantization method to achieve
practical consensus. Quantization error has an impact on the process of reaching con-
sensus and the final consensus value of the vehicles. In order to describe how exactly
the consensus is achieved, the notion of consensus level is introduced the concept of
consensus level is defined. For a given consensus level, the quantizer with varying pa-
rameter is proposed. For the uniform quantizer, it zooms out the initial quantization
step size and by which, the effect of quantization error on consensus is reduced.

Second. Each vehicle is modeled as a rigid body and described by mechanical
system evolving on the Euclidean groups SE(2),SE(3). The communication topolo-
gies among vehicles are modeled as directed graphs. For consensus of multi-vehicle
systems, the paper develops the logarithmic feedback control law and extends it for
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英文摘要

formation control. The formation is rigid, arbitrary and given by formation tasks. The
problem of formation control on Euclidean groups (nonlinear manifold) is converted to
the problem of stabilization of the system on the associated Lie algebra (linear space).
The roles of communication topologies including complete graph, tree graph and ring
graph are presented.

Third. Each vehicle is modeled as a rigid body and described by dynamical sys-
tem evolving on the Euclidean groups SE(2),SE(3). The paper defines the concept of
consensus and formation for the dynamical vehicles. For the consensus problem under
complete graph and tree graph, the paper develops the distributed consensus control
law, which is later extended in the formation control problem. The problem of for-
mation control on SE(2) and SE(3) for the vehicles is converted to the problem of
stabilization of the relative dynamical systems on the associated Lie algebra. When
consensus and formation are achieved, the final motion pattern of the vehicles is deter-
mined by the equilibrium of the relative dynamics, and shown as the uniform motion in
static, in a line, in spinning in place or drawing a circle, in a circular helix. Under the
tree communication topology and for a formation tracking control problem, the paper
designs a distributed control law based on consensus method.

Key Words: multi-vehicle system, cooperative control, consensus, formation, rigid
body, Euclidean group, quantized communication
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第一章 绪 论

1.1 背景

近年来，多运载体的协同渐近行为成为控制领域的一个研究热点，它也是

一门综合性交叉学科，涉及控制、物理、生物、通讯、人工智能等各个领域，

并受到了来自这些领域的科研工作者的广泛关注
[1–13]
。在自然界的各种生物群落

中，协同行为是十分普遍的，例如鸟群的编队迁徙、鱼群的集体觅食、蜂群的

分工协作。人们注意到，这些生物群落的整体协同行为具有以下几个特点：

• 个体行为自主： 尽管生物群落在整体上表现出有序的协同行为，但每个

个体都是自主的，具有独立的决策和感知能力；个体的行为相对简单，并

且不依赖于任何潜在的全局协调员；

• 有限的信息交互范围： 由于群落通常具有一定的规模，并且个体具有有

限的感知和测量能力，因此个体只能和相邻有限数目的其它个体进行信息

交互；这也使得个体能够在规划自己的行为时将其相邻个体的行为考虑进

来；

• 达到协同目标： 复杂的群落整体协同行为是基于简单的个体行为规则以

及个体间局部的信息交互产生的；如果个体行为规则由某个给定的协同目

标主导，那么群落个体会形成一个协同的整体达到该目标。

生物群落有序的协同行为能够使得每个个体获得较大的利益，这些利益是

仅凭单个个体无法高效获得的，如觅食生存、获取资源、躲避天敌。人们通过

对自然现象的观察，深受群体协同行为优势的启发，从而在实际工程应用中，

发展了一群具有感知、通信、决策、运动能力的运载体系统，如各类无人车

辆、飞机、卫星等，通过对个体的简单控制，更好地实现了空间上分布的各类

任务，如部署、搜救、监测等。

在这些人造群体系统中，单个个体的设计相对简单、功能较为单一，个体

的功能失效不会影响到整个群体协同目标的实现。这些特点降低了整体系统的

设计难度，能够实现降低成本、减少误差；同时这些特点也增加了整个群体系

统的抗干扰能力、扩展能力和鲁棒性，提高了系统的工作效率，能够实现各类

功能和效益的最大化。
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1.2. 研究现状

本文考虑多运载体的协同控制问题。目前，多运载体系统的协同行为研究

集中在系统建模、系统分析以及基于协同目标的系统控制上。其中，系统建模

依据多运载体系统的特有性质，分为对个体的动态建模，以及对个体间信息流

动方式的通讯拓扑建模
[13, 14]
；系统分析包括对多运载体系统的稳定性分析

[6]
、可

控性分析
[15]
；系统控制包括基于协同目标的渐近一致性控制

[7]
，编队控制

[8, 9]
，

跟踪控制
[16]
等。

多运载体的渐近一致性是研究多运载体协同行为的基础，受到了广泛的关

注。渐近一致性控制是指设计控制律使得多个运载体系统中个体的某个关键变

量值渐近地达到相等。这个关键变量可以是控制问题中期望的目标位置、速度

或姿态等。通常，这些关键量被抽象建模为个体系统的输出变量(在某些情况下

为系统的状态变量)。一致则是指每个个体的该输出变量值达到相等。在现实生

活中，无论是泊车控制(控制车辆停到指定车位)，舰载机降落(控制直升机降落

到运动的舰艇上)，还是航天器空中交汇对接对接都是一致性控制的例子。同

时，渐近一致性控制律经过适当的扩展，还可以用于解决编队控制问题，即多

运载体系统在个体控制作用下由任意初始状态达到整体的给定队形。

多个运载体系统的协同行为是由个体基于局部信息的行为规则保证的。

个体间信息传递的方式，即通讯拓扑通常建模为图(graph)。而信息在传递过程

中，会受到外部干扰、数据丢包、内部通讯带宽有限等各类非理想通讯约束，

这类约束对多运载体系统达到协同目标有着至关重要的影响。

以上是多运载体系统协同控制的一个简单介绍，更多内容可以参考综述类

文献 [14]及相关书籍 [17]。在本文中，我们试图讨论多运载体系统的渐近一致

控制、渐近编队控制，因为一致和编队是协同行为中两类非常重要的、应用广

泛的运动形式。同时，我们也试图揭示，在多运载体系统的通讯带宽受限时，

为了保证逼近协同目标，需要对通讯数据做必要的量化处理以及量化器设计。

下一小节，我们先来回顾有关多运载体系统一致控制、编队控制及量化通讯研

究的重要进展。

1.2 研究现状

在工程上，为了能够使得多运载体系统渐近地达到一致和编队的协同目

标，根据个体动态模型特点、任务种类、通讯拓扑约束、通讯带宽限制、性能

要求，需要为个体设计出简单、通用的控制器。当前大多数关于一致和编队控
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制的研究主要集中在分析由简单节点构成的网络动态行为上，目的是揭示协同

运动行为与个体控制及个体间通讯拓扑的内在联系
[7, 18–20]

。

考虑将单个运载体系统建模为仅包含位置(或位置和速度)，而不包

含姿态信息的质点动态模型，各类基于一致性控制(consensus control)解

决交汇(rendezvous)、群集(flocking)、编队(formation)、跟踪(tracking)、主从运

动(leader-follower)等相关问题的研究方向上都涌现了大量的研究成果 [10, 21–25]
。

其中，早期开创性的工作
[7](作者O.Saber和R.Murray)将多个运载体的个体

考虑为质点模型。所谓质点模型，即将整个运载体建模成运动质点，从而采用

一阶、二阶积分器来刻画其时间演化行为。对于一阶积分器，他们采用了势能

函数的设计思想，基于三类通讯拓扑模型(定常拓扑下的有向图、切换拓扑下的

有向图、定常拓扑下带有时滞的无向图)设计了一致性控制律。W.Ren和R.Beard
[20]
推广了文献 [7]和 [26]的结论，将一阶积分器模型一致性控制对通讯拓扑要求

的充要条件由有向图的强连通推广到当且仅当含有一个有向生成树。

将多运载体系统一致性控制问题中个体的动态模型由一阶积分器扩展到二

阶积分器，甚至高阶积分器是很自然的想法。W.Ren在文献 [27]中讨论了二阶

积分器模型一致性控制，提出在有向的通讯拓扑图假设下其多运载体系统达

到一致性的充分非必要条件是通讯拓扑图含有一个有向生成树。W.Yu则在文

献 [28]中给出了二阶积分器模型在给定控制律下能够使得多个运动体达到一致

性的充要条件。W.Ren在文献 [29]考虑了个体的高阶积分器模型，给出了多运载

体系统达到一致性时关于通讯拓扑图的充分条件。

Z.Li [30]
将多运载体系统的个体建模为线性系统，应用线性系统的成熟的工

具：降维观测器理论，把单个线性系统的研究与多个线性系统结合起来，利用

系统输出量和输入量来观测、重构、估计必要的状态变量，用以设计一致性控

制律。文献 [31]利用稳定的滤波器及动态输出反馈，来设计高阶线性系统模型

的一致性控制律。文献 [21, 32]中，其运动体动态模型的非线性动力学用扇区或

者锥形有界覆盖来表示，将非线性作为一种线性约束下的不确定性处理，在设

计一致性控制律时规避了非线性，在增加了系统对非线性扰动的鲁棒性的同时

也带来了控制设计的保守性。这类非线性系统模型的状态空间为欧氏空间。而

运载体的状态空间一般为非线性流形，当系统的状态空间为非线性流形时，欧

氏空间上的动力学模型可用于刻画运载体系统的局部行为，讨论系统平衡点附

近的稳定性。
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上述文献的一致性控制研究基于多运载体系统个体的质点模型，该模型描

述了运载体系统的质心位置，其状态空间为欧氏空间。而同时考虑运载体系统

其位置和姿态的一致性控制结果并不多见。文献 [33]讨论了多个欧拉-拉格朗日

系统的一致性控制，我们注意到描述欧拉-拉格朗日系统的广义坐标可以理解为

欧氏空间的局部坐标，当用该坐标描述姿态时，会出现角度表达的不唯一，例

如π与3π都指代平面上刚体同一姿态。由于在表达角度时具有歧义性(不唯一)，

这说明该坐标是局部坐标。对于多运载体系统包含姿态的协同问题来说，不同

的运载体系统表示为状态流形上不同的点，这些点的相对状态能否用同一局部

坐标邻域同胚映射到欧氏空间；不同点的切空间上表示的动态特性，放在同一

空间中加以比较时的有效性，以及基于局部动力学设计的协同控制律的适用性

范围等问题，都没有得到过正面的回答。文献 [34]采用坐标(x, y, θ)来描述运载

体系统的位置(x, y)和姿态θ，讨论了多个非完整运载体系统的一致性控制，该

文设计控制律使得各运载体系统的位置达到一致，而没有关注姿态是否达到一

致；这里(x, y)坐标是二维欧氏空间中的位置描述，θ坐标是非欧氏空间(平面上

的圆环)姿态的局部描述。在多卫星系统姿态同步研究中，文献 [35]忽略了卫星

质心在不同的位置，所讨论的卫星姿态同步问题不涉及平移运动和姿态旋转的

耦合，因此可理解为在各卫星做直线运动时来调整姿态，不适用于卫星在空间

以给定的队形进行大范围内的机动。这里，机动是指设计控制律实现巡航(指适

宜于持续进行的、接近于定常飞行的飞行状态)轨迹之间的有限时间状态转移。

在各类实际应用中，例如卫星交汇对接、飞机空中加油、水面舰队行进

补给，我们需要考虑个体系统以及整个队形的姿态。由于实际固体的理想化

模型(即在受力后，物体其大小、形状和内部各点相对位置都保持不变)称为

刚体(rigid body)，且现实世界中，舰艇、飞机、卫星、机器人、车辆等都是刚

体；因此，一些研究学者把运载体系统的位形建模为描述位置和姿态的刚体。

刚体运动(rigid motion)是物体上任意两质点之间距离始终保持不变的连续运动。

刚体从一位置到另一位置的刚体运动称为刚体位移(rigid displacement)。通常，

刚体位移既包括物体的平动又包括物体的转动
[36]
。对于多运载体系统来说，以

编队的方式进行刚体位移，即刚性编队，是指由个体所组成的编队队形作为整

体既平动又转动。刚体模型不同于欧氏空间质点模型，其位形空间不再是欧氏

空间，而是欧氏群，这是一个具有群运算代数结构的非线性流形，通常称这类

流形为李群。在二维空间和三维空间中，它们分别是SE(2)和SE(3)。刚体的位

形和速度分别由群上的位形点以及在该点切空间的一个速度向量表示。由于刚

– 4 –



第一章绪 论

体具有固连在其上的本体坐标系(刚体坐标系)，因此，每个运载体系统具有参

照本体坐标系的速度，不同运载体系统之间的本体速度比较需要坐标变换。和

文献 [34]中用局部坐标(x, y, θ)表示运载体系统位置和姿态相比，在欧氏群上演

化的刚体模型动态方程是一种不依赖于局部坐标的整体描述，而且借助于李群

的对称性，可通过构造不同本体坐标系之间的坐标变换对不同个体的速度加以

比较。

运载体系统的刚体模型其状态(位形，速度)空间不再是线性空间，而是非

线性位形流形以及该流形的切丛，因此在其上线性运算不再成立。刚体动力学

的向量场是非线性依赖于刚体的状态的。用线性空间可以描述非线性流形平衡

点附近的局部行为，而不适用于描述非线性流形上的全局运动。传统的研究平

衡点附近同构于欧氏空间的方法在研究运载体大范围机动时的有效性范围还是

一个难于回答的问题。基于线性系统模型来考虑多个运载体大范围的协同行为

的收敛性，要与每个运载体的初值有关，从而只能是局部的。

对于力学领域的研究学者来说，用欧氏群SE(2)和SE(3)描述刚体位形空间

是一种惯用的方法，而这一方法，也正在被控制领域的研究团队所接受，并开

展了富有成果研究。近几年的相关文献如下所述。文献 [24]讨论的是刚体旋转

群SO(3)，刚体运动群SE(3)上多运载体系统的跟踪问题，结果为几乎全局收

敛(almost-global)。文献 [37, 38]讨论了SO(3)，SE(3)上多运载体系统的协调问

题；其中，运载体系统建模为SO(3)，SE(3)上的运动学模型。多运载体系统

渐近地达到协调，但运动轨迹无法事先指定。文献 [39, 40]讨论的是刚体运动

群SE(2)上一类特殊的一致性问题，即个体具有单位平移速度，且在同一圆周

上运动的一致性控制律。现有的在欧氏群上的协同控制研究结果还不完善，许

多有意义的协同问题还远没有解决，具有挑战性，有待于进一步探讨和研究。

我们注意到，很多研究将一致性控制律改进后，用于解决编队、轨迹跟踪

等相关控制问题
[16, 41–46]

。编队控制最终要达到的目标是使得各个运载体系统之

间达到指定的相对状态。质点模型在空间坐标系下，编队经常指定个体间相对

位置为常值，要求编队中任意两个个体质心的相对位置在空间坐标系下固定。

此时，多个运载体系统构成的编队为平移队形，即，队形本身的姿态保持固定

时，队形只平移而不旋转，参考图1.1。给定欧氏空间中一点作为某个个体的

位置、平移编队队形(相对位置)，需要知道该个体的空间坐标才能确定队形中

其它个体的位置。而由描述位置、姿态的刚体模型所实现的刚性编队则不同。

刚性编队是指在运动过程中任意两个刚体之间保持恒定的相对位形(包括相对
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位置、相对姿态)，由于刚体个体具有固连在其上的本体坐标系，它对于在部

分已知的外界环境中，根据一个运载体的位形从而确定其它移动的运载体的

位形非常有用。刚性编队使得多运载体系统的队形能够以刚性整体形式进行

旋转，对于刚体个体来说则实现了运动轨迹和姿态的耦合，见图1.2。对比平

移队形(图1.1)和刚性队形(图1.2)，可以看到，假设平移队形和编队队形中同一

个leader走过相同的轨迹，这时两种队形下同样的两个follower却走的是不同的

运动轨迹，在图1.2中队形不但平移而且旋转，保持了刚性。

 

 

 

                                                       

                                    

 

  

 

图 1.1 队形平移，不保持刚性

 

 

 

 

 

 

 

                      

                                    

 

 

 

 

  

 

图 1.2 队形平移加旋转，保持刚性队形

无论是多运载体系统的一致性控制还是编队控制，都要对多运载体系

统个体之间信息传递的方式，即，通讯拓扑，进行建模。Jadbabaie等人在文

献 [26]中提出了用代数图论的概念来描述通讯拓扑，他们在多运载体系统的通

讯拓扑图中，把个体用节点表示，个体间信息流动用边来表示。在现实生活

中，个体之间的通讯常常受到制约和影响，表现为一定的不完备性，例如：通

讯带宽受限，通讯具有时变的传输数据时延，通讯传输时产生数据丢包，间隔

非定常时间进行通讯。以上提到的多运载体系统协同控制的文献无论是质点模

型还是刚体模型，均假设了个体之间数据以高精度实值传输，即通讯带宽不

限，但这在现实生活中是几乎不存在的：通讯的带宽约束导致了有限的信道容
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量。通讯带宽受限在很大程度上影响了多运载体系统的协同控制设计以及综合

分析，需要给予特别的注意。

在数字信号处理领域，经常用量化的办法解决通讯带宽受限的约束，量化

指将信号的连续取值(或者大量可能的离散取值)近似为有限多个(或较少的)离

散值的过程。量化主要应用于从连续信号到数字信号的转换中。连续信号经过

采样成为离散信号，离散信号经过量化即成为数字信号。离散信号通常情况下

并不需要经过量化的过程，但可能在值域上并不离散，还是需要经过量化的过

程。事实上，由于多运载体系统的协同控制其通讯网络是由数字信道组成的，

在通讯带宽受限情形下，引入了相似的量化思想。通过量化的办法研究一致性

控制受到了广泛关注，并在不同方面获得了有意义的结果
[47–58]
。

通过传递量化数据的通讯方式来研究一致性控制首先是在文献 [59]中提出

的，其中，网络的每个节点被赋予量化的整数值，它们在控制律下逼近于全

部节点初值均值的整数值。这里，量化一致性控制是在计算机计算方面达到

的数值相等。在文献 [17]中，量化的一致性控制定义为当通讯传输的是数字信

号而非连续模拟信号时，为多运载体系统设计控制律使得个体的状态值逼近

相等。文献 [60] 讨论了控制系统反馈镇定的量化方法，其中数据以一定的数

据率
[61, 62]
在数字信道内传输。量化方法描述了以何种方式从预先指定的数据集

合里选择数据以逼近观测到的单个数据。每一个量化器都赋予了一种量化方

法
[63]
。文献 [25, 61, 64–66]研究了不同量化方法下的量化信息如何影响了多运载

体系统最终近似达到的一致值，它们指出，量化误差(量化值与实际值的偏差)

对一致性控制下系统稳定性分析和最终多运载体系统达到的一致值都有影响。

在文献 [67]中，作者基于收缩系统(contraction system)的收敛性能，设计了在给

定性能指标要求下适当的量化器。

根据多运载体系统协调控制研究现状的综述，多个运载体系统的协同渐近

控制既是热点，又面临很多挑战。本文的研究主要集中在两个方面：(1)针对多

运载体系统的质点模型，基于通讯约束研究了多运载体系统量化控制达到实际

的一致问题。(2)针对多运载体系统的刚体模型，本文设计控制律使得多运载

体系统在给定的通讯拓扑结构下由任意初始状态达到协同渐近一致性或协同编

队。论文的主要贡献和安排见下一小节。
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1.3 本文主要贡献和结构安排

第二章：为了描述运载体系统刚体模型的位置和姿态，需要引入欧氏群概

念，由于欧氏群是李群，它属于非线性微分流形，在介绍欧氏群之前，本章给

出了需要用到的基本微分几何概念、李群概念。为了刻画运载体系统刚体模型

的状态空间，本章介绍了切丛，切空间概念，同时给出了运载体系统的刚体运

动学模型、刚体动力学模型。为了描述刚体在欧氏群上的运动演化过程及特

性，我们介绍了李群单位元附近和李代数0点附近之间的同胚映射：对数映射

及其对时间的导数。为了对多运载体系统的通讯拓扑建模，介绍了图论相关知

识。由于本文的核心之一内容是镇定多运载体系统相对平衡点以达到协同渐近

控制目标，本章介绍了控制理论的稳定性结果。

第三章：本章将运载体系统建模为质点模型，并用一阶积分器来描述，在

通讯带宽受限的约束条件下研究了多运载体系统量化控制问题。本章指出，给

定量化方法下，采样时间、网络拓扑特性、量化误差上界均影响多运载体系统

能够达到的一致值。为了度量多运载体系统在量化控制下的最终状态值和非量

化控制所达到一致值的偏差，定义了不一致性和一致性水平(consensus level)度

量。当给定一致性水平的要求时，在有限通讯数据情形下，设计了参数动态变

化的量化器。其主要创新在于(1)基于总体通讯带宽约束，依据输入通讯信号任

意概率密度下，为使得多运载体系统量化控制下的最终状态值与非量化方法设

计的控制所达到的一致值相差(即不一致性)最小，设计了均匀量化器，并依据

次优方法和系统相对初值分配了总数据通讯带宽；(2)当物理条件允许，动态调

整均匀量化器的量化步长参数能有效地减小运载体系统量化控制下的最终状态

值与非量化方法设计的控制所达到的一致值之间的差别。

第四章：本章用欧氏群SE(2)，SE(3)来描述刚体的位置和姿态，将运载体

系统建模为欧氏群上的全驱刚体运动学模型。由于欧氏群是李群，具有对称性

的特性，且运载体系统的相对位形通过对数映射与李代数(线性空间)上对应的

状态有关，本章充分利用李群及李代数的代数结构，群作用的对称性，参考多

运载体系统欧氏空间质点模型(一阶积分器)的一致性控制、编队控制、跟踪控

制已有的结果，首先为两个运载体系统在双向通讯拓扑下，设计了渐近一致性

控制律和渐近编队控制律，之后推广到多个运载体系统在树状、完全、环形通

讯拓扑图下的渐近一致性控制和编队控制。其主要创新在于(1)针对多个运载体

系统刚体运动学模型的一致性控制，设计了对数反馈控制律；并将该一致性控
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制方法推广为多运载体系统刚体运动学模型的编队控制，这里的编队队形是根

据任务任意指定的，且为刚性队形；(2)将欧氏群SE(2)和SE(3)(李群)两个非线

性流形上的一致性控制、编队控制问题转化为其各自相关李代数两个线性空间

里的系统镇定问题；(3)明确了多运载体系统树状、完全、环形通讯拓扑在一致

性控制、编队控制中的作用，指出在在树状和完全通讯拓扑条件下，所设计的

控制律使得多运载体系统由任意初始状态达到一致性和指定编队队形；在环形

通讯拓扑条件下，多运载体系统达到一致性和指定编队队形受各运载体初值的

影响。

第五章：本章将运载体建模为欧氏群上的全驱刚体动力学模型，定义了该

模型下一致性、编队和编队跟踪。在树状通讯拓扑和完全通讯拓扑条件下，针

对多个运载体系统刚体动力学模型，设计了一致性控制律和编队控制律。在

树状通讯拓扑下，设计了编队跟踪控制律。其中，编队队形是任意指定的，

且保持刚性。利用运载体系统所具有的对称性，将多运载体系统满足相对位

形约束(编队队形)下的本体速度同步问题转化为多运载体系统的平衡点镇定问

题。其主要创新在于：(1)针对多个运载体系统刚体动力学模型的一致性控制，

设计了比例-微分反馈控制律；并将该一致性控制方法推广为编队控制、编队

跟踪控制；其中，编队队形是根据任务任意指定的，且为刚性队形；(2)描述

了多运载体系统在SE(2)和SE(3)上达到一致性和编队时依赖于相对平衡点的

运动形式(稳态、匀速运动)：静止，直线运动，原地旋转或圆周运动，螺旋运

动；(3)陈述了一致性控制、编队控制和编队跟踪控制中通讯拓扑的作用。
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第二章 基础知识

描述运载体位置和姿态的刚体模型是非线性控制系统。在过去的几十年

里，有关非线性系统控制的研究展现了控制理论和几何力学的丰富联系。本文

针对运载体协同渐近行为设计控制律，正是利用了微分几何的思想和方法在力

学系统控制上的应用，即几何力学。参考 [68]，我们先来简要介绍微分几何是

如何被引入来描述运载体等力学系统的。

众所周知，牛顿(Newton)力学使用的物理空间是三维的，即欧氏空间，对

于力学系统的质点模型(可以是单个点，也可以是N个点的质点系)来说，用空

间坐标来描述力学系统点的运动，这种描述与人们日常认知相符。在拉格朗

日(Lagrange)力学中，提出了力学系统的独立坐标，即当力学系统的单个质点模

型受到k维完整约束时，力学系统只能在k(k < 3)个超曲面的“公共交面”上运

动，这个公共交面为3− k维的，对于N个点的质点系，是3N − k维，它是力学

系统质点的自由运动空间，称为位形空间。

为了描述力学系统的运动，进行数学上的计算和分析，人们将拓扑结构引

入位形空间，称为拓扑空间；并通过拓扑空间的邻域与欧氏空间的同胚映射，

将坐标引入拓扑空间的邻域。在满足相容性条件以后，这类拓扑空间具有了微

分结构，可以进行微分运算，并被称为流形。力学系统的位形空间一般都满足

上述条件，因此它们的位形空间为流形。给定流形到实数直线的映射(在流形

上给定一个标量场)，反之就有由实直线上的一个区间到流形的映射则给出流

形上的曲线，流形上有了曲线，就有切矢量，之后就有切空间、切丛、余切空

间、余切丛的概念。在流形上给定向量场，于是就出现了寻求以向量场的向量

为切向量的曲线――积分曲线的问题，从而在流形上开始了常微分方程的理

论讨论。有关微分几何的详细内容及其在物理和力学中的应用，可以参照文

献 [36, 69–71]以及 [72]。

本章说明了后续章节中所用到的符号和变量的含义，介绍了整篇论文需要

用到的微分几何基础知识，运载体力学系统模型，同胚(指数、对数)映射；同

时为了描述多个运载体系统之间通讯拓扑，介绍了图论的基本知识；本章还介

绍了有关系统稳定性的基本结论。
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2.1 符号介绍

本文中统一用斜体表示变量，小写字母黑斜体表示向量，大写字母黑斜体

表示矩阵。文中出现的所有向量，若不作特别说明，均为列向量。文中使用

了Einstein求和表示惯例，即αiβ
i :=

∑
i αiβ

i。表2.1说明了本文要用到的数学符

号与变量。

表 2.1 数学符号与变量说明

符号变量 含义
t 时间变量
B 通讯拓扑图的关联矩阵
A 通讯拓扑图的邻接矩阵
∆ 量化器的量化步长
Rn n维实数空间
δij 当且仅当i = j时取1，否则取0

C∞(M, · ) 空间M上光滑映射
det(R) 矩阵R的行列式

× 三维向量间的叉积运算
MT 矩阵M的转置
In n维单位矩阵

Cn×n n× n维复矩阵空间
Rn×n n× n维实矩阵空间
R− 非正实数(−∞, 0]

Im( · ) 复数的虚部
diag(x) 以x为对角元素的对角矩阵
∥ · ∥ 欧氏范数
σ(M ) 矩阵M的最小奇异值
σ(M ) 矩阵M的最大奇异值

2.2 微分流形及李群

2.2.1 微分流形

人们对欧式空间Rn中的微分与积分运算已经非常熟悉，但某些情况下，我

们需要在弯曲的空间里应用微积分。流形就是在局部类似于(looks like)欧氏空间

的弯曲空间，它对力学和控制理论中很多问题的描述都非常重要。举例来说，
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我们最熟悉的流形就是n维欧氏空间Rn；圆周S1是平面倒立摆的位形空间；球

面S2是球面摆的位形空间；自由刚体旋转的位形空间是SO(3)(稍后有详细介

绍)；我们注意到，力学系统(包括运载体系统)的位形通常可以由流形上的点来

描述。本小节介绍的微分流形基本概念参考专著 [36]及 [73]。

一个n维可微流形M是一个连通的拓扑空间(该拓扑空间具有可数个基，且

其中任意两个不同的点具有不相交的邻域)，它有以下性质：

(1)M局部同胚于Rn(n < ∞)，即，在点p ∈ M附近，存在邻域U 及同胚映

射ϕ : U → Rn，使得ϕ(U)是Rn中的开集。而“坐标对”(U, ϕ)又称为局部坐标

图(local coordinate chart)。

(2)如果(U, ϕ)和(V, φ)是任意两个局部坐标图，那么重叠映射φ ◦ ϕ−1 : ϕ(U ∩
V ) → φ(U ∩ V )是Cr(r ≥ 1)的，即，存在r阶偏导数。

流形的第一个性质是指流形局部上和欧氏空间相似，第二个性质赋予流

形以微分结构。当φ ◦ ϕ−1是微分同胚(具有光滑逆的光滑映射，其中光滑性

用C∞表示，指该映射各阶偏导数存在且连续)时，流形称为光滑流形。

设p为流形M上一点，所有经过p点且在p点相切的曲线构成一个等价曲线

类，称该等价曲线类为p点处的一个切向量。所有在p点与M相切的向量构成一

个向量空间，称为流形M在p点处的切空间，记为TpM。

我们也可以从微分算子的角度来定义切向量和切空间。设C∞(p)为M上光

滑、实值函数的集合，其定义域为p的某个开邻域。对于映射Xp : C
∞(p) → R，

如果对所有的α, β ∈ R和f, g ∈ C∞(p)，满足

(1)线性性质：Xp(αf + βg) = α(Xpf) + β(Xpg);

(2)莱布尼兹(Leibniz)法则：Xp(fg) = (Xpf)g(p) + f(p)(Xpg);

则称映射Xp为一个微分算子。M在p点处的切空间TpM是所有微分算子Xp :

C∞(p) → R的集合。切空间中的元素称为切向量。设(U, ϕ)为M上的一个局部坐

标图，其局部坐标为(x1, · · · , xn)，微分算子{ ∂
∂xi

}的集合构成了TpM的一个基，

因此，

Xp = X1 ∂

∂x1

+ · · ·+Xn ∂

∂xn

,

向量(X1, · · · , Xn) ∈ Rn为Xp ∈ TpM的局部坐标表示。

当给定流形M上点p的切空间TpM时，定义TpM上的线性泛函ωp : TpM →
R，所有ωp的集合称为M上点p余切空间，记为T ∗

pM。T ∗
pM是与TpM维数相同
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的向量空间，T ∗
pM中的元素称为余切向量。若{ ∂

∂x1
, · · · , ∂

∂xn
}是TpM与局部坐

标(x1, · · · , xn)相对应的一个基，T ∗
pM的对偶基为{dx1, · · · , dxn}，其中

⟨
dxi,

∂

∂xj

⟩
= δij, i, j = 1, · · · , n.

流形M上所有点切空间的不交并集构成了一个2n维的流形TM，称为切

丛，即

TM =
⊔
p∈M

TpM.

TM的元素记为(p,Xp)，其中，p ∈ M,Xp ∈ TpM。相应地，流形M上的余切

丛T ∗M 定义为

T ∗M =
⊔
p∈M

T ∗
pM.

T ∗M是2n维的流形，其中的元素可记为(p, ωp)，其中，p ∈ M,ωp ∈ T ∗
pM。

流形M上的一个向量场X给每一点p分配了一个切向量Xp，它可以用来表

示流形上的动态系统，设流形上的一条运动轨迹为：

ṗ(t) = X(p(t)),

则称X为M上的向量场，称轨迹p(t)为向量场X的积分曲线。因此，系统的所有

运动轨迹都是向量场的积分曲线。由常微分方程解的存在性和唯一性可知，对

于给定的非零向量场，其积分曲线的存在性可以局部得到保证。

流形上M所有光滑向量场的集合构成了一个线性空间X(M)，如果在这个空

间存在一个双线性算子(在它的两个参数上都是线性映射的函数)V × V → V，

记为[ · , · ]，它满足

(1)反对称性：对于所有的v, w ∈ V，有[v, w] = −[w, v]；

(2)雅克比恒等式：对于所有的v, w, z ∈ V，有[[v, w], z] + [[z, v], w] +

[[w, z], v] = 0；

则称X(M)为一个李代数。
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2.2.2 李群

李群是一类微分流形，它在现代理论物理和动力系统的研究中非常重要。

例如，平面自由刚体的位形空间就是李群SE(2)，空间自由刚体的位形空间是

李群SE(3)。李群SE(2)和SE(3)都是特殊的欧氏群，稍后有详细介绍。

为了介绍李群，我们先来介绍群。群是一个定义了二元群运算(乘法)的集

合，它满足封闭性，结合性，单位元的存在性及任意元素可逆性。由于李群是

光滑流形，它除了满足上述群的代数特点外，还满足群运算(乘法)和逆运算均

光滑的特点，即映射

µ : G×G → G

(g1, g2) 7→ g1g2

及

v : G → G

g 7→ g−1

均为光滑映射。下文提到李群均记为G。李群上有两类微分同胚映射：左

平移(left translation)和右平移(right translation)，它们反映了群的结构。给定

点g ∈ G，在该点的左平移(Lg)和右平移(Rg)分别定义为：对于任意h ∈ G，

Lg : G → G

h 7→ gh

及

Rg : G → G

h 7→ hg.

针对矩阵李群来说，左(右)平移即相对于矩阵左(右)乘。如果群是可交换的，

即Abelian群，则有Lg = Rg。

基于左平移和右平移映射对群上点的作用，定义从群上一点的切空间到另

一点的切空间的映射，即左切映射(ThLg)、右切映射(ThRg)分别为：

ThLg : ThG → TghG,

ThRg : ThG → ThgG.
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左(右)切映射使得群上不同点处的切向量能够加以比较。

相应地，我们由左(右)切映射来定义左(右)不变向量场。设X为G上的一个

向量场，对于所有的h ∈ G，如果有

ThLgX(h) = X(gh),

则X是左不变的；如果有

ThRgX(h) = X(hg),

则X是右不变的。通过左(右)不变向量场的定义可以看到，空间上一点的向量

场能够由另一点的向量场通过左(右)切映射变换来描述。同样地，空间上一点

的切空间能够由另一点的切空间通过左(右)切映射变换来描述。不失一般性，

取李群G在单位元e处的切空间TeG，它和李群G上所有左不变向量场的集合(记

为XL(G))是关于向量空间同构的，在其上定义了李括号[ · , · ]L后为一李代数。
对于G上任意两个左不变向量场，他们的李括号运算产生的向量场仍是左不变

的。利用向量场的李括号诱导出向量空间TeG的李代数结构，那么具有此李代

数构造的向量空间TeG称为G的李代数，记为g。

g为一线性空间，定义其上的李括号运算∀A1(e), A2(e) ∈ g, [A1(e), A2(e)] =

[A1, A2]L(e)。对于给定的A1 ∈ g，定义小伴随算子adA1 : g → g，使得任意

的A2 ∈ g，有

adA1(A2) = [A1, A2].

易知，adA1是李代数上的线性映射。对于矩阵李群来说，其相应李代数上的

李括号运算为[A1,A2] = A1A2 − A2A1。对于任意g ∈ G以及A ∈ g，伴随映

射Adg定义为：

Adg(A) = gAg−1.

下面举例介绍几个常用到的矩阵李群及相应的李代数。

例: R2上的旋转群，特殊正交群SO(2)，即绕固定轴的旋转群，见图2.1。其元

素g(θ)可以用一个参数θ来确定。这里，θ的取值范围为[0, 2π)。群运算“乘法”

规定为相继作二个转动：

g(θ1)g(θ2) = g(θ12)
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x ,y¢ ¢

x,y

( )g q

图 2.1 平面R2上的刚体旋转群SO(2)

这里，θ12 = θ1 + θ2。我们也可以用矩阵线性变换的形式来表示SO(2):

[
x

y

]
g(θ)→
[

x′

y′

]
=

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
=

[
x cos θ − y sin θ

x sin θ + y cos θ

]
.

SO(2)中的单位元是单位矩阵I2。SO(2)的李代数so(2)是由2× 2反对称矩阵

组成的，它具有如下形式：

ω̂ =

[
0 −ω

ω 0

]
,

其中ω ∈ R可以理解为角速度，即角度θ的时间导数；算子 ·̂是从R到so(2)的映

射。

例: R3上的旋转群，特殊正交群SO(3)：

SO(3) =
{
R ∈ R3×3|R−1 = RT , det(R) = 1

}
.

SO(3)描述了三维空间中刚体的姿态。SO(3)中的单位元是单位矩阵I3。考虑

到SO(3)的李代数是在单位矩阵处的切空间，将等式RTR = I3两边微分，得

ṘTR+RT Ṙ = (RT Ṙ)T +RT Ṙ = 0,

其中Ṙ表示关于时间求导。因此RT Ṙ是斜对称的。限制在单位元上，可
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知SO(3)的李代数为所有斜对称矩阵的集合：

{
A ∈ R3×3|AT = −A

}
.

定义斜对称算子 ·̂ : R3 → so(3)使得x̂y = x × y，∀x,y ∈ R3，即对于x =

[x1, x2, x3]T，有

x̂ =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 = êix
i.

其中，(ê1, ê2, ê3)为so(3)的一组基。so(3)中的元素可以表达为x̂,∀x ∈ R3，

称x为李代数元素x̂的坐标向量。

记：

ω̂ = RT Ṙ = êiω
i ∈ so(3)

其中ω = (ω1, ω2, ω3)T为ω̂的坐标向量，称ω为刚体的角速度。由于SO(3)是矩阵

李群，李代数so(3)上的李括号运算为矩阵交换乘法运算：

[ω̂1, ω̂2] = ω̂1ω̂2 − ω̂2ω̂1

因此，赋予李括号的李代数so(3)与赋予向量叉积的线性空间R3之间是同构的。

例: 平面上R2上的刚体运动群SE(2)，同构于S1 × R2，其中S1是一维球面（平

面上的圆周）：S1 = {(x, y) ∈ R2|x2 + y2 = 1}. SE(2)中任一元素g可以表示为

一个3× 3矩阵：

g =


cos θ − sin θ x

sin θ cos θ y

0 0 1

 ,

其中(cos θ, sin θ) ∈ S1，(x, y) ∈ R2。SE(2)中的单位元是单位矩阵I3。SE(2)的

李代数为se(2)，具有一组基：

ς1 =


0 −1 0

1 0 0

0 0 0

 , ς2 =


0 0 1

0 0 0

0 0 0

 , ς3 =


0 0 0

0 0 1

0 0 0

 .
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se(2)中的一个元素ξ̂可以写成矩阵形式：

ξ̂ =


0 −ω vx

ω 0 vy

0 0 0

 = ςiξ
i,

其中ξ = (ω, vx, vy)
T ∈ R3为ξ̂的坐标向量。

李代数se(2)上的李括号运算为矩阵交换乘法运算：

[
ξ̂1, ξ̂2

]
= ξ̂1ξ̂2 − ξ̂2ξ̂1.

李代数se(2)通过同构映射ξ̂ 7→ (ω, vx, vy)
T与线性空间R3同构。

例: R3空间上的刚性变换群SE(3)定义为：

SE(3) = {T : R3 → R3|T (x) = Rx+ b, x ∈ R3,R ∈ SO(3), b ∈ R3}.

SE(3)中一个元素g可以表示为4× 4矩阵：

g =

[
R b

0 1

]
.

SE(3)中的单位元是单位矩阵I4。SE(3)的李代数记为se(3)。se(3)的一组基为

ε1 =

[
ê1 0

0 0

]
, ε2 =

[
ê2 0

0 0

]
, ε3 =

[
ê3 0

0 0

]
,

ε4 =

[
0̂ e1

0 0

]
, ε5 =

[
0̂ e2

0 0

]
, ε6 =

[
0̂ e3

0 0

]
.

se(3)中的一个元素ξ̂可以写成4× 4矩阵形式：

ξ̂ =

[
ω̂ v

0 0

]
= εiξ

i,
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其中ξ = (ξ1, · · · , ξ6)T为ξ̂的坐标向量，ω̂ ∈ so(3),v ∈ R3。

李代数se(3)上的李括号运算为矩阵交换乘法运算：

[
ξ̂1, ξ̂2

]
= ξ̂1ξ̂2 − ξ̂2ξ̂1.

李代数se(3)通过同构映射ξ̂ 7→
(
ωT ,vT

)T
与线性空间R6同构。

2.2.3 指数映射与对数映射

对于任意切向量ξ ∈ TeG，通过左切映射我们能够描述G上其它点的切向

量，即ξ诱导出左不变向量场Xξ。设ϕξ : R → G表示Xξ的积分曲线，它在t =

0时经过G的单位元e，即ϕξ(0) = e, d
dt
ϕξ(t) = Xξ(ϕξ(t))，则ϕξ(t) = exp(tξ)(证明

见 [71])。

由exp(ξ) = ϕξ(1)定义的函数exp : TeG → G称为将李代数g映射到G的指数

映射(exponential map)。指数映射将tξ ∈ g, t ∈ R映射到ϕξ(t) ∈ G。因此，指数

映射将0 ∈ g的某个邻域微分同胚映射到e ∈ G的某个邻域，从而有逆映射称为

对数映射log = exp−1 : G → g。

对于矩阵李群(如SO(n)，SE(n))，指数映射可表示为矩阵指数，

exp(A) = eA =
∞∑
i=0

1

i!
Ai.

对于矩阵指数，可定义其逆映射(矩阵对数)如下：A ∈ Cn×n的矩阵对数系

指满足eX = A的任意矩阵X。

下面我们介绍矩阵指数映射、对数映射及它们的一些特性。

引理 2.1: ( [74]PP20) 设A ∈ Rn×n没有R−上的特征值，则A有唯一的矩阵对

数X ,其特征值位于复平面的{z : −π < Im(z) < π}带域内，称为A的主对数，

这时记为X = log(A)。

注 2.1: 注意到elogA = A。若A ∈ Cn×n有负实特征值，A的矩阵对数X不

唯一。X的特征值位于复平面{z : −π < Im(z) < π}的闭带域内，这
时可人为规定A对应的矩阵对数。例如对于SE(2)中有两个负特征值的
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点g = diag(−1,−1, 1)，表示平面上位于原点，姿态角−π或者π的位形，因

exp




0 −π 0

π 0 0

0 0 0


 = exp




0 π 0

−π 0 0

0 0 0


 =


−1

−1

1


且 

0 −π 0

π 0 0

0 0 0

 ,


0 π 0

−π 0 0

0 0 0


的特征根均为(±πi, 0)，可人为规定

log




−1

−1

1


 =


0 −π 0

π 0 0

0 0 0


对应将g = diag(−1,−1, 1)看作平面上位于原点，姿态角为−π的位形；或

log




−1

−1

1


 =


0 π 0

−π 0 0

0 0 0


对应将g = diag(−1,−1, 1)看作平面上位于原点，姿态角为π的位形。

引理 2.2: ( [74]PP269)对于没有R−上特征值的A ∈ Rn×n，

log(A) =

∫ 1

0

(A− I)[t(A− I) + I]−1dt.

推论 2.3: 设A ∈ Rn×n没有R−上特征值，C ∈ Rn×n，则

C(log(A))C−1 = log(CAC−1).
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证明: 由相似变换不改变特征值，CAC−1没有R−上特征值，且C为常矩阵，则

C(log(A))C−1

=
∫ 1

0
C(A− I)C−1C[t(A− I) + I]−1C−1dt

=
∫ 1

0
(CAC−1 − I)[t(CAC−1 − I) + I]−1dt

= log(CAC−1)

.

�

推论 2.4: 设A ∈ Rn×n没有R−上特征值，则

(log(A))T = log(AT ).

证明:
(log(A))T

=
∫ 1

0
((A− I)[t(A− I) + I]−1)

T
dt

=
∫ 1

0
[t(AT − I) + I]−1(AT − I)dt

=
∫ 1

0
(AT − I)[t(AT − I) + I]−1dt

= log(AT )

其中，第二个等号到第三个等号是由如下等式得来的，

[t(AT − I) + I]−1(AT − I)

=
(
(AT − I)[t+ (AT − I)−1]

)−1
(AT − I)

= [t+ (AT − I)−1]−1

= (AT − I)(AT − I)−1[t+ (AT − I)−1]−1

= (AT − I)[t(AT − I) + I]−1

.

�

由推论2.3和推论2.4，得

推论 2.5:

CT (log(A))T C−T = log(CTATC−T ).
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引理 2.6: ( [74]PP270) 若A ∈ Rn×n没有R−上特征值，则对任意α ∈ [−1, 1]，

有log(Aα) = α log(A)。特别地，若A ∈ Rn×n没有R−上特征值，log(A−1) =

− log(A)，2 log(A
1
2 ) = log(A)。

引理 2.7: (Baker Campbell Hausdorff， [75])给定两个不可交换的算子X和Y，算

子Z定义为expZ = expX ◦ expY ，则Z可表示为

Z = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y,X]]− 1

24
[X, [Y, [X, Y ]]] + · · · .

由引理2.7可知，

log(X̃Ỹ ) = log X̃ + log Ỹ + 1
2
[log X̃, log Ỹ ] + 1

12
[log X̃, [log X̃, log Ỹ ]]

+ 1
12
[log Ỹ , [log Ỹ , log X̃]]− 1

24
[log X̃, [log Ỹ , [log X̃, log Ỹ ]]] + · · · .

下面介绍两个关于对数映射(也称指数坐标)关于时间求导的引理。

引理 2.8: (指数坐标的微分, [76] Theorem 2) 设g(t) 是G 上的一条光滑曲

线，X(t) = log(g(t)) 是g(t)的指数坐标，ξ̂l = g−1ġ 是刚体速度，ξ̂r = ġg−1

是空间速度。则Ẋ 和ξ̂l，以及ξ̂r 有如下关系

Ẋ =
∞∑
n=0

(−1)nBn

n!
adn

X(ξ̂
l), (2.1)

Ẋ =
∞∑
n=0

Bn

n!
adn

X(ξ̂
r), (2.2)

其中，{Bn}是伯努利数。下文记

BX ,
∑∞

n=0
(Bn/n!)ad

n
X ,

B−X ,
∑∞

n=0
((−1)nBn/n!)ad

n
X .

有关指数映射微分的更多内容，参考 [77].
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引理 2.9: 对于任意A,B ∈ g及整数n = 0, 1, 2, 3, · · · ,算子adA有如下性质，{
adn

AB = B, n = 0,

adn
AA = 0, n = 1, 2, 3 · · · .

对于X ∈ g,

BXX = X,B−XX = X,

其中BX 和B−X 由引理2.8定义.

2.3 李群上的运载体系统

2.3.1 运载体系统欧氏空间上的积分器模型

本文关注了多运载体系统质点模型通讯带宽受限时的协同渐近控制问题，

其中，将单个运载体系统建模为一阶积分器：

ẋ(t) = u(t), (2.3)

其中x ∈ Rn是运载体系统的状态，u : R → Rn是运载体系统的控制输入。控制

目标是设计u使得多运载体系统达到渐近协同行为。

2.3.2 运载体系统欧氏群上的运动学模型

本文关注刚体运动群G = SE(2)以及G = SE(3)，他们相应的李代数分别

表示为g = se(2)和g = se(3)。在本小节，如无特殊强调，我们指G = SE(3)以

及g = se(3)。运载体系统在欧氏群上的运动学模型用以下方程描述：

ġ = gξ̂l, (2.4)

其中，g ∈ G是系统的状态；ξ̂l ∈ g是系统的输入，可以理解为系统在刚

体坐标系下的速度，称为twist。在SE(3)和se(3)上，将群元素g = (R,p) ∈
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SO(3)nR3、速度ξ̂l = (ω̂,v) ∈ so(3)× R3用齐次坐标表示为

g =

[
R p

0 1

]
, ξ̂l =

[
ω̂ v

0 0

]
,

其中，算子 ·̂ : R3 → so(3)对于任意x,y ∈ R3使得x̂y = x× y；R ∈ SO(3),p ∈
R3分别表示在空间坐标系下运载体的姿态以及位置; ω̂ ∈ so(3),v ∈ R3表示刚体

坐标系下运载体的角速度和线速度。

相应地，系统(2.4)的对偶系统表示为

ġ = ξ̂rg, (2.5)

其中，g ∈ G是和系统(2.4)相同的系统位形，ξ̂r是系统空间坐标系下的控制输

入，可以理解为系统在空间坐标系下的速度，满足ξ̂r = Adg ξ̂
l。

2.3.3 运载体系统欧氏群上的动力学模型

设G ∈ SE(3)以及g ∈ se(3)。运载体系统在欧氏群上的动力学模型用以下方

程描述：

ġ = gξ̂l,
˙̂
ξl = u,

(2.6)

其中g ∈ SE(3)是系统的位形变量；ξ̂l ∈ se(3) 是系统在刚体坐标系下的速

度；u ∈ se(3)是控制输入。注意到系统(2.6)中的第一个方程即为运动学模型方

程。

相应地，系统(2.6)的对偶系统表示为：

ġ = ξ̂rg,
˙̂
ξr = ur,

(2.7)

其中，g ∈ SE(3)是和系统(2.6)中相同的位形变量；ξ̂r ∈ se(3)表示系统在空间坐

标系下的速度；ur ∈ se(3)是系统(2.7)的控制输入，即系统(2.6)在空间坐标系下

的控制输入。
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2.4 图论基础

图论在多运载体系统通讯拓扑结构建模时发挥重要作用，下面介绍本

文用到的图论的一些基本概念。将多运载体系统个体之间通讯拓扑建模为

图G = {V, E ,A}。每个个体建模为一个节点，即图的顶点，则N 个运载体系

统组成的节点集记为V = {1, 2, ..., N}。记图G的一条边为(i, j)，表示个体j接

收个体i的信息，E表示图G中所有边的集合。A = [aij] ∈ Rn×n为带权重的邻

接矩阵。如果图G是无向的，则对于i, j ∈ V，有aij = aji ≥ 0，即，节点i和

节点j互相接收对方信息。记个体i的邻居节点集合为Ni，如果个体j ∈ Ni，

即有(i, j) ∈ E时，则aij = aji = 1，否则aij = aji = 0 。无向图G的邻接矩
阵A是实对称矩阵。定义图G第i个个体的度为degi = Σn

j=1aij。图G的度矩阵
为D = diag(deg1, ..., degN)，拉氏矩阵为L = D −A。

图G的一条路径是一序列的边：(i1, i2), (i2, i3), ..., (ik−1, ik)。图G为有向
图时，它的关联矩阵B定义为：B矩阵的行元素标号和列元素标号分别

是图G 中运载体标号和边的顺序编号。考察每条边，如果(i, j) ∈ E，当
节点i是边(i, j)头时，Bij = 1；当节点i是边(i, j)的尾时，Bij = −1；其余

情况Bij = 0。注意到，BBT = L。环形图是具有如下形式有向路径的
图：(i1, i2), (i2, i3), · · · , (ik, i1)。称有向图是完全的是指图中对任意一个节点
均存在一条边指向任意其它一个节点。称有向图是树状图(或有向树)是指除根

节点外，任一个节点只有一个父节点。更多内容，请读者参考 [78]。

2.5 稳定性理论

本小节简要回顾一些控制系统的稳定性理论结果。考虑在n维流形M上运

动的运载体系统：

ẋ = X(x),

其中，x ∈ M，X是M上给定向量场。满足X(xe) = 0的点xe ∈ M称为平衡

点。一个平衡点是稳定的，是指所用从该平衡点附近出发的轨迹，在之后的所

有时间内，始终位于平衡点的附近，即系统的一个平衡点如果满足：

(1)对于任意一个ϵ > 0，任意时刻t > 0，存在一个δ，使得所有满

足∥x(0)− xe∥ ≤ δ的系统轨迹同样满足∥x(t)− xe∥ ≤ ϵ，则称平衡点xe稳定；其

中，∥ · ∥是M上点的局部坐标的欧氏范数；
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(2)当平衡点xe稳定，并且满足 lim
t→∞

x(t) = xe，则称平衡点xe渐近稳定；

(3)否则，称平衡点xe不稳定。

系统平衡点的稳定性可通过李雅普诺夫(Lyanponov)间接法和直接法来判

断。其中，经常用到的李雅普诺夫间接法包括判断X在xe处线性化模型的特征

根
[79]
。李雅普诺夫直接法通过构造一个类似于能量的李雅普诺夫函数，直接判

断稳定性，我们简介如下：

定理 2.1: 设在平衡点xe的一个邻域D内存在一个可微函数V (x)，它在xe处取严

格极小值，例如V (xe) = 0，并且

V (x) > 0,∀x ∈ D − {xe}.

如果V (x)沿系统轨迹的时间导数满足

V̇ (x) ≤ 0,

则平衡点xe是稳定的；如果V (x)沿系统轨迹的时间导数满足

V̇ (x) < 0,∀x ∈ D − {xe},

则平衡点xe是渐近稳定的。

通常，控制系统的基本目标有两个：一个是将系统从状态空间的一点驱动

到另一点；另一个是镇定系统到给定的平衡点。本文用到了第二个控制目标，

即：设计控制律，镇定平衡点。
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第三章 量化一致性

绪论中提及，在实际生活中，多运载体系统的通讯信道通常是数字的，且

是有限容量的。因此，需要对个体系统连续的状态信息数据进行采样、离散和

量化。信息经过量化处理后，在给定的控制律下，各个运载体系统其指定的关

键变量趋近于相等或达到相等，即实际的一致。利用量化的方法来设计控制

律，以使得多运载体系统渐近达到实际一致的控制目标通常被称为量化一致性

控制(quantized consensus)。本章针对多运载体系统的质点模型：一阶积分器模

型，在通讯带宽受限时，设计了均匀量化器，使用均匀量化的方法设计控制

律，并依据次优原则和节点相对初值分配了通讯总带宽，从而使多运载体系统

渐近达到实际一致的协同目标。

3.1 多运载体系统量化一致性控制的问题描述

本文将N个运载体系统每个个体建模为连续时间的一阶积分器模型：

ẋi(t) = ui(t), i = 1, · · · , N. (3.1)

xi ∈ R是第i个运载体系统的状态，ui ∈ R是控制输入。设计ui使得多运载体系

统每个个体状态值随时间趋于相等，则ui称为一致性控制律(或一致性协议、一

致性算法)。连续时间的一阶积分器模型常见的一致性控制律为：

ẋi(t) = −
∑
j∈Ni

aij(xi(t)− xj(t)), i = 1, 2, · · · , N.

将每个运载体系统建模为通讯拓扑图上的节点(在不影响研究结果的前提

下，下文将节点和运载体混淆使用)，它们之间的信息流动关系用图上的边

描述，该通讯拓扑图的拉氏矩阵记为L，则上述控制律可以记为紧凑的形
式：ẋ(t) = −Lx，其中x = [ x1, · · · , xN ]T。本文考虑的量化一致性控制问题针

对无噪声干扰的数字通讯信道，使用节点之间的相对状态值用于量化的控制。

对于连续一阶积分器模型，设计第i个节点的控制为，

ui(t) = −
∑
j∈Ni

aijq(xi − xj). (3.2)
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其中，q( · )是量化函数。记x̄k̃ = xi − xj, k̃ = 1, 2, · · · ,m，这里节点i和节点j由

边{i, j}连接，{i, j} ∈ E。因此，m是多运载体系统通讯拓扑图的边数，

且x̄(t) = [ x̄1(t), · · · , x̄m(t) ]T。这一类相对状态值量化模型可以看做，每

个运载体系统传感器和控制器距离较远，需要对得到的传感器相对信息进行

量化后，再通过远距离传输传递给控制器。重新整理(3.1)式和(3.2)式，得(参

考 [25])
˙̄x = −BTBQ(x̄), (3.3)

这里B是通讯拓扑图的关联矩阵，多运载体系统量化器

Q = [q1(x̄1), q2(x̄2), · · · , qm(x̄m)]
T ,

即Q有m个分量，各分量是标量量化器。

当多运载体系统趋于一致时，有t → ∞，|xi(t)−xj(t)| → 0, ∀i, j ∈ V。为了
考察多运载体系统个体状态值不相等时，系统总的差值大小，参考文献 [80]定

义多运载体系统的不一致性度量如下：

定义 3.1: （多运载体系统不一致性）在t时刻，多运载体系统的不一致性φ(t)定

义为：

φ(t)
∆
=
∑
i,j

aij(xi(t)− xj(t))
2 = x(t)TLx(t).

由此，当多运载体系统趋于一致时，有t → ∞, φ(t) → 0。如果t → ∞，虽
然φ(t) ̸→ 0，但φ(t)已满足要求，则称多运载体系统达到实际的一致性。采用量

化控制时，会由量化方法引入误差，本文引入多运载体系统一致性水平即ε-水

平实际一致性概念来描述最终不一致性与初始时刻不一致性相比的变化。

定义 3.2: (ε-水平实际一致性,或ε-consensus level)称

ϕ(t) =

∑
i,j

(xi(t)− xj(t))
2

∑
i,j

(xi(0)− xj(0))
2

为t时刻的相对不一致性。称多运载体系统一致性控制律满足ε-水平实际一致
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性，系指：对给定的ε > 0，系统的相对不一致性满足

ϕ(∞) = lim
t→∞

ϕ(t) ≤ ε.

给定对多运载体系统对ε的要求，需要在量化器设计阶段就考虑量化误差对ε的

影响。

本节讨论量化的控制输入，包含了运载体相对状态的量化信息。量化操作

和离散时刻有天然的联系，在我们讨论的量化一致性控制问题中，采样速率能

够影响最终的一致性。我们利用均匀周期采样和零阶保持方法，给出(3.2)式采

样控制算法。记T > 0为采样周期时间，控制输入为：

ui(t) =
∑
j∈Ni

aijq(xj(kT )− xi(kT )), t ∈ [kT, kT + T ), (3.4)

其中，k = 0, 1, 2, · · · ; i = 1, · · · , N，采样后，将(3.3)式改写为：

x̄(kT + T )− x̄(kT ) = −TBTB[x̄(kT )− e(kT )], (3.5)

这里，e(kT ) = x̄(kT )−Q(x̄(kT ))，因此，(3.5)进一步可写为

x̄(kT + T ) = (I − TBTB)x̄(kT ) + TBTBe(kT ). (3.6)

由(3.6)式，B矩阵的性质以及采样周期影响多运载体系统渐近收敛性能，在进

一步分析之前，本文对多运载体系统的拓扑图做如下假定。

假定 3.1: 多运载体系统的拓扑图G是树状结构。

如果图是树状的，则相应的，矩阵BTB是正定的
[78]
。该性质对本节分析量化误

差对系统一致性影响是必要的。

多运载体系统的不一致性φ(t)和(3.6)式中的状态变量x̄(kT )有如下关系：

引理 3.3: 任意离散时刻kT，有φ(kT ) = ∥x̄(kT )∥22。

证明: φ(kT ) = xTLx = xTBBTx = (BTx)T (BTx) = x̄T x̄ = ∥x̄(kT )∥22。 �
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引理3.3同时说明，给定ε-水平实际一致性要求，则

ϕ = φ(∞)/φ(0) = ||x̄(∞)||2
/
||x̄(0)||2 ≤ ε.

为了研究差分方程(3.6)解的渐近有界性，首先介绍三个引理。

引理 3.4: 设A，C为两个维数相等的矩阵，则σ(A + C) ≥ σ(A) + σ(C)，其

中σ( · )为最小奇异值。

证明: 由定义，σ(A + C) = min
∥x∥2=1

∥(A+ C)x∥2 ≥ min
∥x∥2=1

∥Ax∥2 + min
∥x∥2=1

∥Cx∥2 =

σ(A) + σ(C). �

引理 3.5: ( [81]定理3.9) 假设Q是巴拿赫代数的元素。如果∥Q∥ < 1，那

么(I −Q)−1存在，并且

(I −Q)−1 =
∞∑
k=0

Qk.

引理 3.6: 设Q和(I −Q)非奇异，则

(1) 若σ(Q) < 1，则σ (I −Q) ≤ 1− σ (Q)。

(2) σ(Q) < 1，当且仅当σ (I −Q) ≤ 1。

证明:

(1) 由引理3.5知，(I −Q)−1 = Σ∞
k=0Q

k。再由引理3.4有

1
σ(I−Q)

= σ
(
(I −Q)−1) ≥ 1 + σ (Q) + σ (Q2) + · · ·+ σ

(
Qk
)
+ · · ·

= 1 + σ (Q) + σ(Q)2 + · · ·+ σ(Q)k + · · ·
= 1

1−σ(Q)

从而σ (I −Q) ≤ 1− σ (Q)。

(2) 由σ(Q) ≤ σ(Q) < 1，有σ (I −Q) ≤ 1 − σ (Q) < 1，反之，则有σ(Q) =

σ (I − (I −Q)) ≤ 1− σ(I −Q) < 1。

�
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多运载体系统量化后方程(3.6)的解为：

x̄ ((k + 1)T ) = (I − TBTB)k+1x̄(0) +
k∑

r=0

(I − TBTB)k−rTBTBe(r)

= (I − TBTB)k+1x̄(0) +
k∑

r=0

(I − TBTB)rTBTBe(k − r)

(3.7)

现在考虑k → ∞时，∥x̄(kT )∥2的取值。

定理 3.1: 假定(1)BTB > 0，(2)T < 1
σ(BTB)

，(3)∥e(k − r)∥2 ≤ ê, ∀k，则

lim
k→∞

∥x̄ (kT )∥2 ≤ κ
(
TBTB

)
ê,

其中，κ
(
TBTB

)
= σ

(
TBTB

)/
σ
(
TBTB

)
为条件数。

证明: 由差分方程的解:式(3.7)，得

∥x̄ ((k + 1)T )∥2 ≤ σ
(
I − TBTB

)k+1∥x̄(0)∥2

+
k∑

r=0

σ(I − TBTB)
r
σ
(
TBTB

)
∥e(kT − rT )∥2.

由于信号e(kT − rT )有界，即∥e(kT − rT )∥2 ≤ ê, ∀k，则

∥x̄ ((k + 1)T )∥2 ≤ σ
(
I − TBTB

)k+1 ∥x̄(0)∥2+

(
k∑

r=0

σ(I − TBTB)r

)
σ
(
TBTB

)
ê.

由于σ(I − TBTB) < 1，所以当k → ∞，有

σ(I − TBTB)k+1||x̄(0)||2 → 0.

注意到：假定(2)意味着σ(TBTB) < 1，从而由引理3.6可得σ(I − TBTB) ≤
1− σ(TBTB) < 1，进而σ(TBTB) ≤ 1− σ(I − TBTB)，且

1

1− σ(I − TBTB)
≤ 1

σ(TBTB)
,
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另外，σ(I − TBTB) ≤ 1− σ(TBTB) < 1，从而

∞∑
r=0

σ(I − TBTB)r =
1

1− σ(I − TBTB)
≤ 1

σ(TBTB)
,

记矩阵TBTB的条件数为

κ(TBTB) = σ(TBTB)
/
σ(TBTB),

最后有limk→∞ ||x̄ (kT ) ||2 ≤ κ(TBTB)ê。 �

注 3.1: 由定理3.1假定(3)

||e(kT − rT )||2 ≤ ê, ∀k

以及定理3.1结论

lim
k→∞

||x̄ (kT ) ||2 ≤ κ(TBTB)ê

可知，量化误差的上界ê影响了多运载体系统的不一致性。在多运载体系统拓

扑图给定时，κ(TBTB) = σ(TBTB)
/
σ(TBTB)确定。因此，降低ê能够有效降

低多运载体系统不一致性，并使得最终的不一致性满足给定的ε-水平实际一致

性要求。

注 3.2: 本节中多运载体系统量化器Q含有m个分量，各分量为标量量化器。给

定量化一致性模型中通讯速率约束，即单位时间内传输数据量的约束，这类约

束通常反映了系统中用于传输数据的能量约束或者传输信道的带宽约束。这类

约束也可以理解为对量化器的量化速率约束，即量化输出数据一定能被传输，

因此，本节将通讯速率约束等价于量化器的量化速率约束。

设Q各分量量化器的量化速率为

ri, i = 1, · · · ,m,Σm
i=1ri = R, ri ∈ Z+,

其中，R是正的整数。由

||e(kT )||2 = (Σm
i=1(x̄i(kT )− qi(x̄i(kT )))

2)
1
2
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知，ê与ri，x̄（或x̄i），k，Q（或qi）相关。由于kT是离散采样时刻，取值范

围不能设计，所以降低ê需要设计量化速率ri和量化器qi的量化方法，而量化速

率ri是量化器qi的参数。

下面介绍如何设计量化器qi以降低多运载体系统不一致性使得最终满足给

定要求的ε-水平实际一致性指标。在开展讨论之前，我们先介绍一类均匀量化

器，它是我们本节量化方法的核心内容之一。确定性的量化方法包括均匀量

化，对数量化，符号量化等，统计量化方法包括随机取整、概率量化等
[65]
。其

中，均匀量化器定义如下
[63]
：

q(z) =


K, if z > (K + 1/2)∆

−K, if z ≤ −(K + 1/2)∆⌊
z
2
+ 1

2

⌋
, if − (K + 1/2)∆ < z ≤ (K + 1/2)∆

其中，K是正整数，是该均匀量化器q的量化饱和值，如果量化器的输入z 在量

化器q可测量范围之内，是指−(K+1/2)∆ ≤ z ≤ (K+1/2)∆，“⌊z⌋”(z ∈ R)表

示不超过z的最大整数。输出集合S = {0,±n | n = 1, 2, · · · , K}。以原点
为中心在正负实半轴各取K段，除原点外每段端点记为zk, k = {±n | n =

1, 2, · · · , K}。记yk是对zk−1到zk段用量化器q量化后的输出值。记yk − yk−1 =

∆，∆是q的量化步长，为非负实数，当同时有yk = (zk−1 + zk)/2成立时，q称作

均匀量化器。∆可以是静态常数，也可以随时间t变化并记为∆(t)。量化器q 的

量化输出级数有2K + 1个，当K < ∞时，量化器q称为有限级数的。量化器q的

量化速率记为r = log2(2K + 1)，r也称为量化精度，单位为bit。注意到，量化

误差e = z − q(z), z ∈ R，且有|e| ≤ ∆
2
。

以下分为两个部分讨论，一是讨论量化器设计方法，二是讨论通讯带宽资

源分配，目的是使得量化器量化操作产生的误差对多运载体系统的一致性影响

最小。这也是我们本节的主要内容。

3.2 量化器设计与通讯带宽分配

3.2.1 量化器设计

注意到，任何量化方法必然会产生真实值与量化输出值的误差。为刻画量
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化误差，引入记法：

πi
∆
= {x̄i(kT ) ∈ |x̄i(kT + T ) = fi(x̄i(kT ), x̄j(kT )), , i ̸= j} ,

其中fi是状态转移函数，且x̄i(0) = x̄i,0 ∈ R，x̄j(0) = x̄j,0 ∈ R分别
是x̄i和x̄j的状态初值。根据实际系统，可设πi是R中紧集，且x̄i(kT ) ∈
πi, i = 1, 2, · · · ,m。令π = π1 × · · · × πm。对于给定的x̄0 ∈ π，及量化

器结构Q，记e(x̄0, Q)(kT ) = x̄(kT ) − Q(x̄(kT )) ∈ Rm, k = 0, 1, · · ·，并
记||e(x̄0, Q)||∞ = supk ||e(x̄0, Q)(kT )||2，由定理3.1假定知，对∀x̄0 ∈ π及量化

器结构Q，||e(x̄0, Q)||∞存在，且||e(x̄0, Q)||∞ < ∞，从而e(x̄0, Q) ∈ lm∞。注意到

∥e(x̄0, Q)(kT )∥2 ≤ max
x̄0∈π

∥e(x̄0, Q)∥∞ = max
x̄0∈π

max
k

∥x̄(kT )−Q(x̄(kT ))∥2

= max
x̄i,0∈πi

max
k

(
m∑
i=1

|ei(x̄i,0, qi)(kT )|2
) 1

2 ,

令

ê(Q) = max
x̄i,0∈πi

max
k

(Σm
i=1|ei(x̄i,0, qi)(kT )|2)

1
2 ,

则对给定的量化器Q，ê(Q)表示量化误差的上界。

量化器设计的目的之一就是选择恰当的量化器Q，使得ê(Q)最小。对此，

有如下引理。

引理 3.7: 假定对任意的x̄0 ∈ π及量化器Q，e(x̄0, Q) ∈ lm∞，则使得infQ ê(Q)存在

的系统标量量化器Q具有如下结构：Q(x̄) = [q1(x̄1), ..., qm(x̄m)]
T，其中qi : x̄i 7→

qi(x̄i)，i = 1, 2, · · · ,m为第i分量的标量均匀量化器。

证明: 记x̄i和qi(x̄i)在kT时刻的距离为

|ei(x̄i,0, qi)(kT )| = |x̄i(kT )− qi(x̄i(kT ))| ,

这里i = 1, 2, · · · ,m。由假设知ei(x̄i,0, qi) ∈ l∞，并且

∥ei(x̄i,0, qi)∥∞
∆
= sup

k
|ei(x̄i,0, qi)(kT )| = sup

k
|x̄i(kT )− qi(x̄i(kT ))| < ∞,
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取

êi(qi) = max
x̄i,0∈πi

∥ei(x̄i,0, qi)∥∞ ,

则由

inf
Q

ê2(Q) = inf
Q

m∑
i=1

êi(qi)
2 =

m∑
i=1

inf
qi

êi(qi)
2

可知，存在Q∗使得

ê(Q∗) = inf
Q

ê(Q)

当且仅当存在q∗i使得êi(q
∗
i ) = infqi êi(qi)，i = 1, · · · ,m。由标量量化器的最

优条件知，对于任意概率密度的输入信号x̄i ∈ R以及给定的输出级数，使
得êi(qi)最小的最优量化编码结构qi( · )为均匀量化器

[63]
。从而使得ê(Q)取值

最小的系统标量量化器Q其量化结构为Q(x̄) = [q1(x̄1), ... , qm(x̄m)]
T，其

中，qi : x̄i 7→ qi (x̄i)，i = 1, 2, · · · ,m，为第i分量的均匀标量量化器。 �

注 3.3: 引理3.7指出使得ê(Q)取值最小的系统标量量化器Q 其量化结构为各分

量上的均匀标量量化器，qi : x̄i 7→ qi (x̄i)，i = 1, 2, · · · ,m。由于Q（或qi）

是ri和∆(kT )的函数，记作Q(ri,∆(kT ))，因此，不同的ri和∆(kT )影响ê(Q)并

最终影响多运载体系统不一致性。

3.2.2 通讯速率分配

讨论通讯带宽资源分配，目的是使得量化器量化操作产生的误差对多

运载体系统的一致性影响最小。首先固定量化器的量化步长，使得∆(kT ) =

∆0，k ∈ [0, k∗)，其中k∗的取值依赖于系统对一致性水平的要求，取法将在下面

介绍。为了强调Q依赖于ri和∆0，将Q记作Q(ri,∆0)，又因为ê是Q的函数，记

作ê(Q)，也可以记作ê(Q((ri,∆0)))。给定量化速率约束Σm
i=1ri = R, ri ∈+，i =

1, 2, · · · ,m。由于多运载体系统一致性要求个体之间要有通讯，则对量化器
的量化速率要求为ri > 0。为了度量标量均匀量化器q( · )输入x̄i的取值范围，

记|πi| = maxx̄i∈πi
x̄i −minx̄i∈πi

x̄i。

引理 3.8: 当x̄i在 量 化 器qi可 量 化 范 围 ， |πi|可 估 算 为|πi| ≈ |x̄i(0) −
κ(TBTB)∆

/
2
√
m|，如果量化步长∆足够小，|πi| ≈ |x̄i(0)|。
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证明: 由(3.6)式及定理3.1，知

lim
k→∞

x̄(kT + T ) = lim
k→∞

k∑
r=0

(I − TBTB)k−rTBTBe(rT ),

由ei(rT ) ≤ ∆
2
，i = 1, 2, · · · ,m，σ(TBTB) < 1，σ(I − TBTB) < 1，得

lim
k→∞

|x̄i(kT + T )| ≤ ∆κ(TBTB)

2
√
m

当量化步长∆足够小时， lim
k→∞

|x̄i(kT + T )| → 0。由

x̄(kT + T )− x̄(kT ) = −TBTBQ(x̄(kT )),

及

0 < σ(TBTB) < 1,

知，当x̄i(0) > 0,∀i，x̄i(kT )递减，当x̄i(0) < 0,∀i，x̄i(kT )递增，又

lim
k→∞

|x̄i(kT + T )| ≤ ∆κ(TBTB)

2
√
m

且x̄i(∞) ̸= 0，则对|πi|的估计值为|πi| ≈ |x̄i(0) − κ(TBTB)∆
/
2
√
m|，当标量均

匀量化器的量化步长∆足够小，有 lim
k→∞

|x̄i(kT + T )| → 0，则|πi|可估算为|πi| ≈
|x̄i(0)|。 �

注 3.4: 当采样周期T较小，且
m∑
j=1

[BTB]ijx̄j(0) > 0时，x̄i(kT )递减，其中，k <

k̃，k̃为某时刻；
m∑
j=1

[BTB]ijx̄j(0) < 0，则x̄i(kT )，k < k̂递增，k̂为某时刻。因

此，由

lim
k→∞

|x̄i(kT + T )| ≤ ∆κ(TBTB)

2
√
m

且

x̄i(∞) ̸= 0,

则|πi|可近似取
|πi| ≈ |x̄i(0)− κ(TBTB)∆

/
2
√
m|,
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当标量均匀量化器的量化步长∆足够小，则|πi|近似为|πi| ≈ |x̄i(0)|，这种取法
由于忽略了系统演化过程中各运载体系统状态信息的耦合对运载体系统之间相

对状态信息变化的影响，因而具有较大的保守性。

下面记“⌈z⌉”（z ∈ R）为大于z 的最小整数，在讨论给定量化速率约束、分

配R降低ê(Q((ri,∆0)))的问题之前给定如下引理。

引理 3.9: ( [82])一个标准的凸优化问题可以记为以下形式：
min f0(x)

s.t.fi(x) ≤ 0, i = 1, ...,m

aTi x = bi, i = 1, ..., p

其中f0, · · · , fm是凸函数。它的等价凸优化问题(Epigraph形式)记作
min t

s.t.f0(x)− t < 0

fi(x) ≤ 0, i = 1, ...,m

aTi x = bi, i = 1, ..., p

注 3.5: 当用ri个输出级数表示量化取值范围|πi|时，其量化步长∆ = |πi|
2ri−1，

且ēi =
∆
2
= |πi|

2ri
，则

ê = max
x̄∈π

∥ē∥2 = max
x̄i∈πi

(
m∑
i=1

(ēi)
2

) 1
2

=

[
m∑
i=1

(
|πi|
2ri

)2
] 1

2

那么问题 
min
Q

ê

s.t.
m∑
i=1

ri = R, ri ∈ Z+, 1 ≤ i ≤ m

由于0 < ri < R是凸集，并且
m∑
i=1

(|πi|2 2−2ri)是ri的凸函数，则其等价凸优化问题
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可以表示为
[82]
： 

min
{ri},τ

τ

s.t.
m∑
i=1

(|πi|2 2−2ri) ≤ τ

m∑
i=1

ri = R, ri ≥ 0 (1 ≤ i ≤ m)

因此，给定量化速率约束、分配R降低ê(Q((ri,∆0)))有如下定理。

定理 3.2: 给定多运载体系统总量化速率的约束Σm
i=1ri = R, ri ∈ Z+，1 ≤

i ≤ m，使得多运载体系统达到实际一致性且取得minQ ê的标量均匀量化

器qi，i = 1, 2, · · · ,m，具有如下次优量化速率：

r∗i =
1

2
log2

(
|x̄i(0)|2

τ

)
, i = 1, 2, · · · ,m,

其中τ为满足Σm
i=1r

∗
i = R的常数。考虑到受约束的量化速率为整数值r∗i ∈ Z+，

这时有次优量化速率：

r̃∗i =

 ⌈r∗i ⌉ , i ≤ R−
m∑
i=1

⌊ri⌋

⌊r∗i ⌋ , other.

证明: 用拉格朗日乘子法解Epigraph形式变换后的优化问题：
min
{ri},τ

τ

s.t.
m∑
i=1

(|πi|2 2−2ri) ≤ τ

m∑
i=1

ri = R, ri ≥ 0 (1 ≤ i ≤ m)

有L(τ, ri, λ, υ, µ) = τ + λ(
m∑
i=1

|πi|2 2−2ri − τ)−
m∑
i=1

υiri+µ(
m∑
i=1

ri −R)。上述最优问

题的Karush−Kuhn− Tucker（KKT）条件为 [82] :

(1)
m∑
i=1

|πi|2 2−2ri ≤ τ ;

(2)
m∑
i=1

ri = R，ri ≥ 0，i = 1, 2, · · · ,m;

(3) υi ≥ 0(i = 1, 2, ...,m)；µ > 0，λ ≥ 0;
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(4) λ(|πi|2 2−2ri − τ) = 0，υiri > 0，i = 1, 2, · · · ,m;

(5) ∂L
∂ri

= −2λ ln(2) |πi|2 2−2ri − υi + µ = 0，i = 1, 2, · · · ,m。

由一致性条件ri > 0以及υiri > 0，知υi = 0；又µ > 0，由KKT条

件(5)得λ > 0。由KKT条件(4)解出τ = |πi|2 2−2ri，代入(5)得λ = µ
2 ln(2)τ

，于

是µ = 2λ ln(2) |πi|2 2−2ri , (∀i)，进而22ri = 2λ ln(2)|πi|2
µ

, µ > 0。

由一致性条件ri > 0，知22ri = 2λ ln(2)|πi|2
µ

> 1，进而

ri =
1

2
log2

(
|πi|2

τ

)
,

m∑
i=1

{
1

2
log2

(
|πi|2

τ

)}
= R,

因此可以解出τ和ri。注意到，当|πi | = |πj |，1 ≤ i, j ≤ m时，有ri = rj。当使

用|πi| ≈ |x̄i(0)|估算值时，以上ri结果为min
Q

ê的次优解。由于受约束量化器的量

化速率是整数，考虑τ = |πi|2 2−2ri和min τ，设ri = (M − 1) + ϑ, 0 < ϑ < 1,M ∈
Z+，有|πi|2 2−2⌊ri⌋ > |πi|2 2−2ri > |πi|2 2−2⌈ri⌉，则r∗i值应取

r∗i =

 ⌈ri⌉ , i ≤ R−
m∑
i=1

⌊ri⌋

⌊ri⌋ , other

当|πi | = |πj |，1 ≤ i, j ≤ m时，同样地，由于使用上述πi估算值，此时次优量化

速率r̃∗i值应取

r̃∗i =


⌈
R
m

⌉
, i ≤ R−

m∑
i=1

⌊
R
m

⌋
⌊
R
m

⌋
, other

�

注 3.6: 量化速率资源分配和|x̄i(0)|的联系说明，为降低量化误差对多运载体
系统一致性的影响，在量化步长∆0较小时，|x̄i(0)|越大，需要分配给量化
器qi的ri越大。

注 3.7: 定理3.2给出了min
Q

ê即 min
Q(ri,∆0)

ê取值对R分配的估算要求。由多运载体系

统ε-水平实际一致性指标

φ(∞) =
ϕ(∞)

ϕ(0)
=

∥x̄(∞)∥22
∥x̄(0)∥22

≤ ε
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并且

∥x̄ (∞)∥2 ≤ κ
(
TBTB

)
ê

可知对量化误差ê的要求为ê ≤
√
ε∥x̄(0)∥2

κ(TBTB)
。当 min

Q(ri,∆0)
ê >

√
ε∥x̄(0)∥2

κ(TBTB)
时，必须进一步

设计量化器的参数∆。

记

ẽ(Q(r∗i ,∆(t)))|t=0 = ẽ0(Q(r∗i ,∆0)) = min
Q(ri,∆0)

ê = min
{ri},τ

τ
1
2 ,

ρ =
ẽ0κ(TB

TB)√
ε ∥x̄(0)∥2

,

o(ẽ0)为相比于ẽ0的极小常数，例如取o(ẽ0) = 0.01ẽ0。下面讨论量化器的参

数∆取值。由于多运载体系统量化器Q有m个分量，为保证系统数据编码、传

输、解码有效性，m个标量均匀量化器其量化步长均取∆(kT )。我们有如下设

计方法。

引理 3.10: 当∥x̄(k∗T )∥22 > ε ∥x̄(0)∥22时，那么取∆(kT ) = ∆0

ρ
, k ≥ k∗ + 1，则多

运载体系统随时间能够满足ε-水平实际一致性，即φ(∞) ≤ ε。其中，k∗可

取∥x̄(kT )∥2值随时间已变化不大的任意k时刻。

证明: 由ε-水平实际一致性要求知

ê(∞) ≤
√
ε ∥x̄(0)∥2

κ(TBTB)

而
ẽ0
ρ

=

√
ε ∥x̄(0)∥2

κ(TBTB)

因此需证，当∆(kT ) = ∆0

ρ
, k = k∗ + 1, k∗ + 2...时，ê(∞) ≤ ẽ0+o(ẽ0)

ρ
。即当∆0缩

小ρ倍时量化误差ẽ0 + o(ẽ0)缩小ρ倍。此时有ê(∞) ≤ ẽ0+o(ẽ0)
ρ

≈
√
ε∥x̄(0)∥2

κ(TBTB)
。当r∗i 固

定，

e(kT ) ≤

(
m∑
i=1

(
∆0

2
)2

) 1
2

, k < k∗ + 1,

e(kT ) ≤

(
m∑
i=1

(
∆0

2ρ
)2

) 1
2

, k ≥ k∗ + 1.
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因此，显然有，

ê(∞) ≤ ẽ0
ρ

≈ ẽ0 + o(ẽ0)

ρ
.

�

注 3.8: 固定r∗i，减小∆0的过程使得量化器可测量x̄i取值范围减小。在量化实际

一致性状态收敛过程中，取值范围渐近缩小和稳定，所以调整量化步长的方法

是合理的。

注 3.9: 对于x̄渐近收敛的各分量来说，编写程序运行寻找k∗时需要考虑较长一

段时间内多运载体系统不一致性的变化，但是通常这个时刻在可接受的时间范

围内能够取到。

3.3 仿真

下面给出仿真示例。假设4个多运载体系统(3.1)组成的网络系统，它们之间

的拓扑建模为无向图G = {V , E ,A}。相应的邻接矩阵为

A =


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0


相应的关联矩阵为

B =


−1 0 0

1 −1 0

0 1 −1

0 0 1


设 运 载 体 系 统 状 态 初 值x0 = [ 20.22, −20.22, 20.22, −20.22 ]T， 约

束Σm
i=1ri = 60，均匀量化器量化步长∆ = 1，ε = 0.0001。根据T <

1/σ
(
BTB

)
，计算采样时间T需T < 0.2929s，因此，取采样时间T = 0.1s。

因为各相对状态x̄i收敛于0的邻域，估算为|πi | = |πj |，1 ≤ i, j ≤ 3，有次优量

化速率ri = rj = 20。任取其它量化速率分配，r1 = 36, r2 = 20, r3 = 4。图3.1给

出上述两种量化速率分配下，多运载体系统其不一致性的值。仿真知，本文给
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图 3.1 次优与其它量化速率分配方法不一致性对比
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图 3.2 多运载体系统相对状态值(次优量化速率分配方法)

出的量化速率分配策略，在降低不一致性及相应的量化误差方面是有效的。

图3.2给出相对状态值的变化。由初值，计算对一致性的要求为ϕ ≤ 0.49。而

图3.1中其不一致性稳定后在0.517。调整量化步长∆ = 1为∆ = 0.5后，多运载体

系统最终不一致性逐渐降低到0.49以下，见图3.3。
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第四章 多运载体渐近一致与编队――运动学模型

4.1 问题描述

在工程应用中，一群具有感知、通信、决策、运动能力的运载体系统协同

工作，能更好地完成空间上分布的各类任务。在执行这些任务时，由于个体通

信、测量范围有限，一般只有相邻的个体之间能够进行信息交换。因此，运载

体系统基于局部的信息决策自身运动，其中，所涉及的基于局部信息的规则称

为是分布式的。这一内部建立了局部信息互联、并依据分布式规则决策自身运

动的多运载体系统群体称为一个运载体系统网络。本章将运载体系统建模为欧

氏群上的刚体运动学模型，定义了多运载体系统协同渐近一致和编队问题，并

设计了相应的控制策略。

4.1.1 运载体系统的运动学模型

设g为李群上G的元素，G上N个节点组成的网络其第i个节点的运动学模型

描述为：

ġi = giξ̂
l
i, i = 1, 2, · · · , N, (4.1)

其中gi ∈ SE(3)是第i个运载体系统的状态，即第i个刚体的位形；ξ̂li ∈ se(3)是

第i个运载体系统的控制输入，它表示在刚体坐标系下的速度。

系统(4.1)的对偶系统表示为：

ġi = ξ̂ri gi, i = 1, 2, · · · , N, (4.2)

其中，方程(4.2)里gi是和式(4.1)中第i个运载体系统相同的位形；ξ̂ri ∈ se(3)是

第i个运载体系统的在空间坐标系下的控制输入，它表示在空间坐标系下的速

度。

本章将N个节点之间通讯互联结构记为G = {V , E ,A}。

4.1.2 协同一致与编队

多运载体系统(4.1)的一致性控制是指设计节点控制律ξ̂li(或ξ̂ri )，使得gi →
gj,∀i, j ∈ V , t → ∞。即，使得当t → ∞时，满足gjg

−1
i = I，称为李群G上的右
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一致性，或者g−1
i gj = I称为李群G上的左一致性。

式gjg
−1
i = I表示节点j相对于节点i的位形在空间坐标系下相等，而

式g−1
i gj = I表示节点j相对于节点i的位形在节点i本体坐标系下相等。

多运载体系统(4.1)的编队控制是指设计节点控制律ξ̂li(或ξ̂ri )，使得

lim
t→∞

g−1
1 (t)gi(t) = ḡl1i, i = 1, 2, · · · , N, (4.3)

或

lim
t→∞

g−1
i (t)gj(t) = ḡlij, i, j = 1, 2, · · · , N, (4.4)

其中ḡl1i是常矩阵，是由编队任务指定的，它是节点i相对于节点1所期望的相对

位形，描述了编队的几何要求。式(4.3)也暗示了节点i相对于节点1的相对位形

是时变的，且渐近收敛到期望的队形ḡl1i。同样地，ḡlij是常矩阵，是节点j相对

于节点i所期望的相对位形。当给定编队任务ḡl1i时，ḡlij = (ḡl1i)
−1(ḡl1j)同时确定。

因此，式(4.4)暗示了节点j相对于节点i的相对位形是时变的，且渐近收敛到期

望的队形ḡlij。

期望编队的几何形式其对偶描述表示为

lim
t→∞

gi(t)g
−1
1 (t) = ḡr1i, i = 1, 2, · · · , N, (4.5)

或

lim
t→∞

gj(t)g
−1
i (t) = ḡrij, i, j = 1, 2, · · · , N. (4.6)

4.2 控制设计的理论分析

记g−1
i gj为gij，gjg

−1
i 为grij，记gi的指数坐标为xi = log(gi)，相应地，记xij =

log(g−1
i gj) = log(gij)，xr

ij = log(gjg
−1
i ) = log(grij)。

由引理2.7 Baker Campbell Hausdorff公式易知，

xij = log(g−1
i gj) = xj−xi+

1

2
[xj, xi]+

1

12
[xi, [xi, xj]]+

1

12
[xj, [xj, xi]]+higher order terms

其中，higher order terms为xi和xj作李括号运算的高阶项。如果gi和gj相等，

那么[xj, xi] = 0，log(g−1
i gj) = 0。对于log(gjg

−1
i )有类似的解释。
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一致性控制和编队控制存在一定的联系。对于多个运载体来说，当它们的

位形，包括位置和姿态，渐近达到相等时(gi = gj)，称为达到一致性；当它们的

位形，渐近达到固定的相对位置和相对姿态时，即节点之间相对位置和相对姿

态是一个常量时，称为达到编队，如果相对位形常量为I，那么编队退化为一致

性。因此，在研究编队控制之前，我们先来考虑一致性控制。

4.2.1 两个节点的一致性控制

两个(N = 2)运载体协同控制是多个(N > 2)运载体协同控制的特殊问题。

在考虑多个运载体的一致性控制之前，我们首先考虑两个个体的情况。假设两

个节点之间是双向通讯，即每个个体均能接收对方的信息。由左一致性和右一

致性的定义已知，满足gjg
−1
i = I，称为李群G上的右一致性；满足g−1

i gj = I称

为李群G上的左一致性。将两个个体控制到位形相同，等价为将两个个体在李

群G上的相对位形控制到单位元e；对于SE(2)和SE(3)来说，单位元e分别为相

应维数的单位矩阵I。因此，对于相对位形g12 = g−1
1 g2和gr12 = g2g

−1
1 ，下面考虑

它们相应的动态方程。

将相对位形gr12 = g2g
−1
1 对时间求微分，则有

ġr12 = ġ2g
−1
1 − g2g

−1
1 ġ1g

−1
1 = ġ2g

−1
2 (g2g

−1
1 )− (g2g

−1
1 )(ġ1g

−1
1 )

= ξ̂r2g
r
12 − gr12ξ̂

r
1 = (ξ̂r2 − Adgr12

ξ̂r1)g
r
12,

定义

ξ̂r12 , ġr12(g
r
12)

−1 = (ξ̂r2 − Adgr12 ξ̂
r
1),

则相对位形gr12的动态方程为

ġr12 = ξ̂r12g
r
12. (4.7)

类似地，对于相对位形g12 = g−1
1 g2来说，其时间导数为

ġ12 = −g−1
1 ġ1g

−1
1 g2 + g−1

1 ġ2 = −g−1
1 ġ1(g

−1
1 g2) + (g−1

1 g2)g
−1
2 ġ2

= −ξ̂l1g12 + g12ξ̂
l
2 = g12(ξ̂

l
2 − Adg−1

12
ξ̂l1),

定义

ξ̂l12 , g−1
12 ġ12 = (ξ̂l2 − Adg−1

12
ξ̂l1),
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则相对位形g12的动态方程为

ġ12 = g12ξ̂
l
12. (4.8)

针对左一致性控制目标g−1
i gj = I和右一致性控制目标gjg

−1
i = I，对两个运

载体个体分别设计如下控制律，

ξ̂l1 = x12 = log(g12)

ξ̂l2 = x21 = log(g21),
(4.9)

ξ̂r1 = xr
12 = log(gr12)

ξ̂r2 = xr
21 = log(gr21),

(4.10)

我们有如下定理。

定理 4.1: 给定控制律(4.9)，双向通讯的两个运载体ġi = giξ̂
l
i, i = 1, 2渐近达到

左一致性g−1
i gj = I；给定控制律(4.10)，双向通讯的两个运载体ġi = ξ̂ri gi, i =

1, 2渐近达到右一致性gjg
−1
i = I。

证明: 我们先来考虑左一致性。由引理2.8，易得

d
dt
log(g12) = d log− log(g12)(ξ̂

l
2 − Adg−1

12
ξ̂l1)

= (ξ̂l2 − Adg−1
12
ξ̂l1) +

1
2
[log(g12), (ξ̂

l
2 − Adg−1

12
ξ̂l1)]

+ 1
12
[log(g12), [log(g12), (ξ̂

l
2 − Adg−1

12
ξ̂l1)]] + · · ·

(4.11)

将控制律(4.9)代入式(4.11)，由

ξ̂l2 = − log(g−1
1 g2) (4.12)

−Adg−1
12
ξ̂l1 = − log(g−1

1 g2) (4.13)

则ξ̂l2 − Adg−1
12
ξ̂l1 = −2 log(g−1

1 g2)，注意到adj
x12

(ξ̂l2 − Adg−1
12
ξ̂l1) = 0，那么(4.11)式

可整理为
d

dt
log(g−1

1 g2) = −2 log(g−1
1 g2).

易知该系统渐近稳定，当t → ∞时，log(g−1
1 g2) → 0，即g−1

1 g2 → I。
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针对右一致性控制目标，利用引理2.8，有

ẋr
12 =

d
dt
log(gr12) = d loglog(gr12)(ξ̂

r
2 − Adgr12

ξ̂r1)

= (ξ̂r2 − Adgr12
ξ̂r1)− 1

2
[log(gr12), (ξ̂

r
2 − Adgr12

ξ̂r1)]

+ 1
12
[log(gr12), [log(g

r
12), (ξ̂

r
2 − Adgr12

ξ̂r1)]] + · · ·
(4.14)

将控制律(4.10)代入式(4.14)，由

ξ̂r2 = − log(g2(t)g
−1
1 (t)) = −xr

12, (4.15)

−Adgr12
ξ̂r1 = − log(g2(t)g

−1
1 (t)) = −xr

12, (4.16)

易得ξ̂r2 − Adgr12
ξ̂r1 = −2 log(g2(t)g

−1
1 (t)) = −2xr

12。注意到adj
xr
12
(ξ̂r2 − Adgr12

ξ̂r1) =

0,则
d

dt
log(g2g

−1
1 ) = −2 log(g2(t)g

−1
1 (t)) (4.17)

上述系统渐近稳定，当t → ∞时，log(g2(t)g
−1
1 (t)) → 0，即g2g

−1
1 → I。 �

4.2.2 两个节点的编队控制

我们考虑N = 2即两个运载体双向通讯时编队控制问题，编队任务由如下

方程给定，

lim
t→∞

g−1
1 (t)g2(t) = ḡl12. (4.18)

如果 lim
t→∞

g−1
2 (t)g1(t) = ḡl21，那么ḡl12 = (ḡl21)

−1。因此，本小节我们只考虑编

队任务(4.18)的实现。编队控制和一致性控制存在一定联系，针对两个运载体的

编队控制问题，本小节将其转化为两个变换系统的一致性控制问题，进而转化

为考虑相对变换系统的平衡点镇定问题。在给出主要结果之前，我们先对运载

体系统进行变换，并推导出两个运载体其相对变换系统的动态方程。

记

g̃2(t) = g2(t)ḡ
l
21, x̃2 = log(g̃2), g̃12 = g̃−1

1 g̃2, x̃12 = log(g̃12).

注意到x̃12 ∈ se(3)是将李群SE(3)上的相对位形转换到相应李代数se(3)上的指数

坐标，且ḡl11 = I，g̃1 = g1，x̃1 = x1 = log(g1)。定义ξ̃l1 , Ad(ḡl11)
−1 ξ̂l1 = ξ̂l1,ξ̃l2 ,
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Ad(ḡl21)
−1 ξ̂l2，则两个运载体的变换系统为

˙̃g1 = g̃1ξ̃
l
1

˙̃g2 = g̃2ξ̃
l
2

(4.19)

在推导相对变换系统动态方程之前，先来介绍两个重要等式：由x̃11 =

x̃22 = 0,推论2.3和引理2.6,易知

x̃21 = log(g̃21) = − log(g̃12) = −x̃12,

Adg̃−1
12
x̃12 = Adg̃−1

12
log(g̃12) = log(g̃12) = x̃12.

相对位形g̃12的时间导数为

˙̃g12 = −g̃−1
1

˙̃g1g̃
−1
1 g̃2 + g̃−1

1
˙̃g2 = g̃12(ξ̃

l
2 − Ad(g̃12)

−1 ξ̃l1). (4.20)

设ξ̃l12
∆
= ξ̃l2 − Ad(g̃12)

−1 ξ̃l1，则

˙̃g12 = g̃12ξ̃
l
12. (4.21)

注意到x̃12 = log(g̃12) ∈ g.由引理2.8，得两个运载体相对变换系统的动态方程

为：

˙̃x12 = B−x̃12 ξ̃
l
12. (4.22)

由ġi = giξ̂
l
i，g̃i = giḡ

l
i1 以及 ˙̃gi = g̃iξ̃

l
i，易得ξ̂li = ḡli1ξ̃

l
i(ḡ

l
i1)

−1，这里i = 1, 2。

因此，只需要设计ξ̃li, i = 1, 2即可。我们提出如下编队控制律

ξ̃l1 = cx̃12,

ξ̃l2 = cx̃21,
(4.23)

其中c > 0是常数。那么，存在如下定理。

定理 4.2: 在控制律(4.23)下，双向通讯的两个运载体ġi = giξ̂
l
i, i = 1, 2渐近地达

到给定编队队形，即 lim
t→∞

g−1
1 (t)g2(t) = ḡl12。
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证明: 不失一般性，取c = 1；由x̃21 = −x̃12以及Adg̃−1
12
x̃12 = x̃12，可得

ξ̃l12 = ξ̃l2 − Ad(g̃12)−1 ξ̃l1 = −x̃12 − x̃12=− 2x̃12, (4.24)

基于引理2.9，对于X ∈ g, 存在BXX = X以及B−XX = X，因此，

式(4.22)可整理为
˙̃x12 = B−x̃12 ξ̃

l
12 = −2x̃12.

注意到上述系统x̃12渐近收敛至0点，因此有t → ∞时，log(g̃12) → 0，

即g̃12 → I，从而有g1(t)
−1g2(t)ḡ

l
21 → I，即g1(t)

−1g2(t) → ḡl12。从而，编队任务

得以实现。 �

注 4.1: 对于同样的两个节点，当其模型由对偶系统方程(4.2)描述，两个节点之

间双向通讯，其编队任务的对偶形式表示为

lim
t→∞

g2(t)g
−1
1 (t) = ḡr12. (4.25)

记

⌢
g2(t) = ḡr21g2(t),

⌢
x2 = log(

⌢
g2),

⌢
g12 =

⌢
g2

⌢
g
−1

1 ,
⌢
x12 = log(

⌢
g12),

注意到ḡr11 = I，
⌢
g1 = g1，

⌢
x1 = x1 = log(g1)且

⌢
x12 ∈ se(3)将李群SE(3)上的

相对位形转换为相应李代数se(3)上的指数坐标。
⌢
x12和x̃12含义类似。

那么，两个运载体个体(4.2)的变换系统为：

⌢̇
g1 =

⌢

ξ
r

1
⌢
g1

⌢̇
g2 =

⌢

ξ
r

2
⌢
g2

其中
⌢

ξ
r

2 = Ad(ḡr12)−1 ξ̂r2，设计控制律，

⌢

ξ
r

1 = c
⌢
x12,

⌢

ξ
r

2 = c
⌢
x21,

(4.26)

这里，c > 0为常数控制增益，则编队任务(4.25)能够实现。
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4.2.3 多个节点的一致性控制与编队控制

观察两个运载体个体的一致性控制协议(4.9)和(4.10)，编队控制

律(4.23)、(4.26)，运载体系统(4.1)(其中N = 2)的编队控制，可以转化为变换

系统(4.19)的一致性控制，这一转化同样适用于多个节点的情况，对此，我们有

如下引理。

引理 4.1: 对于多个运载体系统(4.1)，设计编队控制律实现编队任务(4.3)和(4.4)

当且仅当设计一致性控制协议实现其运载体变换系统的左一致性，

˙̃gi = g̃iξ̃
l
i, i = 1, 2, · · · , N, (4.27)

其中，g̃i(t) = gi(t)ḡi1，ξ̃li = Ad(ḡ
l
i1
)−1ξ̂li，并且有

˙̃ξli = ũi。

证明: 如果变换后的系统(4.27)达到左一致性，那么

lim
t→∞

g̃ij → I. (4.28)

由g̃ij的定义知，式(4.28)满足当且仅当

lim
t→∞

(gi(t)ḡi1)
−1(gj(t)ḡj1) → I,

即

lim
t→∞

ḡ−1
i1
g−1
i
(t)gj(t)ḡj1 → I,

由此可得

lim
t→∞

gij → ḡi1ḡ1j = ḡij. (4.29)

因此，为多个运载体系统(4.1)设计编队控制协议实现编队任务(4.3)和(4.4)等价

于为其变换系统(4.27)设计左一致性控制律。 �

对于多个运载体系统的对偶系统描述(4.2)及对偶编队任务(4.5)、(4.6)，同

样存在等价于其如下变换系统的右一致性控制协议设计，

⌢̇
g i =

⌢

ξ
r

i
⌢
g i, i = 1, 2 · · · , N, (4.30)
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其中，
⌢
g i(t) = ḡri1gi(t)，

⌢

ξ
r

i = Adḡri1
ξ̂ri。特别地，当编队控制任务由 ḡlij = e 或

ḡrij = e时，即对于矩阵李群SE(3)来说，ḡlij = I 或 ḡrij = I时，编队问题退化为

一致问题。

当考虑多个(N > 2)运载体系统的一致性控制与编队控制时，通讯拓扑

的形式会更富有变化，系统收敛性分析较两个节点的情况相比变得复杂。本

节将多个运载体系统之间的通讯拓扑建模为有向图G = {V, E ,A} ，其邻接矩
阵由A = [aij]N×N或归一化邻接矩阵Ā = [āij]N×N描述，如果节点i能够获得节

点j的状态信息，则aij = 1，否则，aij = 0。

记

g̃i(t) = gi(t)ḡ
l
i1, g̃ij = g̃−1

i g̃j, x̃ij = log(g̃ij),

⌢
g i(t) = ḡri1gi(t),

⌢
g ij =

⌢
g j

⌢
g
−1

i ,
⌢
xij = log(

⌢
g ij),

其中，i, j = 1, 2, · · · , N,且ḡl11 = ḡr11 = I。注意到x̃ij ∈ se(3)将李群SE(3)上的相

对位形转换到相应李代数se(3)上的指数坐标。
⌢
xij和x̃ij含义类似。

由x̃ii = x̃jj = 0,推论2.3和引理2.6,有

x̃ji = log(g̃ji) = − log(g̃ij) = −x̃ij,

Adg̃−1
ij
x̃ij = Adg̃−1

ij
log(g̃ij) = log(g̃ij) = x̃ij.

相对位形g̃ij的时间导数为

˙̃gij = −g̃−1
i

˙̃gig̃
−1
i g̃j + g̃−1

i
˙̃gj = g̃ij(ξ̃

l
j − Ad(g̃ij)

−1 ξ̃li). (4.31)

令ξ̃lij
∆
= ξ̃lj − Ad(g̃ij)

−1 ξ̃li，则

˙̃gij = g̃ij ξ̃
l
ij. (4.32)

注意到x̃ij = log(g̃ij) ∈ g.由引理2.8，得

˙̃xij = B−x̃ij
ξ̃lij. (4.33)

由ġi = giξ̂
l
i，g̃i = giḡ

l
i1以及 ˙̃gi = g̃iξ̃

l
i，有ξ̂li = ḡli1ξ̃

l
i(ḡ

l
i1)

−1。因此，只需要设
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计控制律ξ̃li 即可换算出原编队控制律ξ̂li。我们提出如下编队控制律

ξ̃li =
c

ai

N∑
j=1

aijx̃ij, i = 1, 2, · · ·N, (4.34)

其中，c > 0是常数控制增益，不失一般性，取c = 1并不影响编队结果；aij ≥
0, ai =

∑N
j=1 aij；x̃ij = log(g̃ij)；使得

ξ̃lij = ξ̃lj − Ad(g̃ij)
−1 ξ̃li = −

N∑
k=1

(ājkx̃kj − āikAd(g̃ij)
−1 x̃ki). (4.35)

由引理2.7中Baker Campbell Hausdorff方程得，

Ad(g̃ij)
−1 x̃ki = g̃−1

ij log(g̃ki)g̃ij = x̃ji + x̃kj + higher order terms, k ̸= i. (4.36)

注意到
∑N

k=1 āik = 1，将(4.35)和(4.36)代入(4.33)，得

˙̃xij = −x̃ij − ājix̃ij −
N∑

k=1,k ̸=i

B−x̃ij
(āik − ājk)x̃jk + higher order terms. (4.37)

假定每个节点能够获得至多其它1个节点的信息，则ξ̃li = x̃ih, ξ̃
l
j = x̃ji =

−x̃ij, i, j, h ∈ {1, 2, · · · , N}, h ≤ i < j,，从而有

˙̃xij = B−x̃ij
ξ̃lij = B−x̃ij

(ξ̃lj − Adg̃−1
ij
ξ̃li)

= −x̃ij + B−x̃ij
Adg̃−1

ij
x̃hi

= −2x̃ij + B−x̃ij
(x̃hj + higher order terms).

(4.38)

系统(4.38)是一个仿射非线性系统，(x̃hj + higher order terms)是该系统的控制

输入。下面我们介绍几个重要结果。

定理 4.3: 假设N个运载体系统(4.1)的通讯拓扑为树状图，则在控制协议(4.34)下

该网络系统渐近地达到期望的编队队形(4.3)。

证明: 如果N个节点的通讯拓扑为树状图，设如图4.1所示，则相邻两个节点

其相对位形指数坐标的动态方程描述为(4.38)。 如果h = i，则i 为根节点。
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图 4.1 树状通讯拓扑图

注意到x̃ii = 0。由引理2.9，式(4.38) 重新整理为 ˙̃xij = −2x̃ij + x̃ij = −x̃ij。

该系统在t → ∞时，其状态x̃ij → 0。当h < i 且x̃ih → 0，则x̃hj → x̃ij，从

而 ˙̃xij → −x̃ij，那么x̃ij → 0。通过归纳法得，多个运载体系统(4.1)在树状通讯

拓扑图下，通过给定的控制协议(4.34)渐近达到期望的编队(4.3)。 �

注 4.2: 在一类特殊的通讯拓扑图：环形拓扑图情况下，设如图4.2所示，每个节

点向另外一个不同的节点传递信息，相邻两个节点其相对位形指数坐标的动

图 4.2 N 个节点的环形通讯拓扑图

态(和式(4.33)类似)由如下方程描述，

˙̃xi,i+1 = B−x̃i,i+1
ξ̃li,i+1 = B−x̃i,i+1

(ξ̃li+1 − Adg̃−1
i,i+1

ξ̃li)

= −x̃i,i+1 + B−x̃i,i+1
Adg̃−1

i,i+1
x̃i−1,i.

当任意两个相邻节点其相对位形的初始值相等时，即存在x̃i,i+1(0) = x̃i−1,i(0)，

则

˙̃xi,i+1 = −x̃i,i+1 + B−x̃i,i+1
Adg̃−1

i,i+1
x̃i,i+1 = −x̃i,i+1 + x̃i,i+1 = 0. (4.39)

系统(4.39)不收敛。事实上，系统(4.39)的收敛性依赖于各个节点的相对初

始值。下一节仿真我们将给出环形拓扑下多个运载体系统编队控制失效的例

子。注意到，当从环形拓扑中切断最多一条边（代表通讯信道）时，新的图形

是一个树状图，我们已证明树状图能够在给定协议下实现期望的编队，因此可

以观察到，通过为通讯拓扑图添加边，虽然增加了节点之间的信息联系，但减

弱了多运载体系统达到期望队形的能力。相似的结论见文献 [83]。
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注 4.3: 定理4.3中对于多个运载体系统通讯拓扑为树状图的要求不同于文

献 [84]中对拓扑图含有一个生成树的要求。在刚体运动群上的编队控制情形

中，我们给出了一个反例，即环形拓扑图是含有生成树的一个有向图，但是环

形拓扑图不能保证在给定控制协议下使得系统从任意的初始条件都能达到期望

的编队队形(参考注4.2)。我们在稍后的数值仿真内容将说明这一点。

对于多个运载体系统的情况，当其通讯拓扑为完全图的情形，我们有如下

结论。

定理 4.4: 假设N个运载体系统(4.1)的通讯拓扑图为完全图，则在控制协

议(4.34)下，该运载体网络渐近地达到期望的编队队形(4.3)。

证明: 对于完全图，有aij = 1以及āik = ājk = 1/(N − 1)，∀i, j, k = 1, · · ·N。
对于式(4.36) 以及系统(4.37)，高阶项对收敛性的影响小于线性项，且当节

点趋近于期望的编队队形时，高阶项渐近递减。在期望队形的某个邻域

内，省略系统(4.37)的高阶项是合理的。此时，我们有 ˙̃xij = −x̃ij − ājix̃ij，

该系统是一个渐近稳定的线性系统。因此，当t → ∞时，x̃ij = log(g̃ij) → 0

(g̃ij → I，g−1
1 gi → ḡl1i，∀i, j ∈ V)；从而渐近地达到编队(4.3)。 �

注 4.4: 给定树状通讯拓扑图和完全通讯拓扑图，对多个运载体系统(4.1)设计控

制协议(4.34)能够实现该运载体网络渐近地趋近于编队(4.3)。给定相同的树状通

讯拓扑图和完全通讯拓扑图，其对偶形式的系统(4.2)，则在如下控制协议下能

够渐近地实现对偶形式的编队任务(4.5)，

⌢

ξ
r

i =
c

ai

N∑
j=1

aij
⌢
xij, (4.40)

其中常数c > 0 是控制增益，aij ≥ 0, ai =
∑N

j=1 aij, i = 1, 2, · · ·N，⌢̇
g i =

⌢

ξ
r

i
⌢
g i,

⌢
g i = ḡri1gi,

⌢
g ij =

⌢
g j

⌢
g
−1

i ,
⌢
xij = log(

⌢
g ij)。

注 4.5: 对于特殊的编队任务ḡlij = ḡrij = I，∀i, j = 1, 2, · · · , N, 控制

律(4.34)和(4.40)即为一致性控制律。此时，多个运载体系统的位形渐近达到

一致。
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4.3 仿真

本节仿真假设在SE(2)上有4个节点(运载体)，由如下方程描述ġi = giξ̂
l
i, gi ∈

SE(2), ξ̂li ∈ se(2), i = 1, 2, 3, 4。考虑下面4个仿真例子。

例1. 假设4个节点的通讯拓扑图如图4.3所示，设四个节点的初始值为

图 4.3 4个节点的树状通讯拓扑图

g1(0) =


1 0 0

0 1 0

0 0 1

 , g2(0) =


0 1 0

−1 0 15

0 0 1

 ,

g3(0) =


−1 0 15

0 −1 15

0 0 1

 , g4(0) =


0 −1 15

1 0 0

0 0 1

 ,

期望的编队为

ḡl11 =


1 0 0

0 1 0

0 0 1

 , ḡl12 =


1 0 2

0 1 2

0 0 1

 ,

ḡl13 =


1 0 4

0 1 0

0 0 1

 , ḡl14 =


1 0 2

0 1 −2

0 0 1

 ,

则编队时各节点运动轨迹如图4.4所示，4个节点最终达到了期望的队形，它们

的状态与控制如图4.5所示。

例2. 考虑相同的4个节点的编队，其通讯拓扑为环形，如图4.6所示。 4个

节点和例1中有相同的初始值，期望的编队也相同，注意到x̃21(0) = x̃32(0) =

x̃43(0) = x̃14(0)且 ˙̃xi,i+1(0) = 0, i = 1, 2, 3。节点的运动轨迹图如图4.7所示。由该
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图 4.4 SE(2)上的4个运动学节点带有姿态的轨迹图(树状图,4个子图按顺序分别为3/20,
1/4, 1/2以及全部仿真时间的节点运行轨迹)

图中观察到，4个节点在环形拓扑图情形下无法达到期望的编队。因此，正如我

们在注4.2所陈述，通过对生成树添加边，无法改善节点达到期望队形的能力。

节点的状态与控制如图4.8所示。

例3. 对于相同的环形拓扑图4.6，除节点2的初值更改为

g2(0) =


0 −1 0

1 0 15

0 0 1

 ,

其余节点和例1，例2中初值相同，期望编队也和例1，例2中相同。则，编队控

制中个体随时间的运动轨迹如图4.9所示。各节点的状态与控制如图4.10所示。

注意到，正如我们在注4.2所陈述，本例中节点能够达到期望编队是建立在和
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图 4.5 运动学节点状态与控制(树状图)，由上到下：节点的控制输入，位形和相对位
形(相对于节点1)；由左到右：平面坐标系的x轴，y轴以及姿态θ表示。

图 4.6 4个节点的环形通讯拓扑图

例2不同的相对位形情形下。

例4. 现在考虑4个节点的通讯拓扑图为完全图的情形，如图4.11所示。 4个

节点的初始值为

g1(0) =


1 0 0

0 1 0

0 0 1

 , g2(0) =


0 −1 0

1 0 15

0 0 1

 ,
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图 4.7 SE(2)上的4个运动学节点带有姿态的轨迹图(环形图,不能达到期望编队, 4个子图按
顺序为3/20, 1/4, 1/2及全部仿真时间下的节点运行轨迹)

g3(0) =


0.866 −0.5 15

0.5 0.866 15

0 0 1

 , g4(0) =


0 −1 15

1 0 0

0 0 1

 .

期望的编队队形和例1相同。

4个节点的完全图其邻接矩阵由如下矩阵表示：

A =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

采用一致性控制协议(4.34)，编队中个体随时间的运动轨迹、状态与控制如
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图 4.8 运动学节点状态与控制(环形图,不能达到期望编队)，由上到下：节点的控制输
入，位形和相对位形(相对于节点1)；由左到右：平面坐标系的x轴，y轴以及姿态θ表示。
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图 4.9 SE(2)上的4个运动学节点带有姿态的轨迹图(环形通讯拓扑图,达到期望编队)
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图 4.10 运动学节点状态与控制(环形图,达到期望编队)，由上到下：节点的控制输入，位
形和相对位形(相对于节点1)；由左到右：平面坐标系的x轴，y轴以及姿态θ表示。

图 4.11 4个节点的完全通讯拓扑图

图4.12和图4.13所示。注意到，在完全通讯拓扑图情形下，采用设计的控制协议

能够使得网络系统达到期望的编队。
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图 4.12 SE(2)上的4个运动节点带有姿态的轨迹图(完全图,4个子图按顺序分别为3/20, 1/4,
1/2以及全部仿真时间内的各节点运动轨迹)
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图 4.13 运动学节点状态与控制(完全图)。由上到下：节点的控制输入，位形和相对位
形(相对于节点1)；由左到右：平面坐标系的x轴，y轴以及姿态θ表示
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第五章 多运载体渐近一致、编队与跟踪――动力学模型

5.1 问题描述

本章将运载体系统个体建模为刚体运动群上的动力学模型，进而考虑N个

动力学运载体系统在刚体运动群SE(i), i = 2, 3上一致性、编队和以编队方式进

行跟踪的问题(下文如果没有特殊说明，我们首先考虑SE(3))。

5.1.1 运载体系统的动力学模型

考虑N个动力学运载体系统在刚体运动群SE(3)上的编队问题，且运载体网

络系统中的每个节点都是全驱动的，即系统中独立控制的维数等于系统位形空

间的维数。运载体系统个体的动态模型由下式描述(记为Σ)，

Σ.

{
ġi = giξ̂

l
i,

˙̂
ξli = ui,

, i = 1, 2, · · · , N, (5.1)

其中，gi ∈ SE(3)是第i个节点的位形；ξ̂li ∈ se(3)表示第i个节点刚体坐标系下

的速度；ui ∈ se(3)是节点i的控制输入。

系统（5.1）的对偶系统表示为：

ġi = ξ̂ri gi
˙̂
ξri = ur

i

(5.2)

其中，gi是和式（5.1）中第i个运载体系统相同的位形；ξ̂ri ∈ se(3)表示第i个运

载体系统空间坐标系下的速度；ur
i是节点i的在空间坐标系下的控制输入。

在以编队形式跟踪(简称：编队跟踪)问题中，存在一个全局领导者角色的

运载体(用下标o区别)，称为全局 leader，它的运行轨迹是其它N个运载体(称为

follower )跟踪的路径。设全局 leader动态方程为，

Σo.

{
ġo = goξ̂

l
o,

˙̂
ξlo = uo,

(5.3)
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这里go ∈ SE(3)是全局 leader的位形；ξ̂lo ∈ se(3)表示全局 leader在刚体坐标系

下的速度；uo ∈ se(3)是全局 leader的控制输入，它是事先设定用于产生跟踪轨

迹的，因此不能设计。全局 leader (5.3)存在和其它运载体对偶系统(5.2)类似的

对偶系统，将下标由i替换为o即可，且存在ξ̂ro = Adgo ξ̂
l
o。

本章将节点之间通讯互联结构记为G = {V, E ,A}。

5.1.2 协同一致、编队与编队跟踪

多运载体系统(5.1)的一致性控制是指设计节点控制律ui(或ur
i )，使得当t →

∞时，gi → gj, ξ̂
l
j(t)− Adg−1

ij (t)ξ̂
l
i(t) = 0,∀i, j ∈ V。

下文记g−1
i (t)gj(t)为gij(t) (i, j = 1, 2, · · · , N )，它表示节点j关于节点i的相

对位形。我们称N个多运载体系统达到所期望的编队是指当他们的状态满足如

下方程， 
lim
t→∞

g1i(t) = ḡ1i, (5.4a)

lim
t→∞

ξ̂li(t)− Adg−1
1i (t)ξ̂

l
1(t) = 0, (5.4b)

或者等价为 
lim
t→∞

gij(t) = ḡij, (5.5a)

lim
t→∞

ξ̂lj(t)− Adg−1
ij (t)ξ̂

l
i(t) = 0, (5.5b)

其中，i, j = 1, 2, · · · , N，ḡ1i ∈ SE(3) 是依据给定编队任务确定的常量矩阵

（欧氏群元素）。ḡ1i 表示节点i关于节点1所期望的相对位形，描述了编队的

几何形式。同样地，ḡij 是常矩阵，是节点j关于节点i所期望的相对位形。当

给定编队任务ḡ1i时，ḡij = (ḡ1i)
−1(ḡ1j)同时确定。方程(5.5) 表示随着时间的增

长，从节点j的刚体坐标系看节点i的速度，它是和节点j的刚体速度相等的。方

程(5.5b)保证了多个运载体系统在运动时仍能保持刚性编队。

当ḡij = I，即当t → ∞时，有gij(t) → I，Adg−1
ij (t) → I以及ξ̂lj(t) → ξ̂li(t)，

即N个多运载体系统达到了一致性。因此，在本章中，一致性控制可以视为编

队控制的特例。

N个运载体 Σ以编队方式跟踪全局 leader，Σo，是指N个运载体状态满足
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下列等式， 
lim
t→∞

gio(t) = ḡio, (5.6a)

lim
t→∞

ξ̂lo(t)− Adg−1
io (t)ξ̂

l
i(t) = 0, (5.6b)

其中，i = 1, · · · , N，ḡio ∈ SE(3)是节点i和全局 leader 的需要达到的相对位

形，它是一个常量群元素，表示根据编队跟踪任务设定的编队队形，由

节点i和全局 leader 保持常量相对位形ḡio同时也决定了跟踪任务的实现；等

式(5.6b)保证了N个运载体在跟踪时保持编队队形。当给定编队跟踪任务ḡio

(or ḡoi)时，ḡij
∆
= lim

t→∞
gij(t) = (ḡoi)

−1(ḡoj)同时也确定。编队跟踪需要满足的

式(5.6)和编队任务需要满足的式(5.4)区别在于，式(5.6)中全局 leader由于控制

律事先给定，因此它的位形和速度是供 follower参考跟踪的，因此不依赖于和

其它运载体的通讯。

回顾多运载体系统运动学模型情形下讨论的一致和编队控制，在动力学模

型中编队控制也可以通过“变换系统”的一致控制来实现。为了介绍该结果，

我们首先做如下准备工作。

定义

g̃i(t) = gi(t)ḡi1, i = 1, 2, · · ·N,

则，

˙̃gi = ġiḡi1 = giξ̂
l
iḡi1 = g̃iAdḡ−1

i1
ξ̂li.

记ξ̃li , Adḡ−1
i1
ξ̂li，易得 ˙̃gi = g̃iξ̃

l
i。ξ̃i的时间导数为

˙̃ξi = ḡ−1
i1

˙̂
ξliḡi1 = ḡ−1

i1 uiḡi1。

记ũi
∆
= ḡ−1

i1 uiḡi1，则
˙̃ξli = ũi。因此，变换后的多运载体系统为

Σ̃.

{
˙̃gi = g̃iξ̃

l
i,

˙̃ξli = ũi,
(5.7)

其中i = 1, 2, · · ·N。同样地，记g̃ij(t) , g̃−1
i (t)g̃j(t) (i, j = 1, 2 · · · , N )，即节

点j的变换系统关于节点i的变换系统的相对位形。变换系统Σ̃达到一致性是指

当t → ∞时，有g̃ij(t) → I (g̃j(t) → g̃i(t))以及ξ̃lj(t) → ξ̃li(t)。我们通过下面的引

理来说明编队和一致的关系。

引理 5.1: 多运载体系统Σ达到给定编队当且仅当变换系统Σ̃达到一致性。
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证明: 变换系统Σ̃达到一致性是指

lim
t→∞

g̃ij → I, (5.8)

lim
t→∞

ξ̃j(t)− ξ̃i(t) = 0. (5.9)

由g̃ij的定义知式(5.8)满足当且仅当

lim
t→∞

(gi(t)ḡi1)
−1(gj(t)ḡj1) → I,

易知，

lim
t→∞

ḡ−1
i1
g−1
i
(t)gj(t)ḡj1 → I

以及

lim
t→∞

gij → ḡi1ḡ1j = ḡij. (5.10)

由ξ̃i及ξ̃j的定义，知式(5.9)等价于

lim
t→∞

Adg−1
j1 (t)ξ̂

l
j(t)− Adg−1

i1 (t)ξ̂
l
i(t) = 0,

即有

lim
t→∞

ξ̂lj(t)− Adgj1(t)Adg1i(t)ξ̂
l
i(t) = 0

以及

lim
t→∞

ξ̂lj(t)− Adgji(t)ξ̂
l
i(t) = 0.

则易得下式，

lim
t→∞

ξ̂lj(t)− Adg−1
ij (t)ξ̂

l
i(t) = 0. (5.11)

�

因此，设计控制律解决多运载体系统Σ的编队问题可以转化为设计控制律解决

“变换系统”Σ̃的一致问题。对于运载体系统i来说，原系统的编队控制ui和

“变换系统”的一致性控制ũi存在如下关系：ui = ḡi1ũiḡ
−1
i1 。

对于编队跟踪问题，有类似的结论。即N个 follower Σ和1个全局 leader

Σo组成的运载体网络实现编队跟踪当且仅当N + 1个节点之间“变换系统”达到
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一致性。证明和引理5.1类似，不再赘述。

5.2 控制设计的理论分析

5.2.1 一致性与编队控制

为了解决SE(3)上变换系统Σ̃的一致性问题，我们考虑镇定节点之间的相对

动力学系统。

定义

x̃ij
∆
= log(g̃ij) (5.12)

以及

ξ̃lij
∆
= ξ̃lj − Ad(g̃ij)

−1 ξ̃li, (5.13)

其中x̃ij ∈ se(3)称为g̃ij的指数坐标，它也可以理解为一个同胚映射，将SE(3)上

的相对位形映射为se(3)该相对位形的指数坐标。对于g̃ij 以及x̃ij，由关系

式x̃ii = x̃jj = 0，推论2.3，引理2.6，知存在下列等式，

x̃ji = log(g̃ji) = − log(g̃ij) = −x̃ij, (5.14)

Adg̃−1
ij
x̃ij = Adg̃−1

ij
log(g̃ij) = g̃−1

ij log(g̃ij)g̃ij = log(g̃−1
ij g̃ij g̃ij) = x̃ij. (5.15)

由定义(5.13)，ξ̃lij
∆
= ξ̃lj − Ad(g̃ij)

−1 ξ̃li可以理解为相对速度，即在节点j的

刚体坐标系下，节点j和节点i的速度差。下面我们研究相对位形g̃ij的动态方

程。g̃ij的时间导数如下式所示，

˙̃gij = −g̃−1
i

˙̃gig̃
−1
i g̃j + g̃−1

i
˙̃gj = g̃ij(ξ̃

l
j − Ad(g̃ij)

−1 ξ̃li). (5.16)

由(5.13)的定义，易得
˙̃gij = g̃ij ξ̃

l
ij. (5.17)

已知x̃ij = log(g̃ij) ∈ g，由引理2.8，可得

˙̃xij = B−x̃ij
ξ̃lij. (5.18)
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式(5.18)即为变换系统Σ̃节点之间相对位形其指数坐标的动力学演化

方程。其中，x̃ij在se(3)上取值，且se(3)为同构于R6的线性空间。因此，

式(5.18)将SE(3)（非线性流形）上的编队控制问题转化为se(3)（线性空间）上

的镇定问题。类似地，我们定义 ˙̃gij = ξ̃rij g̃ij。在讨论相对速度ξ̃lij的动力学演化之

前，我们首先介绍如下引理（详细证明，参考附录A）

引理 5.2: 基于相对速度(5.13)的定义，下列等式成立。

(i)

ξ̃rik = −ξ̃lki,Adg̃ij ξ̃
l
ij = −ξ̃lji, (5.19)

(ii)
d

dt

(
Adg̃ji

)
ξ̃lk = Adg̃ji [ξ̃

l
ji, ξ̃

l
k], (5.20)

(iii)

Adg̃ik [ξ̃
l
k, ξ̃

l
ik] = −[ξ̃li, ξ̃

l
ki]. (5.21)

基于式(5.19)，(5.20)以及(5.21)，易知，

d

dt

(
Ad(g̃ij)

−1

)
ξ̃li = [ξ̃lj, ξ̃

l
ij].

那么，相对速度ξ̃lij
∆
= ξ̃lj − Ad(g̃ij)

−1 ξ̃li的时间导数可表示为

˙̃ξlij =
˙̃ξlj − Ad(g̃ij)

−1
˙̃ξli − [ξ̃lj, ξ̃

l
ij]. (5.22)

式(5.22)和式(5.18)一起组成了以变换系统为基础的相对变换系统动态方程，

Σ̃r.

{
˙̃xij = B−x̃ij

ξ̃lij,
˙̃ξlij = ũij,

(5.23)

其中ũij = ũj − Ad(g̃ij)
−1ũi − [ξ̃lj, ξ̃

l
ij]，i, j = 1, · · · , N 且i ̸= j。和文献

[85]中SE(3)上运动学模型编队控制相比较，动力学模型编队控制的主要挑

战在于相对速度的时间导数出现了李括号项，因此在编队控制协议设计时

要考虑该项对相对系统镇定的影响。在系统（5.23）中，x̃ij(t) → 0 意味

着g̃ij(t) → I。当g̃ij(t) → I，ξ̃lij(t) → 0时，有ξ̃lj(t) → ξ̃li(t)。
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因此，当系统Σ达到编队，或系统Σ̃达到一致性时，有系统Σ̃r的状态满足

lim
t→∞

x̃ij(t) = 0 and lim
t→∞

ξ̃lij(t) = 0.

此时，编队问题被转化为设计控制律ũi和ũj使得受控系统(5.23)镇定到原

点。为了解决该问题，我们引入一个重要引理。

引理 5.3: ( [76]定理6)对于SE(3)上二阶全驱系统(2.6)，设Kp和Kd为正定增益。

则，控制律

u(g, ξ̂l) = −Kp log(g)−Kdξ̂
l (5.24)

局部指数镇定状态g至点I ∈ SE(3).

并且，当增益取标量(Kp = kpI6，Kd = kdI6)，且kp和ω(0) (刚体坐标系下初

始角速度)满足

kp >
∥ω(0)∥2

π2 − ∥R(0)∥2SO(3)

, (5.25)

则给定系统任意初值g(0) = (R(0), p(0)), tr(R(0)) ̸= −1，控制律(5.24)指数镇

定状态g由g(0)至点I。其中，∥R∥SO(3)是元素R ∈ SO(3)和单位元eSO(3) = I ∈
SO(3)的距离，它由下列对数函数的范数定义：

∥R∥SO(3) = ⟨log(R), log(R)⟩1/2,

这里，⟨ · , · ⟩是李代数上的内积运算(参考 [76])。

注 5.1: 注意到tr(R(0)) ̸= −1以及引理5.3中kp的选择是为了避免多运载体系统之

间相对姿态是π还是−π的歧义异性讨论。在实际应用中，当多运载体系统随时

间演化过程中，其相对姿态为π(或−π)时，可根据该时刻姿态以及姿态的导数

来确定是π还是−π；唯一需要注意的是，在初始时刻，需要首先指定歧义姿态

是π还是−π。

对于多个运载体系统的变换系统Σ̃，我们提出如下一致性控制律ũi，

ũi =
N∑
k=1

āik

(
c1x̃ik + c2ξ̃

r
ik + [ξ̃li, ξ̃

l
ki]
)
, (5.26)
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其中i = 1, 2, · · · , N，āik = aik
N∑

j=1
aij

是归一化邻接矩阵元素；c1 > 0和c2 > 0是常

数控制增益。为了分析闭环系统，我们首先介绍以下重要等式，有关证明见附

录B。

引理 5.4: 基于相对速度(5.13)的定义，以下等式成立。

(i)

Adg̃−1
ij
ξ̃rij = ξ̃lij, (5.27)

(ii)

ξ̃lij = −Adg̃ji ξ̃
l
ji (i ̸= j), ξ̃lij = 0 (i = j), (5.28)

(iii)

Adg̃−1
ij
ξ̃rik = ξ̃lij − ξ̃lkj, (5.29)

(iv)

Adg̃[ξ̂
l
1, ξ̂

l
2] = [Adg̃ ξ̂

l
1,Adg̃ ξ̂

l
2], (5.30)

(v)

Adg̃−1
ij
x̃ki = x̃ji + x̃kj + higher order terms, k ̸= i. (5.31)

由引理2.7，式(5.31)中的高阶项有如下形式：

1

2
[x̃ji, x̃kj] +

1

12
[x̃ji, [x̃ji, x̃kj]] +

1

12
[x̃kj, [x̃kj, x̃ji]]−

1

24
[x̃ji, [x̃kj, [x̃ji, x̃kj]]] + · · · ,

可以理解为相对位形指数坐标的高阶项。二阶动力学闭环相对系统中也存在相

对速度的高阶项，稍后将介绍。基于式(5.26)，第j个运载体系统的控制律由下

式给定，

ũj =
N∑
k=1

ājk

(
c1x̃jk + c2ξ̃

r
jk + [ξ̃lj, ξ̃

l
kj]
)
. (5.32)

将控制律(5.26)和(5.32)代入到变换后的相对动力学系统Σ̃r中，则闭环系统Σ̃r重

写为

Σ̃cl.



˙̃xij = B−x̃ij
ξ̃lij,

˙̃ξlij =
N∑
k=1

ājk

(
c1x̃jk + c2ξ̃

r
jk + [ξ̃lj, ξ̃

l
kj]
)

−Adg̃−1
ij

(
N∑
k=1

āik

(
c1x̃ik + c2ξ̃

r
ik + [ξ̃li, ξ̃

l
ki]
))

− [ξ̃lj, ξ̃
l
ij].

(5.33)
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因此，ũij可表达为

ũij = c1
N∑
k=1

(
ājkx̃jk − āikAdg̃−1

ij
x̃ik

)
+ c2

N∑
k=1

(
ājkξ̃

r
jk − āikAdg̃−1

ij
ξ̃rik

)
+

(
N∑
k=1

(
ājk[ξ̃

l
j, ξ̃

l
kj]− āikAdg̃−1

ij
[ξ̃li, ξ̃

l
ki]
)
− [ξ̃lj, ξ̃

l
ij]

)
.

(5.34)

记

T1
∆
=

N∑
k=1

(
ājkx̃jk − āikAdg̃−1

ij
x̃ik

)
,

T2
∆
=

N∑
k=1

(
ājkξ̃

r
jk − āikAdg̃−1

ij
ξ̃rik

)
,

T3
∆
=

(
N∑
k=1

(
ājk[ξ̃

l
j, ξ̃

l
kj]− āikAdg̃−1

ij
[ξ̃li, ξ̃

l
ki]
)
− [ξ̃lj, ξ̃

l
ij]

)
.

注意到x̃ii = 0, ξ̃lii = 0, [ξ̃li, ξ̃
l
ii] = 0 以及

N∑
j=1

āij = 1。则下文将分析这三

项：T1，T2和T3。

(T1) 首先，由式(5.31) Adg̃−1
ij
x̃ki = x̃ji + x̃kj + higher order terms, k ̸= i,得

T1 =
N∑
k=1

(ājkx̃jk + āikx̃ji + āikx̃kj) + higher order terms.

由式
N∑
j=1

āij = 1以及(5.14) x̃ji = −x̃ij，可得

T1 = −(1 + āji)x̃ij +
N∑

k=1,k ̸=i

(ājk − āik)x̃jk + higher order terms. (5.35)

(T2) 由式(5.29) Adg̃−1
ij
ξ̃rik = ξ̃lij − ξ̃lkj, T2可重写为

T2 =
N∑
k=1

(
ājkξ̃

r
jk − āikξ̃

l
ij + āikξ̃

l
kj

)
.
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利用等式
N∑
j=1

āij = 1，

T2 = −ξ̃lij + ājiξ̃
r
ji +

N∑
k=1,k ̸=i,j

(ājkξ̃
r
jk + āikξ̃

l
kj).

由方程(5.19) ξ̃rik = −ξ̃lki，

T2 = −(1 + āji)ξ̃
l
ij +

N∑
k=1,k ̸=i,j

(āik − ājk)ξ̃
l
kj.

(T3) 由方程(5.29) Adg̃−1
ij
ξ̃rik = ξ̃lij − ξ̃lkj , (5.19) ξ̃rik = −ξ̃lki以及

N∑
j=1

āij = 1，得T3为

T3 =
N∑
k=1

(ājk[ξ̃
l
j,Adg̃−1

ij
ξ̃lki]− āikAdg̃−1

ij
[ξ̃li, ξ̃

l
ki]).

利用等式(5.30) Adg̃[ξ̂
l
1, ξ̂

l
2] = [Adg̃ ξ̂

l
1,Adg̃ ξ̂

l
2], T3可重写为

T3 = Adg̃−1
ij

N∑
k=1

(ājk[Adg̃ij ξ̃
l
j, ξ̃

l
ki]− āik[ξ̃

l
i, ξ̃

l
ki]),

进而有

T3 = Adg̃−1
ij

N∑
k=1

([ājkAdg̃ij ξ̃
l
j − āikξ̃

l
i, ξ̃

l
ki]).

T1中的“higher order terms”是相对位形指数坐标的高阶项，T3则是相对速

度的高阶项。下面，由āij的取值对编队结果的影响，我们将陈述通讯拓扑在相

对动力学系统中的作用。主要结果介绍如下。

定理 5.1: 当N个运载体系统的通讯拓扑是完全图时，在给定控制律(5.26)下，多

运载体系统(5.1)渐近达到指定编队(5.4)或等价编队(5.5).

证明: 对于多个运载体系统，当N = 2时，设两个运载体分别由图上的节

点1和2来表示，此时完全图意味着两个运载体系统之间双向通信，因此，ā12 =

ā21.给定编队任务(5.4)，使用控制律(5.26)，则闭环系统Σ̃cl 中T1，T2和T3可表示
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为：T1 = −2c1x̃12，T2 = −2c2ξ̃
l
12 以及T3 = 0。即，当N = 2时，T1 和T3中的高

阶项不存在，取kp = 2c1，kd = 2c2，相对系统的闭环系统Σ̃cl整理为

{
˙̃x12 = B−x̃12 ξ̃

l
12,

˙̃ξl12 = −kpx̃12 − kdξ̃
l
12.

(5.36)

由引理5.3以及注5.1，如果两个节点相对姿态的初值为歧义姿态，那么当该相

对姿态指定唯一的姿态时，闭环系统全局收敛，即，两个节点达到渐近编队。

当N > 2时，完全图意味着āij =
1

(N−1)
，其中，i, j = 1, 2, · · · , N, i ̸= j。则

有，

T1 = −(1 + āji)x̃ij + higher order terms,

T2 = −(1 + āji)ξ̃
l
ij,

T3 = − 1
N−1

[∑N
k=1 Adg̃−1

ij
ξ̃lki, ξ̃

l
ij

]
当运载体系统趋近于指定编队时，高阶项对系统收敛的影响小于线性项，因

此忽略高阶项的影响是合理的。在这个假设条件下，设kp = c1(1 + āji)，kd =

c2(1 + āji)，相对动力学系统的闭环系统Σ̃cl为，

{
˙̃xij = B−x̃ij

ξ̃lij,
˙̃ξlij = −kpx̃ij − kdξ̃

l
ij.

(5.37)

由引理5.3及注5.1，可得控制律(5.26)指数镇定状态x̃ij和ξ̃lij到0。此时，多运载

体系统Σ渐近达到给定编队，该结果对于N > 2时是非全局的。 �

注 5.2: 定理5.1中运载体系统在李群SE(3)上的结果同样适用于SE(2)情况。对

于N > 2时完全图情况，尽管编队收敛结果是非全局的，但我们选择了多个初

值进行仿真，多运载体系统均达到渐近编队。这说明该控制律具有大范围的编

队收敛性。

注 5.3: 系统(5.37)的平衡点是运载体的相对平衡点，即运载体速度保持常量，

其时间导数为0，它表明所有的运载体系统网络中个体能够以编队形式保持匀速

直线运动，或匀速原地旋转、匀速圆周运动，或匀速螺旋运动，更特殊地，保
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持静止。以g ∈ SE(2)上单个动力学模型运载体(2.6)为例，注意到，

ξ̂l =

 ω̂

[
vx

vy

]
0 0

 ,

其中vx和vy是刚体坐标系下的线速度。当角速度ω = 0时，ω̂ = 02×2。系

统(2.6)的平衡点对应运载体个体的相对平衡点，其运动有如下几种类型：(i)

当ω ̸= 0以及vx = vy = 0，个体系统在原地旋转；(ii)当ω ̸= 0以及vx, vy中的一个

等于0，个体系统将在平面上做圆周运动；(iii)当ω ̸= 0以及vx ̸= 0, vy ̸= 0时，个

体系统在平面上做螺旋线运动；(iv)当ω = 0以及vx, vy中至少有1个为0时，个体

系统做直线运动。特别地，当ω = 0以及vx = vy = 0时，个体系统保持静止。

定理5.1中考虑了完全图，它是有向边最多的有向连通图，下面我们介绍树状

图，即有向边最少的有向连通图的结果。

定理 5.2: 如果N个运载体系统(5.1)的通讯拓扑图是树状图，在控制律(5.26)下，

多运载体系统渐近达到给定编队(5.5)。

证明: 如果N个运载体系统(5.1)的通讯拓扑图是树状图，如图5.1所示(和第4章

中的图4.1相同)，则相邻两个运载体系统的相对动力系统可由Σ̃r描述。使用控

图 5.1 树状通讯拓扑图(抽象)

制律(5.26)，可得

ũi = āih(c1x̃ih + c2ξ̃
r
ih + [ξ̃li, ξ̃

l
hi]) (5.38)

以及

ũj = āji(c1x̃ji + c2ξ̃
r
ji + [ξ̃lj, ξ̃

l
ij]). (5.39)

将控制律(5.38)和(5.39)代入到相对动力系统Σ̃r的第二个式子，则
˙̃ξlij 重写为

c1(ājix̃ji−āihAdg̃−1
ij
x̃ih)+c2(ājiξ̃

r
ji−āihAdg̃−1

ij
ξ̃rih)+āji[ξ̃

l
j, ξ̃

l
ij]−āihAdg̃−1

ij
[ξ̃li, ξ̃

l
hi]−[ξ̃lj, ξ̃

l
ij].

(5.40)
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这里我们假设h是不固定的(h = i或h < i)。因此，āih = aih = 1, āji = aji = 1。

由式(5.31) Adg̃−1
ij
x̃ki = x̃ji + x̃kj + higher order terms, k ̸= i, (5.29) Adg̃−1

ij
ξ̃rik =

ξ̃lij − ξ̃lkj 和式(5.19) ξ̃rik = −ξ̃lki，可得

˙̃ξlij = c1(−2x̃ij+x̃hj+higher order terms)+c2(−2ξ̃lij+ξ̃lhj)+[ξ̃lj, ξ̃
l
ij]−Adg̃−1

ij
[ξ̃li, ξ̃

l
hi]−[ξ̃lj, ξ̃

l
ij].

当h = i时，i代表根节点，此时高阶项不存在。由x̃ii = 0以及ξ̃lii = 0，可得

{
˙̃xij = B−x̃ij

ξ̃lij,
˙̃ξlij = −c1x̃ij − c2ξ̃

l
ij.

(5.41)

否则，当h < i时，首先我们可以推导出x̃hi → 0以及ξ̃hi → 0，即当t →
∞时，有g̃h → g̃i和Adg̃−1

hi
ξ̃lh → ξ̃li。接着，我们推导出当t → ∞时x̃hj =

log(g̃−1
h g̃j) → log(g̃−1

i g̃j) = x̃ij以及ξ̃lhj = ξ̃lj − Adg̃−1
hj
ξ̃lh → ξ̃lj − Adg̃−1

ij
ξ̃li = ξ̃lij.

记Te = Adg̃−1
ij
[ξ̃li, ξ̃

l
hi],由相对速度的定义，

Te= Adg̃−1
ij
[ξ̃li, ξ̃

l
hi]

= Adg̃−1
ij
(ξ̃li ξ̃

l
hi − ξ̃lhiξ̃

l
i)

= Adg̃−1
ij
(ξ̃li(ξ̃

l
i − Adg̃−1

hi
ξ̃lh)− (ξ̃li − Adg̃−1

hi
ξ̃lh)ξ̃

l
i)

= Adg̃−1
ij
(Adg̃−1

hi
ξ̃lhξ̃

l
i − ξ̃liAdg̃−1

hi
ξ̃lh).

基于以上分析，当t → ∞时，Adg̃−1
hi
ξ̃lh → ξ̃li (ξ̃hi → 0)。此时有，Te → 0。基于

和定理5.1中同样的线性项逼近，可得到非全局的收敛结果。此时，系统Σ̃r可重

新写为式(5.41)。由引理5.3通过归纳得，多运载体系统在树状通讯拓扑图下渐

近收敛到指定编队队形。 �

注 5.4: 树状图的根节点可以视为领导者(leader)。在实际应用中，多运载体网络

中个体最终的位形和速度将根据编队任务和领导者的运动轨迹来决定。并且这

个领导者甚至可以是虚拟的，参考轨迹可由外部信号产生。

5.2.2 编队跟踪控制

本小节考虑N个运载体Σ和1个全局 leader Σo所组成的运载体网络的编队跟

踪问题。假设(1)每个运载体都是全驱动的，即独立控制的维数等于运载体位
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形空间的维数；(2)通讯拓扑为树状图，且全局 leader Σo为根节点；(3)当相对姿

态初值为歧义姿态时，指定一个确切的姿态。沿用本章所定义的变量符号和记

号，我们给出如下编队跟踪控制律：

ũl
i =

∑
j∈Ni

aij(c1x̃ij + c2ξ̃
r
ij + [ξ̃li, ξ̃

l
ji] + Adg̃ij(

˙̃ξlj)), (5.42)

其中，Ni是i节点的邻居节点集合，这些节点给节点i传递信息。由于我们假设

通讯拓扑为树状图，因此每一条有向边定义了一对leader-follower关系，N +1个

节点的编队跟踪可以通过实现N对两节点的一致性控制来实现。我们有如下定

理。

定理 5.3: 使用控制律(5.42)，N个运载体Σ渐近地以编队形式(5.6) 跟踪全局

leader Σo。

证明: 基于树状通讯拓扑图，不失一般性，假设节点i的唯一父节点为节点j，

即aij = 1, i ̸= j，节点j也可以是全局 leader 。将控制律(5.42)代入相对系

统Σ̃o(5.23)，则相对速度(变换系统形式)的等式整理为

˙̃ξlij = ũl
j −

˙̃ξlj − [ξ̃lj, ξ̃
l
ij]− Adg̃−1

ij
(
∑
j∈Ni

aij(c1x̃ij + c2ξ̃
r
ij + [ξ̃li, ξ̃

l
ji])) (5.43)

由引理5.4，等式(5.21)以及 ˙̃ξlj = ũl
j，可得

˙̃ξlij = −c1x̃ij − c2ξ̃
l
ij. (5.44)

因此，相对位形和相对速度的动态方程为

˙̃gij = g̃ij ξ̃
l
ij,

˙̃ξlij = −c1x̃ij − c2ξ̃
l
ij.

(5.45)
�

由引理5.3，系统(5.45)渐近收敛到平衡点g̃ij = I 以及ξ̃lij = 0，即，基于一条有

向边联系的任意两个运载体其变换系统渐近达到了一致性。因为j也可以取全局
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领导者o，因此，

lim
t→∞

gio(t) → ḡio and lim
t→∞

ξ̂lr(t)− Adg−1
io (t)ξ̂

l
i(t) = 0.

当ḡio (或ḡoi)由编队跟踪任务指定时，ḡij
∆
= lim

t→∞
gij(t) = (ḡoi)

−1(ḡoj)同时确定。因

此，使用控制律(5.42)，N个运载体实现了以编队形式跟踪全局 leader Σo。

注 5.5: 本小节编队跟踪问题所涉及的编队队形是刚性的，它在整体平移运动同

时可以进行旋转。编队队形可以根据任务任意指定。同时，N个运载体的运动

沿着全局领导者运载体的轨迹前进，因而实现了跟踪，不再是依赖于动力系统

相对平衡点固定形式的运动。

注 5.6: 本章内容主要针对SE(3)的动力学模型展开的，但结论同样适用

于SE(2)情形。

5.3 仿真

本小节给出数值仿真示例。为了简便，我们考虑SE(2)上3个运载体系

统(5.1)，这里i = 1, 2, 3。

图 5.2 3个节点的完全通讯拓扑图

例1.首先给出一个完全图编队控制的例子。完全图如图5.2所示。3个节点的

初始位形和初始速度给定为

g1(0) =


0 −1 0

1 0 10

0 0 1

 , g2(0) =


1 0 30

0 1 43

0 0 1

 , g3(0) =


0 −1 30

1 0 0

0 0 1


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以及

ξ̂l1(0) = ξ̂l2(0) = 0, ξ̂l3(0) =


0 0.8 10

−0.8 0 0

0 0 0

 .

指定编队队形：

ḡl11 =


1 0 0

0 1 0

0 0 1

 , ḡl12 =


1 0 −10

0 1 10

0 0 1

 , ḡl13 =


1 0 −10

0 1 −10

0 0 1

 .

则，编队队形的几何形式为一个三角。设常数控制增益c1 = c2 = 5。节点随时

间的运动轨迹如图5.3所示，在设计的控制律下，多运载系统渐近地保持编队队

形并做匀速圆周运动。多运载体系统的状态如图5.4所示，它是基于我们搭建

的Simulink仿真模块输出来绘制的，参考附录C。

0 50 100
−50

0

50

x 

y 

for 1/5 of the total time 

0 50 100
−50

0

50

x 

y 

for 7/20 of the total time 

0 50 100
−50

0

50

x 

y 

for 1/2 of the total time 

0 50 100
−50

0

50

x 

y 

for the total time

图 5.3 SE(2)上动力学节点带有姿态的运动轨迹图(完全图，4个子图按顺序分别
为1/5，7/20，1/2以及全部仿真时间的各节点运动轨迹图)
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0 5
−200

0

200

 u
x 

Control twist

0 5
−100

0

100

 u
y 

Control twist

0 5
−5

0

5

u θ

Control twist

0 5
0

50

100

 x
 

Configuration

0 5
−50

0

50

∆ 
x 

Relative configuration
0 5

0

50

 y
 

Configuration

0 5
−50

0

50
∆ 

y 

Relative configuration
0 5

−2

0

2

θ 
(r

ad
ia

n)

Configuration

0 5
−2

−1

0

∆ 
θ 

(r
ad

ia
n)

Relative configuration

0 5
−50

0

50

v x 

Time (second) 

Body Velocity

0 5
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0
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v y 
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Body Velocity

0 5
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1

v θ 
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图 5.4 动力学节点状态与控制(完全图)。从上到下：节点的控制输入，位形，相对位
形(相对于节点1)以及本体速度；从左到右：关于x，y坐标以及姿态θ坐标。

例2. 然后给出一个树状图编队控制的例子，其中树状图如图5.1所示。

设h = 1, i = 2, j = 3分别表示第1个，第2个和第3个运载体系统。3个节点的初

始位形和初始速度分别为(设cθ = cos(π
4
), sθ = sin(π

4
))

g1(0) =


1 0 30

0 1 50

0 0 1

 , g2(0) =


cθ −sθ 0

sθ cθ 30

0 0 1

 , g3(0) =


cθ −sθ 10

sθ cθ 10

0 0 1


以及

ξ̂l1(0) = ξ̂l2(0) = ξ̂l3(0) = 0.
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指定编队队形为

ḡl11 =


1 0 0

0 1 0

0 0 1

 , ḡl12 =


1 0 0

0 1 10

0 0 1

 , ḡl13 =


1 0 0

0 1 −10

0 0 1

 .

因此编队队形的几何形式为一条直线。

设常数控制增益为c1 = c2 = 15。在本章所设计的控制律下，节点随时间的

运动轨迹如图5.5所示，多个运载体系统最终保持给定队形渐近达到静止。运载

体系统的各个状态值如图5.6所示。
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图 5.5 SE(2)上动力学节点带有姿态的运动轨迹(树状图，4个子图按顺序分别为1/5, 7/20,
1/2以及全部仿真时间的运动轨迹)

例3.最后给出一个编队跟踪的例子。考虑4个节点Σ以编队形式跟踪1个全局
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图 5.6 动力学节点状态与控制(树状图)。由上到下：节点的控制输入，位形，相对位
形(关于节点1)以及速度；从左到右：关于x，y坐标以及姿态θ坐标。

表 5.1 编队跟踪节点初值

node x0 y0 θ0 vx0 vy0 ω0

o 0 0 0 10 0 0.04
1 -100 500 −(π/4) 0 0 0
2 -500 250 0 0 0 0
3 -500 0 0 0 0 0
4 -500 -250 π/4 0 0 0

leader，Σo，给定通讯拓扑如图5.7所示。给定4个节点的初值如表5.1所示，其

中x0，y0是初始位置，θ0是初始姿态；vx0，vy0是节点关于x坐标，y坐标的初始

速度，ω0是初始角速度。
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图 5.7 跟踪轨迹及树状通讯拓扑示意图

给定编队队形ḡo1, ḡo2, ḡo3, ḡo4，

ḡo1 =


1 0 −150

0 1 100

0 0 1

 , ḡo2 =


1 0 0

0 1 0

0 0 1

 ,

ḡo3 =


1 0 −150

0 1 0

0 0 1

 , ḡo4 =


1 0 −150

0 1 −100

0 0 1

 .

注意到ḡo2 = I，说明节点2以达到一致的方式渐近跟踪上全局 leader。全局

leader的控制输入uo是事先指定的，这里假设为

uo =


0 −sin(0.1× t) 100

sin(0.1× t) 0 0

0 0 0

 ,

其中t是时间。则使用编队跟踪控制律(5.42) (设c1 = c2 = 10)，N个 follower运

载体以编队形式渐近跟踪全局 leader，各节点的运动轨迹如图5.8所示。各节点
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状态和控制的时间行为如图5.9所示。
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图 5.8 编队跟踪问题节点的运动轨迹，4个子图按顺序分别为10%, 30%, 80%以及全部仿
真时间的运动轨迹。
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图 5.9 编队跟踪问题节点状态与控制，由上到下：节点的控制输入，位形，相对位形(关
于全局 leader )以及本体速度；从左到右：关于x，y坐标以及姿态θ坐标。
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结 论

多运载体一致性和编队的渐近运动是近些年来协同控制领域新兴的研究课

题，其研究地位和价值日益显著。在近几年，国内外很多学者都参与到此项研

究行列，涌现了大量相关科技文献，获得了很多有意义的成果。一致性和编队

的研究内容也因此得到了极大的扩充。本文主要针对以下几个方面开展了较为

深入的研究：

1. 通讯带宽受限时多运载体的一致性控制和编队控制。为了解决多运载体

通讯带宽受限，本文采用了量化通讯的办法。定义了一致性水平概念，并设计

了均匀量化器。依据次优方法和多运载体系统相对初值，分配了总数据通讯带

宽。本文指出，动态调整均匀量化器的量化步长参数能有效地减小量化对一致

性的影响，从而提高一致性水平。

2. 多运载体刚体运动学模型的一致性控制和编队控制。为了描述运载体的

位置和姿态，我们采用了欧氏群SE(2)和SE(3)上全驱刚体运动学模型。针对一

致性控制目标，本文设计了对数反馈控制律，并将该一致性控制方法推广为任

意给定刚性队形的编队控制。本文将欧氏群SE(2)和SE(3)(李群)两个非线性流

形上的一致性控制、编队控制问题转化为其各自相关李代数两个线性空间里的

系统镇定问题；指出，在树状、完全的通讯拓扑条件下，两个运载体达到全局

渐近一致性、编队，多个运载体达到非全局渐近一致性、编队；同时指出，在

环形通讯拓扑条件下，多运载体达到渐近一致性和指定编队队形受运载体初值

的影响。

3. 多运载体刚体动力学模型的一致性控制和编队控制。在树状、完全通讯

拓扑下，针对刚体动力学模型一致性控制目标，本文设计了比例微分反馈控制

律，并推广为任意给定刚性队形的编队控制。主要方法是利用SE(2)和SE(3)上

刚体模型的位形空间具有对称性，将多运载体系统满足相对构形约束(编队队

形)下的本体速度同步问题转化为多运载体相对动力学系统的平衡点镇定问题；

并描述了多运载体系统达到一致性和编队时的整体运动形式：静止，直线运

动，旋转运动(分为原地旋转和圆周运动)，螺旋运动。在树状通讯拓扑下，所

设计的编队跟踪控制律，实现了多个动力学运载体以编队形式跟踪全局领导者

运载体。

为了进一步深入研究多运载体的协同控制理论，尚有许多问题有待解决，
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例如

(1)考虑更复杂的个体模型。本文中将个体建模为简单的一阶积分器，以及

相对复杂的刚体运动学模型、动力学模型，但并未涉及到运载体力学系统中力

的表述。并且，本文假设个体模型是全驱的，即独立控制的维数等于系统位形

空间的维数，不涉及独立控制的维数少于系统位形空间维数的约束，即欠驱动

约束。同时，本文刚体模型是自由刚体，不涉及非完整约束。基于欠驱动和非

完整模型的协同渐近刚性编队控制和一致性控制目前研究成果还比较少，因

此，还有大量的工作需要去做。

(2)考虑更复杂的或者具有实际应用背景的通信拓扑模型。在实际通信中，

除了通讯带宽受限，还可能受到诸如丢包、时滞、间歇通讯、时变通讯等特殊

条件的约束，在这些约束下的协同渐近控制，将面临更多挑战。

(3)本文考虑的协同渐近一致性和编队控制，均为渐近控制。假定多运载体

对达到控制目标有时间限制，那么设计和分析针对有限时间完成协同目标的控

制律将使得理论更具有实际意义。

(4)如何把一致性和编队控制的理论结果推广、应用到更多其它工程应用领

域中去，如编队队形变换、编队跟踪并防止运载体运动时碰撞等任务。

(5)当多运载体网络受到各类干扰时，如何保证系统的鲁棒性，使得系统整

体收敛性能保持稳定。

上述问题及其它相关问题的研究和解决将使我们对协同渐近控制理论有更

为深刻的认识。由于作者学识所限，缺点、讹误在所难免，恳请诸位专家、同

行批评指正。作者在此表示衷心感谢。
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附录A引理5.2的证明

附录 A 引理5.2的证明

(i) ξ̃rik = −ξ̃lki,Adg̃ij ξ̃
l
ij = −ξ̃lji.

证明:

ξ̃rik = ˙̃gikg̃
−1
ik = g̃ik(ξ̃

l
k − g̃−1

ik ξ̃lig̃ik)g̃
−1
ik = −(ξ̃li − g̃−1

ki ξ̃
l
kg̃ki) = −ξ̃lki.

−Adg̃−1
ij

ξ̃lji = Adg̃−1
ij

ξ̃rij = ξ̃lij ⇒ Adg̃ij ξ̃
l
ij = −ξ̃lji.

�

(ii) d
dt

(
Adg̃ji

)
ξ̃lk = Adg̃ji [ξ̃

l
ji, ξ̃

l
k].

证明:

d

dt

(
Adg̃ji

)
ξ̃lk = ˙̃gjiξ̃

l
kg̃ij+g̃jiξ̃

l
k
˙̃gij = g̃jiξ̃

l
jiξ̃

l
kg̃ij+g̃jiξ̃

l
kg̃ij ξ̃

l
ij = g̃ji(ξ̃

l
jiξ̃

l
k+ξ̃lkAdg̃ij ξ̃

l
ij)g̃ij .

由等式ξ̃rik = −ξ̃lki和Adg̃ij ξ̃
l
ij = −ξ̃lji,

d

dt

(
Adg̃ji

)
ξ̃lk = g̃ji(ξ̃

l
jiξ̃

l
k − ξ̃lkξ̃

l
ji)g̃ij= Adg̃ji [ξ̃

l
ji, ξ̃

l
k].

�

(iii) Adg̃ik [ξ̃
l
k, ξ̃

l
ik] = −[ξ̃li, ξ̃

l
ki].

证明:
[ξ̃li, ξ̃

l
ki] = ξ̃li(ξ̃

l
i − g̃ikξ̃

l
kg̃ki)− (ξ̃li − g̃ikξ̃

l
kg̃ki)ξ̃

l
i

= −g̃ik(g̃kiξ̃
l
ig̃ikξ̃

l
k − ξ̃lkg̃kiξ̃

l
ig̃ik)g̃ki

= −Adg̃ik(ξ̃
l
kξ̃

l
ik − ξ̃likξ̃

l
k)

= −Adg̃ik [ξ̃
l
k, ξ̃

l
ik].

�
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附录 B 引理5.4的证明

(i) Adg̃−1
ij

ξ̃rij = g̃−1
ij

˙̃gij g̃
−1
ij g̃ij = g̃−1

ij
˙̃gij = ξ̃lij .

(ii) ξ̃lij = −Adg̃ji ξ̃
l
ji (i ̸= j)和ξ̃lij = 0 (i = j).

证明:

ξ̃lij = g̃−1
ij

˙̃gij = ξ̃lj −Adg̃ji ξ̃
l
i = ξ̃lj − g̃jiξ̃

l
ig̃ij = −g̃ji(ξ̃

l
i− g̃ij ξ̃

l
j g̃ji)g̃ij = −Adg̃ji ξ̃

l
ji, i ̸= j.

由g̃ii = I ,易得ξ̃lii = 0. �

(iii) Adg̃−1
ij

ξ̃rik = ξ̃lij − ξ̃lkj .

证明:
Adg̃−1

ij
ξ̃rik = −g̃−1

ij ξ̃lkig̃ij = −g̃−1
ij (ξ̃li − g̃−1

ki ξ̃
l
kg̃ki)g̃ij

= g̃−1
kj ξ̃

l
kg̃kj − g̃−1

ij ξ̃lig̃ij = (ξ̃lj − g̃−1
ij ξ̃lig̃ij)− (ξ̃lj − g̃−1

kj ξ̃
l
kg̃kj)

= ξ̃lij − ξ̃lkj .

�

(iv) Adg̃[ξ̂
l
1, ξ̂

l
2] = [Adg̃ ξ̂

l
1,Adg̃ ξ̂

l
2].

证明:
Adg̃[ξ̂

l
1, ξ̂

l
2] = g̃(ξ̂l1ξ̂

l
2 − ξ̂l2ξ̂

l
1)g̃

−1 = g̃ξ̂l1ξ̂
l
2g̃

−1 − g̃ξ̂l2ξ̂
l
1g̃

−1

= g̃ξ̂l1g̃
−1g̃ξ̂l2g̃

−1 − g̃ξ̂l2g̃
−1g̃ξ̂l1g̃

−1

= (Adg̃ ξ̂
l
1)(Adg̃ ξ̂

l
2)− (Adg̃ ξ̂

l
2)(Adg̃ ξ̂

l
1)

= [Adg̃ ξ̂
l
1,Adg̃ ξ̂

l
2].

�

(v) Adg̃−1
ij

x̃ki = x̃ji + x̃kj + higher order terms, k ̸= i.

证明: 由引理2.3和引理2.7,

Adg̃−1
ij

x̃ki = g̃−1
ij log(g̃ki)g̃ij = log(g̃−1

ij g̃kig̃ij)

= log(g̃−1
j g̃ig̃

−1
k g̃ig̃

−1
i g̃j) = log(g̃−1

j g̃ig̃
−1
k g̃i)

= log(g̃jig̃kj)

= x̃ji + x̃kj + higher order terms, k ̸= i.

其中，higher order terms是关于x̃ji和x̃kj李括号运算的高阶项。 �
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附录C SE(2)上多运载体编队的Simulink仿真模块图

附录 C SE(2)上多运载体编队的Simulink仿真模块图

以李群SE(2)上三个动力学模型运载体的编队控制为例，图C.1，图C.2以及图C.3分别
描述了Simulink模块，个体系统模型参数和所设计的控制器参数。

图 C.1 SE(2)上三个运载体编队的Simulink仿真搭建
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图 C.2 SE(2)上动力学(二阶)系统模型的参数输入

图 C.3 SE(2)上动力学(二阶)系统控制器参数输入
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