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摘 要

多运动体系统协调控制是近年来系统与控制领域的一个热点研究方向。本

文分别基于欧氏空间和矩阵李群SE(3)研究了多运动体系统的有限时间最优编队

问题，主要成果包括以下几个方面：

(1) 针对个体模型为二阶积分器的多运动体系统，在给定编队时间、编队条件

和需要优化的性能指标的前提下，利用极大值原理设计控制律。在所得控

制律下，多运动体系统能够在有限时间达到编队，同时保证所优化的性能

指标最小。值得注意地是，相比于平常所见的有限时间控制方法，本文中

的编队时间可根据编队任务提前指定，这点在实际应用中非常重要。进一

步地，研究了控制受约束情况下二阶积分器多运动体系统的时间最优编队

控制问题。通过求解两个运动体时的时间最优问题，进而设计算法，求出

在给定控制约束下达到编队要求的编队时间下界。

(2) 针对个体模型为一般线性系统的多运动体系统，考虑其在指定编队时间和

编队条件下的编队控制问题。首先，基于一些可逆性条件，给出了一般线

性系统模型下的多运动体系统有限时间编队控制律。进一步证明，当线性

系统满足可控性条件时，在所设计控制律下，系统可在有限时间达到编队

任务。最后，将所设计的控制律应用于航天器编队飞行数值仿真。

(3) 同时考虑运动体的位置和姿态，基于矩阵李群SE(3)研究了多运动体系统

的有限时间最优编队问题。针对SE(3)上的运动学模型，引入矩阵内积构

造所考虑问题对应的哈密顿函数。进而利用微分流形极大值原理，对于多

运动体系统所含个体为两个的情况，给出精确的有限时间最优编队控制

律；对于多个运动体的情况，所得出的控制律具有二阶近似精度。在所设

计的控制律下，多运动体系统可在给定编队时间达到任意提前指定的编队

任务。相比于基于其他参数化方法所得的控制结果，此控制方法可使多运
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动体系统保持刚性编队。

(4) 研究了SE(3)上多个运动体动力学模型下的有限时间编队跟踪问题。类似

地，跟踪时间根据任务要求提前指定。利用SE(3)的群结构，通过推导求

出运动体相对于参考轨迹的相对模型。然后，设计跟踪控制律，使得运动

体在指定编队时间精确地跟踪上参考轨迹。此外，相比已有结果，本文中

所得到的跟踪控制律由表达式直接给出。

关键词：多运动体系统，有限时间编队，最优控制，运动规划，矩阵李群
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Finite-time Formation Control for
Multi-vehicle Systems based on Motion

Planning Approach

Yongfang Liu, Ph.D Candidate( Dynamical Systems and Control)

Directed by Professor Zhiyong Geng

Abstract

In recent years, cooperative control of multi-vehicle systems has been an emerging

and hot topic in the fields of systems and control. This thesis addresses the finite-

time optimal formation problem of multi-vehicle systems based on Euclidean space

and matrix Lie group SE(3). The main contributions are as follows:

(1) For the given formation time and formation conditions, both specified in advance,

and the performance index, which is needed to be optimized, an optimal control

law is designed by using Pontryagin maximum principle for multi-vehicle sys-

tems with second integrator dynamics. Under this control law, the multi-vehicle

systems derive the specified formation in finite time, and simultaneously, the cor-

responding performance index is guaranteed to be optimal. It’s worth noting that

compared with the common finite-time control methods, in this thesis, the forma-

tion time can be given according to formation tasks in advance. This is essential

in practical applications. Further, the problem of the time optimal formation is

investigated for second-order integrator multi-vehicle systems with control con-

straints. Based on the solution for the case of two vehicles, an algorithm is de-

signed to derive a time lower bound for the formation problem concerned.

(2) For the given formation time and formation conditions, the formation control

problem is considered for multi-vehicle systems with general linear systems dy-

namics. Firstly, a finite-time formation control law is designed for concerned
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systems based on some invertible conditions. Further, it is proved that when the

linear systems are controllable, under the designed control law, the multi-vehicle

systems can derive the given formation conditions in finite time. Finally, the

proposed control law is applied to numerical simulations of spacecraft formation

flying.

(3) Considering the translation and rotation of vehicles simultaneously, the problem

of finite-time optimal formation is investigated for multi-vehicle systems based

on matrix Lie group SE(3). For the kinematics model of vehicles on SE(3),

the matrix inner product is introduced to constructed the Hamiltonian function.

Then, by using Pontryagin maximum principle on smooth manifolds, a finite-

time optimal formation controller is proposed for the two-vehicle case. For the

systems with multiple vehicles, the obtained finite-time optimal formation control

law has second-order approximation accuracy. Compared with results which are

obtained based on parametrization methods, this control law keeps the multi-

vehicle systems in rigid formation.

(4) The problem of finite-time formation tracking control is investigated for dynamic

systems on matrix Lie group SE(3). Similarly, the tracking time is given ac-

cording to task requirements in advance. Using the group structure of SE(3),

the relative model of vehicles with respect to the reference trajectory is obtained.

Then, a finite-time tracking control law is designed for vehicles to track the ref-

erence trajectory at the given time. Furthermore, compared with existing results,

the obtained optimal control law is described by explicit formulations.

Key Words: multi-vehicle system, finite-time formation, optimal control, motion

planning, matrix Lie group
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北京大学博士学位论文

第一章 绪 论

1.1 多运动体系统研究背景和研究意义

多运动体系统是近年来系统与控制领域的一个热点研究方向。作为一门交

叉性学科，它涉及到数学、控制、物理、生物、计算机、通信、机器人等学

科，受到了众多领域学者的广泛关注。多运动体系统是指一组具有通讯、计

算、决策能力的运动体，通过信息交互相互协调达到某种目标的系统。这种系

统在自然界中很常见，比如鸟群、鱼群等在运动过程中保持某种相对不变的

位置关系，从而使得这些动物能够联合起来，更加有效完成捕食、防御等任

务 [1, 2]。观察这些现象，一个共同的特点就是不同个体之间通过相互协调可以发

挥更大的作用，这给科学研究者一个启发，如果实际运动体在执行任务时能够

保持一定的队形，同样也可以发挥出更大的作用。

对于多运动体系统的研究，其动机主要来源于实际工程应用。在工程应用

中，一群具有通讯、决策能力的运动体，如各类无人车辆、飞机，自主水面、

水下运载工具，空间飞行器、卫星等，不同的个体通过简单的相互作用在整体

上形成一种有序的协调运动。这种有序的集体行为能够表现出单个个体所不具

备的群体智能，能更好地完成空间上分布的任务，如部署、搜寻、营救、监

视、环境监测，探险考察等 [3]，而且还可以减少整体的能量消耗、延长寿命。

具体地，比如多个航天器编队飞行。编队飞行是指多个航天器在飞行过程中组

成特定的队形，保持较近的距离，相互协同、共同执行某项特定的空间任务。

相比于单个航天器系统，航天器编队可使每个航天器的功能简化，从而降低生

产成本；当某个任务完成后，航天器系统还可以通过编队重构用于完成新的任

务。此外，航天器编队可以提供很大的孔径和测量基线，在导航定位、深空探

测等方面具有广阔的应用前景 [4, 5]。再比如，地面上多个无人车辆通过信息交

互，进行自主导航与协调，可以实现城市现代化中的智能交通，或大范围未知

区域内的资源搜索，甚至于危险区域的探测及搜救任务 [6]。

从上面的介绍可以看出，多运动体系统是由多个个体系统耦合而成的，可

以有效的完成任务、提高系统的工作效率、实现各类功能和效益的最大化。针

对多运动体系统的研究范围很广，相关的课题有一致性控制、编队控制、群集

控制(flocking)等。本文主要研究多运动体系统的编队控制问题。编队控制问题

是指多个运动体在前进过程中，整个运动体系统建立并保持预先决定的几何构
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第一章绪 论

型（即队形），同时又要适应环境约束的控制技术。某些情况下，不仅要考虑

运动体空间位置的协调，还要考虑运动体之间姿态的协调。因此，本文分别基

于欧氏空间和矩阵李群SE(3)来研究多运动体系统的编队控制问题。

1.2 研究现状

近年来，多运动体系统渐近控制受到了科研学者的广泛关注，同时涌现出

大量研究成果。在已有的研究成果中，单个运动体的模型描述从最初的积分器

模型已发展到各种复杂的非线性模型。多运动体系统研究最早得益于文献 [7]

提出的粒子群模型，此文献给出了离散时间多运动体系统模型，通常被称为

“Vicsek模型”。在Vicsek模型中，每个个体以相同的速度在平面上运动，并根

据简单的控制律，计算出其邻居和自身的前进方向的平均值来作为下一时刻的

运动方向，即

xi(t +1) =
1

1+ni(t)

(
xi(t)+ ∑

j∈Ni(t)

x j(t)
)
+∆xi(t), i = 1, · · · ,N,

其中，xi表示个体i个前进的方向，Ni是个体i的邻居集，ni是邻居数，∆xi(t)是

噪音。进一步地，Olfati-Saber和Murray讨论了连续时间多运动体系统的控制问

题 [8]，每个运动体的动力学由下列一阶积分器描述：

ẋi(t) = ui(t), i = 1, · · · ,N.

针对以上模型，他们设计控制协议，解决了通讯图为平衡图或者强连通图时的

平均一致性问题。随后，对于多运动体系统的研究，个体模型扩展到二阶积分

器或者更高阶的积分器 [9–13]，

dmxi(t)
dtm = ui(t).

具体地，文献 [9]通过设计观测器研究了二阶积分器网络的跟踪问题。文

献 [10, 12]分别考虑了定常拓扑和切换拓扑下高阶积分器类型的多运动体系统的

一致性控制问题，给出了解决一致性问题的充分必要条件。更多相关结果可参

考综述类文献 [14]。

除了各种积分器模型，对于如下一般线性系统模型多运动体系统的控制问
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北京大学博士学位论文

题也进行了大量研究 [15–19]

ẋi = Axi +Bui,

yi =Cxi, i = 1, · · · ,N.

其中，文献 [16]研究了固定拓扑结构下基于相对状态连续时间线性多运动体系

统的一致性协议设计问题。文献 [19]考虑了线性多运动体系统的可一致性问

题(consensusablity)。文献 [17]提出了一种切换拓扑下基于运动体间相对输出的

动态一致性协议。在文献 [18]中，作者在一个统一的框架下研究了同步和一致

性问题，给出了一般线性系统的一致性区域的概念。

另外，对于非线性多运动体系统的研究成果近年来也有很多 [20–22]。比较常

见的非线性模型为

ẋi(t) = f (xi(t))+ui, i = 1, · · · ,N,

其中，xi ∈ Rn表示第i个运动体的状态向量， f : Rn → Rn 是一非线性向量函数。

一般处理的多运动体系统，其模型中的非线性满足某种凸假设或者扇区条件。

对于这种系统采用的方法分为两种，或者利用Lyapunov理论和非光滑分析等工

具给出了系统能够达到一致性所需满足的拓扑条件，或者利用反馈线性化方法

将一类非线性多运动体系统化为线性标准型,然后设计控制律。

显然，以上所介绍的不管是积分器模型还是非线性模型都是质点模型，即

只考虑运动体的位置并没有考虑其姿态。现有的对于刚体模型的研究结果不

多，文献 [23–25]考虑了由Euler-Lagrange方程描述的多运动体系统的控制问题。

基于Euler-Lagrange系统的研究，只考虑姿态，并没有综合考虑位置和姿态。还

有就是，Euler-Lagrange系统是基于局部广义坐标建立起来的方程，所得到的结

果是局部的。此外，文献 [26, 27]讨论了多个航天器的同步问题，类似文献还有

很多。在已有的关于多运动体系统姿态控制的结果中，一个共同的特征就是对

姿态参数化，比较常见的参数化方法有三参数表示方法，如欧拉角，Modified

Rodriguez Parameters (MPRs)，还有就是四元素表示方法。众所周知，运动体姿

态所在的空间是一个非线性空间，可用矩阵群SO(3)来描述，其特点是不同点都

有自己特有的速度空间。参数化方法把这样一个非线性空间化成一般的欧氏空

间，便于问题的处理，但参数化方法将引起奇异性或者混淆。对于刚体姿态，

没有任何三参数表示方法是全局的没有奇异性的 [28]；四元素方法虽然没有奇异

性，但是因为三维球面重复覆盖SO(3) [29]，所以存在一个姿态对应两组四元素

的情况，对于大范围的姿态控制问题会存在混淆。此外，参数化方法本质就是
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图 1.1 线性轨迹跟踪

图 1.2 参数化方法下的非线性轨迹跟踪

图 1.3 基于非线性空间的非线性轨迹跟踪

把不同点的速度空间当成同一个欧氏空间。对于镇定问题或者小范围内的跟踪

问题，这类方法是一个很好的近似。但对于不能在一个局部领域里面考虑的多

刚体系统，这类方法将无法达到控制目标。具体地，比如，在非线性轨迹跟踪

问题中，参数化方法不能保证不同刚体在轨迹跟踪过程中保持刚体编队。 如

图1.1，当跟踪轨迹为线性轨迹时，参数化方法和基于非线性空间的方法都能保

持刚性编队，即在跟踪过程中运动体间保持相对位置和相对姿态不变。但当跟

踪轨迹为非线性轨迹时，如图1.2所示，参数化方法无法保持所要求的刚性编

队，具体表现为只保持相对位置不变，但相对姿态已经发生变化。不同的是，

直接基本非线性空间来考虑运动体编队问题，则可得到如图1.3所示的轨迹跟踪

结果。从图中可看出，在跟踪过程中同时保持着相对位置和相对姿态不变。由

于以上几点，考虑基于刚体原本的构型来处理多运动体系统的控制问题。
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如上面所提到的那样，刚体的构型是一个特殊的微分流形。具体地，对

于刚体只考虑姿态时，其构型空间为矩阵李群SO(3)；同时考虑位置和姿态

时，其构型空间为矩阵李群SE(3)，对于SO(3)和SE(3)的具体介绍将在文中详

细给出。基于李群SO(3)和SE(3)上的运动体，目前已经很多研究。考虑李群上

的单个个体，早期的文章中，Sussman和Brockett主要研究了可控性问题 [30, 31]，

之后的研究主要关注如果设计控制器，从一个构型到另一个构型的规划问

题。文献 [32, 33]研究李群上的规划问题，给出了规划问题的近似解，而且

相应解由微分方程给出，并没有直接显式给出。此外，Bullo和Murray研究李

群SO(3)和SE(3)上的渐近控制问题，设计PD控制器实现李群上的渐近镇定和

渐近跟踪问题 [34]。文献 [29]通过设计误差函数，实现了SO(3)上的跟踪控制。

进一步地，Maithripala基于一般李群研究了简单力学系统的跟踪控制问题，设

计控制器，使得系统可以几乎全局跟踪上参考构型轨迹 [35]。对于李群上的多

个运动体，目前的研究结果比较少。在文献 [36]中，Nair和Leonard利用能量塑

形的方法设计控制器，达到多运动体同步；要求通讯拓扑为无向固定图，而

且指定了最终运动，既提前指定了最终编队构型。Sepulchre等人基于矩阵李

群SE(2)研究了具有单位平移速度的平面运动体，在同一圆周上的运动一致性控

制问题 [37, 38]。文献 [39]针对SE(3)上的动力学模型研究了多运动体系统的一致性

控制问题，当时间t趋于无穷时相对构型保持不变，但无法确定运动体所保持的

相对构型是什么，更无法指定编队构型。对于SE(3)上的多运动体，文献 [40]给

出一致性协议，当网络拓扑为全连通图或者为有向树时，系统达到一致。同时

给出反例证明，当拓扑为环状图时，是否达到一致性与初始条件有关。这个结

果不同于欧氏空间上相应系统的拓扑要求。

对于多运动体系统除了以上的研究内容外，很多文献还考虑到一些实际的

工程问题，如在多运动体系统控制中考虑时滞、丢包、采样，考虑存在饱和控

制约束下的控制器设计，或者多运动体系统的有限时间控制问题等。本文主要

研究多运动体系统的有限时间编队控制问题。现有的有限时间控制研究结果主

要针对一阶积分器模型、二阶积分器模型、二阶谐振子模型、Euler-Lagrange方

程描述的刚体模型和一些特殊的非线性系统模型。具体地，文献 [41–43]研究了

一阶积分器多运动体系统的有限时间控制问题。其中，Cortes针对一阶积分器多

运动体系统提出了一种不连续的有限时间控制算法，并通过非光滑分析法对算

法的有效性进行了证明 [41]。文献 [42]研究了在固定和切换拓扑下一阶积分器运

动体系统的有限时间一致性问题。进一步，文献 [44–47]分别考虑了一阶积分器

多运动体系统的变结构下的一致性，随机有限时间一致，存在时滞或者虚拟领
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导者情况下的有限时间控制问题。值得注意地是，文献 [47]在控制协议中引入

饱和函数，抑制了运动体跟踪过程中的抖动现象。考虑到在实际应用中，大多

数系统都是同时涉及到位置和速度，多运动体系统有限时间研究很自然地扩展

到二阶系统中来。最开始的研究对象主要为二阶积分器模型的多运动体系统，

对此文献 [48]基于齐次性方法，对于无领导者的二阶多运动体系统提出连续有

限时间一致性算法。文献 [49–51]分别利用齐次性理论和终端控制技术来处理

具有领导者的二阶积分器系统的有限时间一致性跟踪问题。文献 [52]针对无向

拓扑下二阶多运动体系统，分别对于没有领导者和有领导者的情形给出有限时

间一致性协议。具体地，利用有限时间稳定性理论证明多运动体系统可在有限

时间实现一致，并且设计有限时间观测器实现有领导者时的有限时间一致性。

此外，值得注意地是，通过建立合适的Lyapunov函数，作者给出了显式表达式

来估计一致性时间。类似地，在文献 [53]中，作者根据滑模控制理论对二阶多

运动体系统设计了不连续的有限时间一致性协议，并给出了一致性时间的理论

估计。文献 [54]考虑了速度信息缺失情况下的二阶多运动体的有限时间一致性

问题。进一步，文献 [55]考虑了速度信息缺失和输入受限同时存在时的二阶积

分器多运动体的有限时间一致性问题，依次给出无向拓扑和有向拓扑下的有限

时间一致性协议。除了二阶积分器，实际中比较常见的二阶系统还有二阶谐振

子。文献 [56]研究了无向拓扑下，二阶谐振子多运动体系统有限时间一致性跟

踪问题。

文献 [57, 58]利用MPRs来描述刚体的姿态，分别研究了多个刚体系统的有

限时间包含控制和有限时间姿态跟踪问题。具体地，在文献 [57]中，作者针对

无向拓扑下具有多个领导者的多刚体系统，给出有限时间包含控制律，使得跟

踪者在有限时间到达由领导者的状态组成的凸包内。文献 [58]考虑航天器的姿

态跟踪控制问题，设计控制律使得多航天器系统在有限时间内达到姿态同步。

此外，文献 [59]基于Euler-Lagrange方程来考虑刚体的有限时间协同跟踪问题。

在文献 [60] 中，作者考虑了多个非完整机器人的有限时间编队控制问题，设

计编队协议使得多个机器人在有限时间内达到预定的几何队形。除此之外，文

献 [61]研究了一阶非线性多运动体有限时间控制问题，给出了无向切换拓扑下

达到有限时间一致性的充分条件。文献 [62]针对存在外部扰动情况的非线性多

运动体系统的一致性问题，给出了有向拓扑和无向拓扑下达到一致性的充分条

件，并给出一致性时间的估计。

可以看出，目前为止对于一般线性系统模型的多运动体系统有限时间控制

问题，还没有相应的结果。针对多刚体系统的有限时间控制结果，主要是基
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于Euler-Lagrange方程或者参数化方法，这种方法的优缺点在上文中已经给出描

述。此外，对于多运动体有限时间控制问题，目前的结果主要是基于齐次性理

论、滑模控制技术或者非光滑分析等，从理论上分析多运动体体系统可以在有

限时间内达到控制目标。在已有结果中，一般是对于一致性时间给出显式估

计，但无法给出确切的控制时间。

1.3 论文的主要结果和结构安排

根据多运动体系统控制研究现状的综述，本文主要研究如下最优编队问

题：

• 基于欧氏空间，分别研究二阶积分器模型下和一般线性系统模型下多运动
体系统有限时间最优编队问题；

• 利用矩阵李群SE(3)来描述运动体的构型，即同时考虑运动体的位置和姿

态，来研究运动体在运动学模型下和动力学模型下的有限时间编队控制问

题。

论文结构安排如下：

第第第二二二章章章：：：首先给出本文常用到的一些记号，介绍了微分流形及李群概念及

其特有的性质。此外，引入微分流形切空间、余切空间、向量场、切映射等概

念，对运动体给出全局性的模型描述，并给出一些相关引理。进一步，考虑到

本文中会大量应用极大值原理来求解所研究的最优编队问题，在本章最后分别

介绍了欧氏空间上和微分流形上的极大值原理。

第第第三三三章章章：：：基于欧氏空间研究了多运动体系统的有限时间最优编队问题。在

给定编队时间和编队要求下，首先给出二阶积分器模型多运动体系统的有限时

间编队控制律，使得系统在给定编队时间达到指定编队任务，并同时保证某些

积分型性能指标最优；进一步，考虑了控制输入受约束情况下多运动体系统的

时间最短编队问题，给出算法求出在给定控制约束下系统达到编队要求所需要

的编队时间下界。其次，考虑一般线性时不变系统模型下的多个运动体最优编

队问题，利用极大值原理设计控制律。当系统矩阵满足可控性条件时，多运动

体系统可在有限时间达到指定编队目标。最后，将所设计的控制律应用到多个

航天器编队飞行中去，使得航天器在有限时间实现编队飞行。

第第第四四四章章章：：：基于矩阵李群SE(3)同时考虑运动体的位置和姿态，研究了多运动

体系统的有限时间最优编队问题。考虑SE(3)上的运动学模型，给出运动学模型
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下多运动体系统有限时间最优编队问题描述；进而引入矩阵内积构造所考虑问

题对应的哈密顿函数，利用微分流形极大值原理设计最优编队控制律。对于两

个运动体的情况，给出精确的编队控制律；对于多个对象的情况，所得出的控

制律具有二阶近似精度。此外，考虑SE(3)上多个运动体动力学模型下的有限时

间编队跟踪问题。相比于运动学模型，动力学模型在现实应用中更常见，但对

其的研究也更加复杂。本章中，首先通过推导求出运动体相对于参考轨迹的相

对模型，然后再基于此相对模型设计编队跟踪控制律。在编队跟踪控制律下，

运动体可在给定时间精确地编队跟踪上参考轨迹。
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第二章 基础知识

本章首先给出了本文中常用的一些符号和概念，介绍了微分流形和李群及

其具有的一些基本性质，然后给出运动体在李群上的运动学和动力学模型描

述，最后依次回顾了欧氏空间和一般微分流形上的极大值原理。

2.1 符号介绍

本文中统一用斜体表示变量。文中出现的所有向量，若不作特别说明，均

为列向量。表2.1解释本文所使用的变量与数学符号。

表 2.1 变量与符号列表

符号变量 含义
t 时间变量

C∞(V ) 空间V上所有光滑函数
V ∗ 空间V的对偶空间
Rn n维实数空间
Cn n维复数空间
Rn×n n×n维实矩阵空间
Cn×n n×n维复矩阵空间
MT 矩阵M的转置

In n阶单位矩阵
1n 所有元素都为1的n维列向量
⊗ 矩阵之间的Kronecker积

tr(M) 矩阵M的迹
det(M) 矩阵M的行列式
exp(M) 矩阵M的指数函数
diag(x) 以向量x为对角线元素的对角矩阵
sign(x) 向量x的符号函数
∥·∥ 欧氏范数

2.2 微分流形及李群

2.2.1 微分流形介绍

一个具有约束的力学系统的构型空间是一个微分流形。相比于我们比较熟

悉的欧氏空间，微分流形是一个局部类似于欧氏空间的弯曲空间。这样的空间
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在力学系统描述中很常见。比如，一个平面摆的构型空间是圆周S1，刚体旋转

的构型空间是SO(3)，等等。本节将给出关于微分流形的基本知识，主要参考专

著 [63]及 [64]。首先，为了更好的理解微分流形的概念，我们介绍一下什么是

流形。一个拓扑空间M若具有如下三个性质：M是一个Hausdorff拓扑空间；M是

一个局部n维欧氏空间，即对于空间M上任意一个点p都存在一个邻域U和一个同

胚映射(homeomorphism)φ，使得这个邻域同胚于欧氏空间Rn的一个n维开子集；

空间M有可数个基，我们称这个空间是一个n维流形。此外，(U,φ)被称流形M的

一个局部坐标图(local coordinate charts)。对于两个局部坐标图(U,φ)和(V,ϕ)，

如果U
∩

V非空且映射ϕ◦φ−1和φ◦ϕ−1是微分同胚的(diffeomorphism)，则称这两

个局部坐标图是C∞相容的(C∞-compatible)。进一步，如果流形M能被一个C∞相

容的坐标图集合覆盖，那么称M为微分流形(differentiable manifolds)或者光滑流

形(smooth manifolds)，称这个C∞相容的坐标图集合为流形M的一个微分结构。

设p为n维流形M中的一点。C∞(p)为M上光滑、实值函数的集合，其定义

域为p的某个开邻域。对于映射Xp : C∞(p) → R，如果对于所有的α，β ∈ R

和 f，g ∈C∞(p)，有

(i)线性性质：Xp(α f +βg) = α(Xp f )+β(Xpg),

(ii)莱布尼茨法则：Xp( f g) = (Xp f )g(p)+ f (p)(Xpg),

则称此映射是一个导算子(derivation)。所有导算子Xp : C∞(p)→ R的集合定义了

实域上具有如下运算规则的一个矢量空间

(Xp +Yp) f = Xp f +Yp f , (αXp) f = α(Xp f ),

这个矢量空间被称为流形M在点p的切空间(tangent space)，记为TpM。切空

间中的元素称为p点处的切向量(tangent vectors)。若流形M上p点的局部坐标

为(x1, · · · ,xn)，( ∂
∂x1

, · · · , ∂
∂xn

)在p点处的值构成了切空间TpM的一组基，则切向

量Xp可写成：

Xp = X1
∂

∂x1
+ · · ·+Xn

∂
∂xn

.

向量(X1, · · · ,Xn) ∈ Rn为Xp ∈ TPM的局部坐标表示。流形M在其各点的切空间

的不交并
∪

p∈M TPM有一个自然的微分流形，其维数为M维数的两倍。这个流

形称为M的切丛(tangent bundle)，记作T M。T M的元素可写为(p,Xp)，其中p ∈
M，Xp ∈ TpM。存在由π(Xp) = p确定的自然投影π : T M → M。当给定流形M在

点p的切空间TpM时，定义M在p的余切空间(cotangent space)为所有线性泛函ωp :
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TpM → R的集合，记为T ∗
p M。T ∗

p M是一个维数与TpM相同的向量空间，T ∗
p M的元

素称为余切向量(cotangent vectors)。余切向量ωp ∈ T ∗
p M对切向量Xp ∈ TpM的

作用记为⟨ωp,Xp⟩。对应于切空间TpM的一组基( ∂
∂x1

, · · · , ∂
∂xn

)，T ∗
p M的对偶基

为 (dx1, · · · ,dxn)，其中

⟨
dxi,

∂
∂x j

⟩
= δi j, i, j = 1, · · · ,n,

并且 δi j =
{ 1, i = j

0, i ̸= j
。流形M在其各点的余切空间的不交并

∪
p∈M T ∗

P M有一个自

然的微分流形，其维数为M维数的两倍。这个流形称为M的余切丛(cotangent

bundle)，记作T ∗M。T ∗M的元素可写成 (p,αp)，其中p ∈ M，αp ∈ T ∗
p M。对于一

般的力学系统，流形M代表了力学系统的构型空间，切丛T M代表了系统的速度

空间，余切丛T ∗M代表了系统的动量空间。

设F是流形M到流形N的一个光滑映射，定义F在p点的切映射(tangent

map)为线性映射F∗p : TpM → TF(p)N，即

F∗pXp( f ) = Xp( f ◦F),

其中，Xp ∈ TPM， f ∈C∞(F(p))。一般用符号TpF来表示F在p的切映射。切映射

具有下列性质：

(i)如果H = F ◦G为两个光滑映射F和G的组合，则TpH = TG(p)F ◦TpG；

(ii)如果F : M → N是一个微分同胚，则TpF : TpM → TpN是切空间的一个

同构(isomorphism)，其逆为(TpF)−1 = TF(P)F−1。

F的余切映射(cotangent map)F∗
p : T ∗

F (p)N → T ∗
p M，其定义为

⟨F∗
p αF(p),X(p)⟩= ⟨αF(p),F∗pXp⟩, αF(p) ∈ T ∗

F (p)N,Xp ∈ T ∗
p M,

也可用符号 T ∗
p F来表示 F在 p的余切映射。

流形M上的光滑向量场(vector fields)定义为满足π ◦X = id的光滑映射 X :

M → T M，其中 π : T M → M为正则投影，id : M → M为M上的单位映射。

设X(M)表示M上所有光滑向量场的集合，对于局部坐标x = (x1, · · · ,xn)，向

量场可写成

X(x) = X1(x)
∂

∂X1
+ · · ·+Xn(x)

∂
∂Xn

,
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其中每一个Xi都是定义在x上的光滑函数。设X为一光滑向量场， f ∈
C∞(M)为M上的光滑函数。 f关于X的李导数(Lie derivative)是一个新的函

数 X f : M → R，定义为

X f (p) = Xp f ,

其坐标表示为

X f (x) =
n

∑
i=1

∂ f
∂xi

Xi(x).

对于任意向量场 X，Y ∈ X(M)，一个新的向量场 [X ,Y ]定义为

[X ,Y ] f = X(Y f )−Y (X f ),

其中， f ∈ C∞(M)。这个新的向量场[X ,Y ]被称为X和Y的李括号(Lie bracket)或

者Y相对于X的李导数。对于任意 f ,g ∈C∞(M)和 X ,Y,Z ∈ X(M)，李括号具有如

下性质：

(i)反对称性：[X ,Y ] =−[Y,X ],

(ii)线性性质：[X +Y,Z] = [X ,Z]+ [Y,Z],

(iii) [ f X ,gY ] = f g[X ,Y ]+ f (Xg)Y −g(Y f )X ,

(iv)雅可比恒等式：[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0.

此外，对于向量空间V，如果存在一个双线性算子V ×V → V，记为[ · , · ]，对
于V上的任意元素满足如上的反对称性和雅可比恒等式，我们称这个向量空间是

一个李代数(Lie algebra)。

设F : M → N为流形与光滑向量场X ∈ X(M)，Y ∈ X(N)之间的光滑映射，如

果满足

YF(p) = F∗pXp,

则认为X和Y是F−相关的。如果F是一个微分同胚，那么对于给定的向量场X ∈
X(M)，可以通过推前映射(push forward map) F∗ : T M → T N定义一个新的向量

场Y ∈ X(N)，即

(F∗X)q = F∗F−1(q)XF−1(q).
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同样，如果F是一个微分同胚，Y是N上的向量场，将M上的新向量场定义为

(F∗Y )p = (F∗p)
−1YF(P).

映射F∗ : T N → T M称为F的拉回映射(pull back map)。拉回与推前的关系通过

式F∗ = (F−1)∗建立。

流形M上的向量场可以用于描述流形上的动态系统。设c : (a,b)→ M为流形

上的一条曲线，如果

ċ(t) = X(c(t)),

则认为曲线c是向量场X的积分曲线。向量场的积分曲线定义了一个单参数微分

同胚族Φt(q) : M → M，该单参数微分同胚族称为向量场X的流。

2.2.2 李群介绍

李群G既是一个群，又是一个微分流形，而且G上的群运算和群逆运算都是

光滑的。本文中，对于g，h ∈ G，它们之间群运算记为g⋆h，或者简记为gh。群

逆运算记为g−1，用符号e来表示李群G中的单位元素。基于群运算，对于任意元

素g ∈ G，存在G上的两个微分同胚映射，即左平移(left translation)和右平移(right

translation)，分别记为Lg和Rg。具体定义如下：

Lg : G → G; Lg(h) = gh, ∀h ∈ G;

Rg : G → G; Rg(h) = hg, ∀h ∈ G.

这样的同胚映射对应的切映射表示为

ThLG : ThG → TghG,

ThRG : ThG → ThgG,

且其满足(Lg)
−1 = Lg−1和(Rg)

−1 = Rg−1。显然，利用李群的左（右）切映射可以

把不同切空间的切向量转化到同一切空间中来进行比较。

对于李群G上的向量场X，如果(Lg)∗X = X，即对于所有的h ∈ G，有

ThLgX(h) = X(gh),
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则称向量场X是左不变的(left invariant)。设XL(G)为G上的左不变向量场集合，

那么对于X，Y ∈ XL(G)，有

(Lg)∗[X ,Y ] = [(Lg)∗X ,(Lg)∗Y ] = [X ,Y ].

因此，XL(G)是一个李代数，并是G上所有向量场的集合。给定切向量ξ ∈ TeG，

定义G上的一个向量场Xξ为

Xξ(g) = TeLg(ξ), g ∈ G.

考虑到

Xξ(gh) = TeLgh ·ξ = Te(Lg ◦Lh) ·ξ = ThLg(TeLh ·ξ) = ThLg(Xξ(h)),

所以向量场Xξ是左不变的。显然，XL(G)中的一个元素可以产生TeG中的一个切

向量，同样TeG中的一个元素可构造出XL(G)中的一个左不变向量场。因此，这

两个向量空间是同构的。根据左不变向量场中李括号的定义，对TeG定义如下李

括号

[ξ,ζ] = [Xξ,Xζ](e), ξ,ζ ∈ TeG.

利用左不变向量场上李括号的性质可知，TeG也具有李代数结构。向量空

间TeG被称为G的李代数，记为g。

下面主要介绍本文中将常用的矩阵李群SE(3)及其作为一个特殊的微分流形

所具有的一些性质。

R3上的刚体变换群SE(3)，其定义为

SE(3) =

{ R d

01×3 1

 ∈ R4×4|R ∈ SO(3), d ∈ R3

}
,

其中，SO(3)为R3上的刚体旋转群，定义为

SO(3) = {R ∈ R3×3|RT R = I3,det(R) = 1},

用来描述三维空间中刚体的姿态。SE(3)中的单位元是单位矩阵I4。SE(3)的李代
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数记为se(3)，可用如下形式的4×4矩阵表示

ξ̂ =

 ω̂ v

0 0

 ,
其中ω,v ∈ R3，ω = (ω1,ω2,ω3)

T，

ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
显然，向量空间se(3)与线性空间R6同构。为了书写方便，定义同构映射∧

∧ : η =

 ω

v

→ η̂ =

 ω̂ v

0 0

 , ω,v ∈ R3.

其逆映射为∨ : se(3)→ R6。se(3)的一组基为：

ε1 =

 ê1 0

0 0

 , ε2 =

 ê2 0

0 0

 , ε3 =

 ê3 0

0 0

 ,
ε4 =

 0̂ e1

0 0

 , ε5 =

 0̂ e2

0 0

 , ε6 =

 0̂ e3

0 0

 .
李代数se(3)上的括号运算构造为

[ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1, ξ̂1, ξ̂2 ∈ se(3).

假设ξ̂ ∈ se(3)，可定义左不变向量场ξ̂L : SE(3)→ T SE(3)，满足

ξ̂L(g) = gξ̂ ∈ TgSE(3), g ∈ SE(3),

ξ̂L(g)简记为ξ̂g。对于任一g ∈ SE(3)，可定义切映射TeLg : se(3)→ TgSE(3)，满足

TeLg(ξ̂) = gξ̂, ξ̂ ∈ se(3).

此切映射也可记为g∗，相对应的逆映射为(g−1)∗ : se∗ → T ∗
g SE(3)。
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对于线性空间TgSE(3)和se(3)，定义如下内积：

Gg(x̂g, ŷg), GI(x̂, ŷ), xT y.

那 么 ，TgSE(3)和se(3)就 成 为 内 积 空 间 ， 并 且SE(3)成 为 一 个 黎 曼 流

形(Riemannian manifold)，其黎曼度量由内积诱导产生。对于一线性空

间V，B : V ×V → R是V上的一个双线性映射。定义线性映射B♭ : V → V ∗为映

射B的flat映射，如果B♭(u)，u ∈V满足

(B♭(u))(v) = B(v,u), ∀v ∈V,

flat映射的像B♭(u)记为u∗ ∈V ∗。如果flat映射是可逆的，它的逆映射B♯ : V ∗ →V被

称为sharp映射，满足

B(v,B♯(u∗)) = u∗(v), v ∈V.

对于双线性映射Gg，记x̂∗g = G♭
g(x̂g)，x̂∗ = G♭

I(x̂)。利用矩阵内积可得，

x̂∗(ŷ) = ⟨[x̂∗]T , ŷ⟩R4×4 = tr(x̂∗ŷ),

x̂∗g(ŷg) = ⟨[x̂∗g]T , ŷg⟩R4×4 = tr(x̂∗gŷg),

其中，x̂∗ = diag(1
2 I3,1)x̂T，x̂∗g = diag(1

2I3,1)x̂T g−1。因此，x̂∗g = (g−1)∗(x̂∗)，x̂∗ =

∨∗(x)，并且

x̂∗g(ŷg) = x̂∗(ŷ) = xT y. (2.1)

假设g ∈ SE(3)，伴随映射(adjoint map)Adg : se(3)→ se(3)定义为

Adg(x̂), gx̂g−1, x̂ ∈ se(3),

并且把Adg(x̂)记为x̂S。在空间Adg(se(3))上定义如下内积

GAdg(x̂
s, ŷs), xT y, x̂s, ŷs ∈ Adg(se(3)).
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对于此内积，x̂s在flat映射下的像记为(x̂s)∗ = G♭
Adg

(x̂s)，满足

(x̂s)∗ŷs = GAdg(x̂
s, ŷs), ∀ŷs ∈ Adg(se(3)).

考虑到

(x̂s)∗ŷs = x̂∗(ŷ) = x̂∗(Adg−1(ŷs)) = Ad∗g−1 x̂∗(ŷs),

对于所有ŷs ∈ Adg(se(3))，都满足

G♭
Adg

(Adgx̂) = (x̂s)∗ = Ad∗g−1 x̂∗.

此外，容易得出下列关系

Ad∗g−1 x̂∗ = gx̂∗g−1.

以上关于flat映射及sharp映射的内容主要参考文献 [65]。

2.3 运动体模型描述

本文主要考虑多运动体系统的有限时间最优编队问题，运动体的模型主要

为欧氏空间上的二阶积分器模型和线性系统模型、矩阵李群SE(3)上的运动学模

型和动力学模型。下面对这些模型给出简单介绍。

2.3.1 欧氏空间上的二阶积分器模型和线性系统模型

对于运动体，其二阶积分器模型由下式描述 ξ̇ = ζ

ζ̇ = u
, (2.2)

其中，ξ ∈ Rn，ζ ∈ Rn 分别是运动体的位置和速度，u ∈ Rn是运动体的输入或称

为控制。

由于在实际应用中运动体有更复杂的动力学特性，本文进一步研究如下线

性系统的编队问题

ẋ = Ax+Bu, (2.3)
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其中，x(t) : R→ Rn称为运动体的状态，A ∈ Rn×n,B ∈ Rn×m为系统矩阵，u(t) :

R→ Rm为运动体的控制。称系统(2.3)是可控的是指，对于任意x0 ∈ Rn，都有

(∀t > 0)(∃u(τ) ∈ PC[0, t] : x(t;0,x0,u) = 0,

其中，PC[0, t]代表[0, t]区间上分段连续函数集合。

引理 2.1: 系统(2.3)是可控，当且仅当

⟨A|R(B)⟩= R(B)+AR(B)+ · · ·+An−1R(B) = Rn,

或等价有

rank[ B AB · · · An−1B ] = n,

其中，R(B) = {z|(∃x ∈ Cn) : z = Bx} ⊂ Cm。

2.3.2 李群SE(3)上的运动学模型和动力学模型

对于运动体，同时考虑运位置和姿态，那么运动体的构型流形为矩阵

李群SE(3)，其对应的李代数为se(3)。运动体的构型表示为一矩阵g ∈ SE(3)，

记g(t)为构型流形上的一条曲线，其变化率可以表示为

ġ = gξ̂b. (2.4)

式(2.4)为李群SE(3)上运动体的运动学模型，其中ξ̂b ∈ se(3)代表系统的本体速

度。利用伴随映射Adgξ̂ : se(3)→ se(3)可以将本体速度ξ̂b转化为该速度在惯性系

中的表示ξ̂s，称ξ̂s为运动体的空间速度。空间速度和本体速度存在下列关系：

ξ̂s = Adgξ̂b.

对应于空间速度ξ̂s，运动体的运动学模型描述为

ġ = ξ̂sg.

– 18 –



北京大学博士学位论文

运动体在李群SE(3)上的动力学模型由下式描述： ġ = gξ̂b

˙̂ξb = û,
(2.5)

其中，g和ξ̂b与模型(2.4)中对应量相同，û ∈ se(3)为运动体的控制输入。对应于

空间速度ξ̂s，运动体的动力学模型分别为 ġ = ξ̂sg
˙̂ξs = ûs.

下面介绍两个相关的重要引理。

引理 2.2: (Differential of Exponential)假设g(t)为SE(3)上的光滑曲线，x(t) =

log(g(t))是g(t)的指数坐标。ξ̂b = g−1ġ和ξ̂s = ġg−1分别是运动体的本体速度和

空间速度，有下列关系存在

ẋ =
∞

∑
k=0

Bk

k!
adk

−x(ξ̂
b) =

∞

∑
k=0

Bk

k!
adk

x(ξ̂
s), (2.6)

其中，{Bk}为伯努利数。

引理 2.3: (Baker Campbell Hausdorff)给定两个不可交换的算子X和Y，算子Z定义

为expZ = expX ·expY，则Z可表示为

Z = X +Y +
1
2
[X ,Y ]+

1
12

[X , [X ,Y ]]+
1

12
[Y, [Y,X ]]+ · · · ,

其中，[ · , · ]为李括号。

2.4 极大值原理

本文中，多个运动体有限时间编队问题被转化为最优控制问题来处理。

为下面叙述方面，本小节简单介绍一下欧氏空间和微分流形上的极大值原

理(PMP)。主要参考文献 [66]和 [67]。

2.4.1 欧氏空间上的极大值原理

欧氏空间上的最优控制问题描述为：已知受控系统的状态方程及给定的初
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态

ẋ(t) = f (x(t),u(t), t), (2.7)

x(t0) = x0, (2.8)

其 中 ，x ∈ Rn和u ∈ Rr分 别 为 状 态 向 量 和 控 制 向 量 ， f =

[ f1, f, · · · , fn]
T为x、u和t的函数向量，t0为初始时刻；规定的目标集为

M = {x(t f ) : x(t f ) ∈ Rn,g(x(t f ), t f ) = 0}, (2.9)

其中，t f为末端时刻；求一容许控制u(t) ∈ U（U为控制域），t ∈ [t0, t f ]，

使(2.7)由给定初始态(2.8)出发，在t f > t0时刻转移到目标集(2.9)，并且使性

能指标

J[u(t)] =
∫ t f

t0
L(x(t),u(t), t) (2.10)

为最小。如果这个问题有解，记为u∗(t)，t ∈ [t0, t f ]，则称u∗(t)为最优控制或称

极值控制。相应的轨线x∗(t)叫做最优轨线，或称极值轨线。而性能指标J∗ =

J[u∗( ·)]则称为最优性能指标。

为了求解上面描述的最优控制问题，本小节简单介绍欧氏空间上的极大值

原理。考虑到极大值原理的具体形式很多，此处仅介绍本文中涉及到的定理内

容。

定理 2.1: 设u(t) ∈U是一容许控制。指定积分型性能指标泛函为(2.10)，x(t)为定

常系统

ẋ(t) = f (x,u),x(t0) = x0, t ∈ [t0, t f ] (2.11)

对应于u(t)的轨线。t f是状态轨线x(t)与目标集

M = {x(t f ) : x(t f ) ∈ Rn,g(x(t f )) = 0}

首次相遇的末态时刻。

则当u∗(t)和t∗f为使性能指标泛函最小的最优解时，x∗(t)是对应的最优轨线。

必存在不同时为零的常向量µ和n维向量函数λ(t)，使得u∗(t)、t∗f、x∗(t)和λ(t)满

足如下必要条件：
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(i) x(t)、λ(t)是规范方程

ẋ =
∂H
∂λ

= f (x,u), x(t0) = x0, (2.12)

λ̇ =−∂H
∂x

(2.13)

的解，其中H(x,λ,u) = L(x,u)+λT f (x,u)为哈密顿函数。称(2.13)为协态方程，

函数变量λ(t)为协态变量；

(ii)在最优轨线的末端协态变量λ(t f )横截于目标集，即

λ(t f ) =
∂gT (x(t f ))

∂x(t f )
µ, (2.14)

并且，末态x(t f )要落在目标集上，即满足g(x(t f )) = 0；

(iii)哈密顿函数H作为u(t) ∈U上的函数，在u(t) = u∗(t)，t ∈ [t0, t f ]时取绝

对极小，即

H(x∗(t),λ(t),u∗(t)) = min
u(t)∈U

H(x∗(t),λ(t),u(t)); (2.15)

(iv)在最优轨线的末端哈密顿函数应该满足

H(x∗(t),λ(t),u∗(t)) = H(x∗(t∗f ),λ(t
∗
f ),u

∗(t∗f )) = 0, t f未定时,

H(x∗(t),λ(t),u∗(t)) = H(x∗(t f ),λ(t f ),u∗(t f )) = const, t f固定时,

其中，const表示常数。

2.4.2 微分流形上的极大值原理

微分流形上的最优控制问题描述为：已知受控系统的状态方程及给定的初

态

q̇ = f (q,u), (2.16)

q(t0) = q0, (2.17)

其中，q ∈ M和u ∈U ⊂ Rm分别为运动体的构型和容许控制， f ∈ TqM，t0为初始
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时刻；控制目标为

q(t f ) = q1, (2.18)

其中，t f为给定末端时刻；求一容许控制u(t) ∈ U，使(2.16)由给定初始

态(2.17)出发，在t f > t0时刻转移到目标集(2.18)，并且使性能指标

J[u(t)] =
∫ t f

t0
φ(q(t),u(t)) (2.19)

为最小。同样地，如果这个问题有解，记为u∗(t)，则称u∗(t)为最优控制或极

值控制。相应的轨线q∗(t)叫做最优轨线，或称极值轨线。而性能指标J∗ =

J[u∗( ·)]则称为最优性能指标。

假设λ ∈ T ∗M为协态，ν ∈ R为一参数，引入如下哈密顿函数族

hν
u(λ) = ⟨λ, f (q,u)⟩+νφ(q,u).

为了求解上面描述的最优控制问题，介绍下面这个定理：

定理 2.2: 假设u∗(t)，t ∈ [t0, t f ]，为(2.16)-(2.19)描述的最优控制问题的解，那么

存在一个李普希兹(Lipschitzian)曲线λt ∈ T ∗
q∗(t)M，t ∈ [t0, t f ]，和参数ν ∈R，使得

λ̇t =
−−→
hν

u∗(t)(λt),

hν
u∗(t)(λt) = Max

u(t)∈U
hν

u(t)(λt),

(λt ,ν) ̸≡ (0,0), t ∈ [t0, t f ],

ν ≤ 0.

在上面的定理中，
−−→
hν

u∗(t)(λt)是指对应于哈密顿函数hν
u∗(t)(λt)的向量场。
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第三章 基于欧氏空间的多运动体有限时间

最优编队控制

对于多运动体系统控制，收敛速度是评价控制协议的一个重要的性能指

标。如绪论中所提到的，已有结果对多运动体有限时间控制的研究主要针对一

阶二阶积分器模型，二阶谐振子模型或者Euler-Lagrange方程、参数化方法描述

的刚体模型。基于齐次性理论、滑模控制技术或者非光滑分析等，从理论上分

析多运动体体系统可以在有限时间内达到控制目标。在已有结果中，一般是对

于一致性时间给出显式估计，但无法给出确切的控制时间。

针对上述讨论，本章考虑了精确给定编队时间和编队任务下二阶积分器模

型和一般线性系统模型多运动体系统的有限时间编队问题。本章主要贡献在

于：

(1) 对于二阶积分器多运动体系统，设计控制律，使得系统在提前给定的编队

时间达到指定的编队任务，同时保证与控制有关的二次型性能指标最优；

(2) 首次考虑了一般线性系统模型多运动体系统的有限时间编队控制问题，给

出系统可有限时间编队的充分条件；

(3) 将所设计的有限时间编队控制器应用到航天器编队飞行。

3.1 二阶积分器多运动体有限时间编队控制

3.1.1 问题描述

考虑由平面上n个运动体组成的多运动体系统。第i个运动体的动力学模型

描述为：  ξ̇i = ζi

ζ̇i = ui
, i = 1,2, · · · ,n, (3.1)

其中，ξi = (ξix,ξiy)
T 和ζi = (ζix,ζiy)

T 分别表示第i个运动体的位置和速度，ui =

(uix,uiy)
T为控制输入。假设性能指标为：

J =
∫ t f

t0
uT Rudt, (3.2)
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其中，u = (u1,u2, · · · ,un)
T，t0 和t f分别为初始时刻和终端时刻，R ∈ R2n×2n是一

个给定的正定矩阵。

多运动体系统达到编队是指其位置和速度满足如下条件：

ξ2 −ξ1 = B1,ξ3 −ξ1 = B2, · · · ,ξn −ξ1 = Bn−1,

ζ1 = ζ2 = · · ·= ζn,

其中，Bi ∈ R2可由任务要求提前指定。上面的编队条件也可写为如下矩阵形式

−1 0 1 · · · 0 0

0 −1 0 · · · 0 0

−1 0 0 . . . 0 0
...

...
...

...

−1 0 0 · · · 1 0

0 −1 0 · · · 0 1


︸ ︷︷ ︸

M


ξ1(t f )

ξ2(t f )
...

ξn(t f )

=


B1

B2
...

Bn−1


︸ ︷︷ ︸

B

,



−1 0 1 · · · 0 0

0 −1 0 · · · 0 0

−1 0 0 . . . 0 0
...

...
...

...
...

...

−1 0 0 · · · 1 0

0 −1 0 · · · 0 1


︸ ︷︷ ︸

M


ζ1(t f )

ζ2(t f )
...

ζn(t f )

= 0,

(3.3)

其中，M ∈ R2(n−1)×2n。

本文的目标是，对多运动体系统(3.1)设计控制u，使得系统在给定终

端时刻t f达到指定的编队条件(3.3)，同时保证性能指标(3.2)最小。记x =

(ξ1,ξ2, · · · ,ξn)
T，v = (ζ1,ζ2, · · · ,ζn)

T，系统(3.1)可写为 ẋ = v

v̇ = u
. (3.4)

那么原问题可转化为如下最优控制问题：对于系统(3.4)，设计u，使得性能指
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标(3.2)最小，同时使系统满足如下初始条件和终端条件： x(t0)

v(t0)

=

 x0

v0

 ,

 x(t f )

v(t f )

 ∈


 x(t f )

v(t f )

 |Mx(t f ) = B,Mv(t f ) = 0

 . (3.5)

为达到如上描述的理想编队，需要协调不同运动体的行为。每一个运动体

的控制必须依赖于它所能得到的其他运动体的状态信息。从通讯的角度来看，

这个多运动体系统可以看成一个图。在这个图中每个运动体建模为一个节点，

节点之间的边表示运动体之间的通讯关系。称一个图为完全图，是指每对不同

的节点之间都有边。在本节中，对于运动体间的通讯拓扑图给出下面假设。

假设 3.1: 多运动体之间的通讯拓扑图是一个完全图。

这个假设是指，多运动体系统中每个运动体都能得到其他所有运动体的状

态信息。

3.1.2 主要结果

在上节中，多个运动体有限时间最优编队问题已经转化为标准的最优控制

问题。因此，接下来就是求解这个最优控制问题。

利用最优控制理论的知识，哈密顿函数定义为

H = uT Ru+ pT
x v+ pT

v u,

其中，(pT
x , pT

v )
T表示协变状态。利用极大值原理2.1，符合条件的最优解满足如

下必要条件 
ẋ = v

v̇ = u

ṗx = 0

ṗv =−px

. (3.6)

根据编队条件(3.5)可得出终端状态在一个子线性流形上，仅根据初始状态和编
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队条件无法求解上述方程组。此时，根据(2.14)可得如下横截条件

N px(t f ) = 0, N pv(t f ) = 0, (3.7)

其中，

N =

 1 0 · · · 0 1 0

0 1 · · · 1 0 1


2×2n

,

px(t f ) = (p1
x(t f ), p2

x(t f ), · · · , p2n−1
x (t f ), p2n

x (t f ))
T ,

pv(t f ) = (p1
v(t f ), p2

v(t f ), · · · , p2n−1
v (t f ), p2n

v (t f ))
T .

可以看出，上面得到的横截条件额外提供了协态在终端时刻满足的边值条件。

根据极值条件（2.15)，即

∂H
∂u

= 2Ru+ pv = 0,

可得出如下控制律

u =−1
2

R−1 pv.

因此，对控制u的求解就转化为求解协态pv.

由必要条件(3.6)可得  ṗx = 0

ṗv =−px
.

对上式从t0到t积分得出

pv(t) = pv(t0)− px ·(t − t0). (3.8)

因此，

u =−1
2

R−1(pv(t0)− px ·(t − t0)). (3.9)
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此外，由式(3.7)和(3.8)可推出

N pv(t0) = 0,N pv(t) = 0. (3.10)

把(3.9)代入(3.6)中并从t0到t f积分，有

v(t f ) = v0 −
1
2

R−1(pv(t0) ·(t f − t0)−
1
2

px ·(t f − t0)2),

x(t f ) = x0 + v0 ·(t f − t0)−
1
2

R−1(
1
2

pv(t0) ·(t f − t0)2 − 1
6

px ·(t f − t0)3).

另外，根据编队条件(3.5)和式(3.10)可推出

Mv(t f ) = Mv0 −M · 1
2

R−1(pv(t0) ·(t f − t0)−
1
2

px ·(t f − t0)2) = 0,

N(pv(t0) ·(t f − t0)−
1
2

px ·(t f − t0)2) = 0,

Mx(t f ) = Mx0 +Mv0 ·(t f − t0)−M · 1
2

R−1(
1
2

pv(t0) ·(t f − t0)2

−1
6

px ·(t f − t0)3) = B,

N(
1
2

pv(t0) ·(t f − t0)2 − 1
6

px ·(t f − t0)3) = 0.

整理可得  0

M

v0+

 NR

M

 1
2

R−1
(

1
2

px ·(t f−t0)2−pv(t0) ·(t f−t0)
)
=0, (3.11)

 0

M

(x0+v0 ·(t f−t0))+

 NR

M

 · 1
2

R−1 ·
(

1
6

px ·(t f−t0)3

−1
2

pv(t0) ·(t f−t0)2
)
=

 0

B

 . (3.12)

显然，原最优控制问题的可解性依赖于矩阵[(NR)T ,MT ]T的可逆性。因此，

给出如下引理：

引理 3.2: 假设R ∈ R2n×2n是一个正定矩阵，并且

N =

 1 0 · · · 0 1 0

0 1 · · · 1 0 1


2×2n

,
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则矩阵

 NR

M

是可逆的。
证明: 记

aT =
[

1 0 1 · · · 1 0
]

1×2n
, bT =

[
0 1 0 · · · 0 1

]
1×2n

,

R =
[

R1 R2 R3 · · · R2n−1 R2n

]
,

则有

 NR

M

=



aT R1 aT R2 · · · aT R2n

bT R1 bT R2 · · · bT R2n

−1 0 · · · 0

0 −1 · · · 0
...

... · · · ...

−1 0 · · · 0

0 −1 · · · 1


. (3.13)

通过列变换，上面的矩阵可变换为

aT (
n
∑

i=1
R2i−1) aT (

n
∑

i=1
R2i) · · · aT R2n

bT (
n
∑

i=1
R2i−1) bT (

n
∑

i=1
R2i) · · · bT R2n

0 0 · · · 0

0 0 · · · 0
...

... · · · ...

0 0 · · · 0

0 0 · · · 1


.

显然，矩阵(3.13)是可逆的，当且仅当下面这个矩阵是可逆的 aT Ra aT Rb

bT Ra bT Rb

 .
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考虑到R是一个正定矩阵，有如下关系∣∣∣∣∣∣ aT Ra aT Rb

bT Ra bT Rb

∣∣∣∣∣∣= aT Ra ·bT Rb−aT Rb ·bT Ra > 0.

因此，可得出矩阵

 NR

M

是可逆的。 �

利用引理(3.2)和(3.11)式，可推出

pv(t0) =
2

t f − t0
R

 NR

M

−1 0

M

v0 +
1
2

px ·(t f − t0). (3.14)

代入上式到(3.12)，有

px=
12

(t f−t0)2 R

 NR

M

−1 0

M

( 2
t f−t0

x0+v0)−
24

(t f−t0)3 R

 NR

M

−1 0

B

 .
进一步可得出

pv(t0)=
2

t f−t0
R

 NR

M

−1 0

M

(4v0+
6

t f−t0
x0)−

12
(t f−t0)2 R

 NR

M

−1 0

B

 .
最后，可得出如下最优控制律

u=
1

t f−t0

 NR

M

−1 0

M

(−4v0−
6

t f − t0
x0 +

6(t − t0)
t f − t0

v0 +
12(t − t0)
(t f − t0)2 x0)

+
6

(t f−t0)2 ·

 NR

M

−1 0

B

(1−2(t−t0)
t f−t0

). (3.15)

总结一下，对多运动体有限时间最优编队问题，有如下定理：

定理 3.1: 在假设3.1成立的前提下，多运动体系统(3.1)在控制律(3.15)作用下，

在给定终端时刻t f达到指定编队(3.3)，同时保证相应的性能指标最优。

显然，最优控制律(3.15)是一个开环控制，只跟初始条件有关。当初始条

件或者控制输入存在扰动时，在控制律(3.15)下，系统将不能达到指定编队。
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为此，令开环控制律(3.15)中t0等于当前时刻t，并且令初始状态x0、v0为当前状

态x(t)、v(t)，可得如下实时反馈控制律

u=
1

t f−t

 NR

M

−1 0

M

(−4v(t)− 6
t f−t

x(t))+
6

(t f−t)2

 NR

M

−1 0

B

 . (3.16)

实际上，上述实时反馈控制律相当于在每一时刻把当前状态和时刻当作初始状

态和时刻来设计最优控制律，更多细节可参考 [68]。当不存在扰动时，反馈控

制律(3.16)等价于原开环控制律(3.15)，都能达到特定编队。当扰动存在时，只

有反馈控制时(3.16)才能达到指定编队。以上控制律的有效性将会在之后的数值

仿真中给出验证。

注释 3.3: 众所周知，极大值原理只给出最优问题解满足的必要条件，这个条件

无法确定所得解肯定是最优的。但是，在实际应用中，当根据必要条件得出的

解是存在唯一时，这个解肯定就是所考虑问题的最优解。对于本节考虑的最优

问题，性能指标(3.2)有下界，可知最优解是存在的。因此，根据必要条件得出

的唯一解是最优的。

注释 3.4: 对于终端时刻后存在扰动的情况，引入如下切换控制律

u =

 u(t), t ∈ [t0, t f )

u∗, t ≥ t f
, (3.17)

其中，u∗，在 [69]中给出，是一个渐近收敛的一致性协议。系统在控制律u(t)下

在给定终端时刻t f 达到编队后，再切换到一般的渐近控制律u∗保持指定编队。

在实际应用中，由于硬件约束，对控制输入存在约束条件。观察控制

律(3.15)，可以看出控制大小与给定编队时间成反比。当编队时间很小的时候，

控制大小将会不满足本来的约束条件。因此，在已有约束下，如何设计控制u使

得系统在最小的时间达到指定的编队条件极为重要，称这个问题为时间最优编

队问题。为了叙述方便，运动体i的动力学描述为 ξ̇i = ζi

ζ̇i = ui
, i = 1,2, · · · ,n, (3.18)

其中，ξi ∈ R、ζi ∈ R和ui分别表示运动体i的位置、速度和控制输入。ξi0和ζi0
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(i = 1,2, · · · ,n)分别为初始位置和初始速度。编队条件由下式给出

ξ1(t f ) = ξ2(t f ) = · · ·= ξn(t f ), ζ1(t f ) = ζ2(t f ) = · · ·= ζn(t f ). (3.19)

也就是说，下面的任务就是对于如上的一致性问题求解时间最优控制，但所得

的结论和算法同样适用于一般的编队条件。对于时间最优问题，性能指标和控

制约束为

J =
∫ t f

t0
1 ·dt = t f − t0, (3.20)

|ui| ≤ 1, i = 1,2, · · · ,n. (3.21)

因此，时间最优编队问题就是对于多运动体系统(3.18)在控制约束(3.21)下设计

控制律u，使得系统达到终端条件(3.19)，并且同时保证性能指标(3.20)最小，即

达到终端条件的时间最短。

不失一般性，假设t0 = 0，t f = T。对应于时间最优问题的哈密顿函数为

H = 1+ pT
x v+ pT

v u.

考虑到控制约束(3.21)，极值条件可写为

min
|ui|≤1,i=1,2,··· ,n

H = min
|ui|≤1,i=1,2,··· ,n

(1+ pT
x v+ pT

v u). (3.22)

因此，最优控制为

u =−sign{pv}. (3.23)

并且，最优轨迹满足如下终端条件

1+ px(t)T v(t)+ pv(t)T u(t) = 1+ px(t f )
T v(t f )+ pv(t f )

T u(t f ) = 0. (3.24)

考虑到横截条件
n

∑
i=1

pi
x(t f ) = 0,

n

∑
i=1

pi
v(t f ) = 0,

作如下假设

px(t f ) = (
n−1
∑

k=1
µk,−µ1,−µ2, · · · ,−µn−1 )T ,
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pv(t f ) = (
n−1
∑

k=1
βk,−β1,−β2, · · · ,−βn−1 )T ,

其中，µk和βk是待确定的未知常数。利用协态方程 ṗx = 0

ṗv =−px
,

有

pv(t) = (p1
v(t), p2

v(t), · · · , pn−1
v (t), pn

v(t))
T

= (
n−1

∑
k=1

µk,−µ1, · · · ,−µn−2,−µn−1)
T ·(t f−t)

+(
n−1

∑
k=1

βk,−β1, · · · ,−βn−2,−βn−1)
T .

定义 3.5: 对于时间最优编队问题，如果协态向量pv(t)至少有一个元素恒为零，

称最优问题是奇异的。否则，称这个问题是正常的。

当时间最优问题正常时，pk
v(t) (k = 1,2, · · · ,n)为时间t的线性函数或者为一

非零常数。因此，pk
v(t) (k = 1,2, · · · ,n)在时间区域[0,T ]至多有一个零点。那么，

可得出对应的最优控制(3.23)只有下面四种取值

{+1},{−1},{+1,−1},{−1,+1}. (3.25)

对于后两个控制序列，控制值从+1到−1或者从−1到+1的时刻称为切换时间。

对于每组可能的控制序列，可根据终端条件(3.19)，建立关于切换时间和编队时

间满足的方程，最后通过求解所建立的方程得出最优控制律。当最优控制问题

奇异时，问题的求解会变的很复杂。此时协态向量pk
v(t)的某个元素恒为零，就

无法根据(3.23)来确定最优控制律，需要根据初始和终端条件来确定uk。对于所

考虑的时间最优问题，本文提出算法可以得到一个可行解。尽管这个解不是最

优的，它可以提供在给定控制约束下编队时间的一个下界。也就是说，对于所

考虑的问题，当编队时间低于这个界时，无法保证所得到的控制律满足给定的

控制约束。

引理 3.6: 对于多运动体系统(3.18)，如果n = 2，那么所对应的时间最优编队问

题是正常的，并且可分为下面这两种情形：
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(i)如果初始条件满足
(ζ10 −ζ20)

2

4
≤ |ξ10 −ξ20| ,

最优控制律为

u1 =

 −sign(ξ10 −ξ20) ,0 ≤ t < t1

sign(ξ10 −ξ20) , t1 ≤ t < t f
, u2 =−u1,

t1 =

√
2(ζ10 −ζ20)2 +8 |ξ10 −ξ20|

4
+

sign(ξ10 −ξ20)(ζ10 −ζ20)

2
,

t f =

√
2(ζ10 −ζ20)2 +8 |ξ10 −ξ20|

2
+

sign(ξ10 −ξ20)(ζ10 −ζ20)

2
,

其中，t1和t f分别是切换时间和最优编队时间；

(ii)如果初始条件满足
(ζ10 −ζ20)

2

4
> |ξ10 −ξ20| ,

相应的最优控制律为

u1 =

 −sign(ζ10 −ζ20) ,0 ≤ t < t1

sign(ζ10 −ζ20) , t1 ≤ t < t f
, u2 =−u1,

t1 =

√
2(ζ10 −ζ20)2 +8sign(ζ10 −ζ20)(ξ10 −ξ20)

4
+

|ζ10 −ζ20|
2

,

t f =

√
2(ζ10 −ζ20)2 +8sign(ζ10 −ζ20)(ξ10 −ξ20)

2
+

|ζ10 −ζ20|
2

.

证明: 考虑只有两个多运动体的情况，协态向量可写为

pv(t) =

 p1
v(t)

p2
v(t)

=

 β1

−β1

+

 µ1

−µ1

(t f − t).

根据最优轨迹终端条件(3.24)，容易得出对于两个运动体系统时间最优控制问题

是正常的，并且有u2 =−u1。考虑到四组可能的控制序列(3.25)，假设最优控制

律为

u1 =

 u,0 ≤ t < t1

−u, t1 ≤ t < t f
, u2 =

 −u,0 ≤ t < t1

u, t1 ≤ t < t f
.
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根据编队条件可得如下方程

ζ10 −ζ20 +2ut1 −2u(t f − t1) = 0,

ξ10−ξ20+(ζ10−ζ20)t1+ut2
1−u(t f−t1)2 +(ζ10 −ζ20)(t f − t1)+2ut1(t f − t1) = 0.

求解方程有

t1 =
−2u(ζ10 −ζ20)±u

√
2(ζ10 −ζ20)2 −8u(ξ10 −ξ20)

4
.

由于切换时间和编队时间都是非负的而且编队时间大于等于切换时间，则可得

出符合条件的时间最优控制律。 �

下面给出一个算法，这个算法同时适用于时间最优控制问题是正常的和奇

异的两种情况。

算法 3.7: (i) 对于多运动体系统(3.18)，如果有n = 2，最优控制解由引理3.6给

出。

(ii)如果n = 3，任选其中两个运动体如(i)中求解最优控制，可得出最

优控制律(u1,u2)、编队时间T1、切换时间t1和相应终端时刻的一致性状

态(ξ(T1),ζ(T1))。然后，假定一个虚拟的运动体，虚拟运动体的状态

为(ξ(T1),ζ(T1))。对于第三个运动体，计算在控制输入为零情况下的运动体

在时刻T1的状态(ξ̃(T1), ζ̃(T1))。对于虚拟运动体及第三个运动体，如(i)中一

样求解最优控制，可得出最优控制分别为ũ和u3，切换时间和编队时间分别

为T2和t2。那么对于整个多运动体系统，整体的编队时间为T1 +T2，并且所对应

的控制律为

u1(t) =

 u1 0 ≤ t < T1

ũ T1 ≤ t < T2

, u2(t) =

 u2 0 ≤ t < T1

ũ T1 ≤ t < T2

,

u3(t) =

 0 0 ≤ t < T1

u3 T1 ≤ t < T2

.

(iii)对于运动体个数大于3的情况，重复过程(ii)直到终端条件(3.19)满足。

注释 3.8: 目前为止，对于如何判定时间最优编队问题的奇异性现有文献还没

有给出判别条件。文献 [70]中，对于线性时不变系统，仅给出时间最优调节问

题是否奇异的判别条件。从本节所考虑的时间最优编队问题可以看出，问题的
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图 3.1 无扰动时平面运动体编队并且t f = 0.5 (a)开环控制律；(b)实时反馈控制律

奇异性只与初始和终端条件有关。但具有的依赖关系是什么，还需要未来进一

步研究。本节提出的算法同时适合时间最优编队问题是正常的和奇异的两种情

况，所得到的编队时间为控制输入受约束的最优控制问题提供时间下界。

3.1.3 数值仿真

本节给出两个数值仿真示例来验证理论分析的有效性。第一个例子考虑四

个平面运动体的有限时间最优编队问题，第二个例子考虑三个运动体的有限时

间一致性问题。

例: 考虑由四个平面运动体组成的多运动体系统(3.1)。理想的编队是四个运动体

形成一个边长为1的正方形，因此可得编队条件B = (0,1,1,1,1,0)T。假设性能指

标中的正定矩阵为R = diag(1,5,3,0.2,4,5,5,3)，编队时间为0.5。选取初始状态

为x0 = [−2,20,−2,15,−2,−5,−10,−9]T和v0 = [−1,0,−2,5,−2,−1,5,−6]T，仿真

时间为1。

图3.1 (a)和(b)分别是无扰动情况下，开环控制(3.15)和实时反馈控制(3.16)下

的四个平面运动体的轨迹图。可以看出应用两种不同的控制律都能达到提前指

定的编队。对于存在初始扰动和输入扰动的情形，图3.2给出了两种控制律下的

仿真结果。可以看出，只有在实时反馈控制律(3.16)下，系统才可以达到指定编

队。 �

例: 考虑由三个运动体组成多运动体系统(3.18)，三个运动体分别记为{1,2,3}。
选取初始状态分别为(ξ1(0) = 0,ζ1(0) = 0)，(ξ2(0) = 2.5,ζ2(0) = 0.5)和(ξ3(0) =

5,ζ3(0) = 0)。
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图 3.2 存在初始扰动和输入扰动下的平面运动体编队并且t f = 0.5 (a)开环控制律；(b)实
时反馈控制律
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图 3.3 有限时间一致性控制(a)位置和速度；(b)控制输入
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图3.3分别为三个运动体数值仿真的状态图和所施加的控制输入。整个一致

性时间为3.8207，为存在控制约束的多运动体一致性问题提供了时间下界。 �

3.2 线性系统多运动体有限时间编队控制

3.2.1 问题描述

考虑由N个运动体组成的多运动体系统。第i个运动体的动力学模型描述为

ẋi = Axi +Bui,

xi(t0) = x0
i , i = 1, · · · ,N, (3.26)

其中，xi ∈ Rn、ui ∈ Rm分别是第i个运动体的状态和控制输入，t0为初始时

刻，A和B是有合适维数的实数矩阵。

给定初始状态x0
i , i = 1, · · · ,N,和编队构型Di ∈ Rn, i = 1, · · · ,N −1，其中编队

构型根据编队任务提前指定。本节的目的是设计控制律ui, i = 1, · · · ,N，使得

x1(t f )− xi(t f ) = Di−1, i = 2, · · · ,N, (3.27)

其中，t f > t0为终端时刻，可根据编队任务提前指定。同时，保证下面的性能指

标最小

J = 1
2

∫ t f

t0

N

∑
i=1

(
ui

T (t)ui(t)
)
dt. (3.28)

这个问题被称为多个线性系统有限时间最优编队控制。当Di = 0 (i = 1, · · · ,N −
1)时，所考虑的问题称为有限时间一致性控制。注意到后者是前者的特殊情

况，本节只考虑前面所定义的编队控制问题。

注释 3.9: 一般地，编队构型由下述条件给出

xi(t f )− x j(t f ) = Di j, i, j = 1, · · · ,N.

对于这样的编队构型，存在一些冗余。比如，对于编队构型{D12,D13,D23}，必
存在关系式D12 −D13 = D32。除去这些冗余，本文给出的编队构型(3.27)与一般

的编队条件等价。
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3.2.2 主要结果

本节主要针对多运动体系统(3.26)求解有限时间最优编队控制。因此，下面

的任务就是求解相应的最优问题。

为了利用极大值原理2.1，对于所考虑的最优问题建立如下哈密顿函数

H=−1
2

N

∑
i=1

ui(t)T ui(t)+
N

∑
i=1

pT
i
(
Axi+Bui

)
, (3.29)

其中，pi ∈ Rn为协态变量。因此，相应的哈密顿系统可写为

ẋi =
∂H
∂pi

= Axi +Bui, (3.30)

ṗi =−∂H
∂xi

=−AT pi, i = 1, · · · ,N. (3.31)

根据极大值原理2.1，求解的最优控制ui满足如下必要条件

∂H
∂ui

=−ui +BT pi = 0, i = 1, · · · ,N. (3.32)

如对于二阶积分器多运动体最优编队问题一样，此处如果以上方程有唯一解，

可知这些条件也是充分的。由(3.32)可得

ui = BT pi, i = 1, · · · ,N. (3.33)

记x = (xT
1 , · · · ,xT

N)
T，p = (pT

1 , · · · , pT
N)

T ，u = (uT
1 , · · · ,uT

N)
T。那么，哈密顿系

统(3.30)、(3.31)和控制(3.33)可写成如下矩阵形式

ẋ = (IN ⊗A)x+(IN ⊗B)u, (3.34)

ṗ =−(IN ⊗AT )p, (3.35)

u = (IN ⊗BT )p. (3.36)

类似地，根据编队构型(3.27)有

[
1N−1 −IN−1

]
⊗ In ·x(t f ) = D, (3.37)

其中，1N−1表示所有元素都为1的列向量，D = (DT
1 , · · · ,DT

N−1)
T。综合考
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虑(3.34)、(3.35)、(3.36)有 ẋ

ṗ

=

 IN ⊗A IN ⊗BBT

0 −(IN ⊗AT )

 x

p

 . (3.38)

对上式从t0到t积分有 x(t)

p(t)

=exp
(
(t−t0)

 IN⊗A IN⊗BBT

0 −(IN⊗AT )

) x0

p0

 (3.39)

其中x0 = (x0
1

T
, · · · ,x0

N
T
)T，p0 ∈ RNn为协态变量p的初值。因此，最优控

制(3.33)的求解转化成求解协态变量的初值p0。为此，给出下面引理来求解

与编队构型(3.27)相关的横截条件。

引理 3.10: 对于多运动体系统，假设终端状态满足x1(t f )− xi(t f ) = Di−1, i =

2, · · · ,N，则对协态变量有如下关系

1T
N ⊗ In · p(t f ) = 0. (3.40)

证明: 对于给定编队构型(3.27)，假定

fi j(x(t f )) = x j
1(t f )− x j

i+1(t f ) = Di,

i = 1, · · · ,N −1, j = 1, · · · ,n,

其中，x j
1(t f )和x j

i+1(t f )分别是x1(t f ) 和xi+1(t f )的第 j个元素。由极大值原理2.1，

对于给定Di，对应于终端条件 fi j = Di的横截条件可写为

p j
1(t f ) =

N−1

∑
i=1

λi j
∂ fi j

∂x j
1

(t f ) =
N−1

∑
i=1

λi j, j = 1, · · · ,n, (3.41)

p j
k+1(t f )=

N−1

∑
i=1

λi j
∂ fi j

∂x j
k+1

(t f )=−λk j, k=1, · · · ,N−1, j=1, · · · ,n, (3.42)

其中，p j
1和p j

k+1分别为p1和pk+1的第 j个元素，λi j为待定参数。综合考

虑(3.41)和(3.42)有

N

∑
k=1

p j
k(t f ) = 0, j = 1, · · · ,n.
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将上式写成矩阵形式可得横截条件(3.40)。 �

接下来，记

Φ(t − t0) = exp
(
(t−t0)

 IN ⊗A IN ⊗BBT

0 −(IN ⊗AT )

),
∆ =

 [ 1N−1 −IN−1

]
⊗ In 0

0 1T
N ⊗ In

 .
由(3.37)和(3.40)可得出 [ 1N−1 −IN−1

]
⊗ In 0

0 1T
N ⊗ In

 x(t f )

p(t f )

=
 D

0

 ,
即

∆Φ(t f − t0)

 x0

p0

=
 D

0

 .

因此，假定E1=

 INn

0

和E2=

 0

INn

，有

∆Φ(t f − t0)E1x0 +∆Φ(t f−t0)E2 p0=

 D

0

 . (3.43)

假定矩阵∆Φ(t f−t0)E2是可逆的，则有

p0 =−
(
∆Φ(t f−t0)E2

)−1

∆Φ(t f−t0)E1x0−

 D

0

 .

将上式代入(3.39)，可得

p(t) = ET
2 Φ(t − t0)(E1x0 +E2 p0) .

回顾控制律(3.36)，有

u = (IN ⊗BT )ET
2 Φ(t − t0)(E1x0 +E2 p0) . (3.44)
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总结一下，对于多运动体系统最优编队控制有如下定理：

定理 3.2: 假定假设3.1成立，那么在控制律(3.44)下多运动体系统(3.26)可在给

定终端时刻t f达到编队构型(3.27)，且保证性能指标(3.28)最小，当且仅当矩

阵∆Φ(t f−t0)E2是可逆的。

在实际应用中，可利用数值方法来判定矩阵∆Φ(t f−t0)E2的可逆性。但是，

当运动体的模型描述为高阶线性系统时，为了判定可逆性不可避免地要进行极

为复杂的计算。考虑到这一点，下面给出定理来判定所提出控制律(3.44)的可行

性。在叙述定理之前，先给出如下引理：

引理 3.11: 对于矩阵A ∈ Rn×n和B ∈ Rn×m，如果(A,BBT )是可控的，当且仅

当(A,B)是可控的。

证明: 先证明充分性，即已知(A,B)是可控的，来证明(A,BBT )是可控的。利

用反证法，首先假设(A,BBT )是不可控的，则至少存在一个λ ∈ C，使得[A−
λI,BBT ]不是行满秩的。那就是说，存在一个非零向量α ∈ Rn，使得αT [A−
λI,BBT ] = 0。因此，有

αT (A−λI) = 0, (3.45)

αT BBT = 0. (3.46)

对于(3.46)右乖α，有αT BBT α = 0，进一步有αT [A−λI,B] = 0。显然，上述关系

式与(A,B)是可控的矛盾，因此可得出(A,BBT )是可控的。类似地，可以证明必

要性。 �

定理 3.3: 在假设3.1成立的前提下，如果(A,B)是可控的，则多运动体系

统(3.26)可在控制律(3.44)下在给定终端时刻t f达到编队构型(3.27)，且保证性

能指标(3.28)最小。此外，控制律(3.44)中的p0通过求解方程(3.43)给出。

证明: 记Φ(t f − t0) =

 Φ11 Φ12

Φ21 Φ22

。容易得出
Φ11 = exp

(
(t f−t0)(IN ⊗A)

)
, Φ21 = 0, Φ22 = exp

(
− (t f−t0)(IN ⊗AT )

)
.

此外，有

Φ12 = IN⊗
(
(t f−t0)BBT+

(t f−t0)2

2!
(ABBT−BBT AT )
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+
(t f−t0)3

3!
(A2BBT−ABBT AT+BBT AT 2

)

+
(t f−t0)4

4!
(A3BBT−A2BBT AT+ABBT AT 2−BBT AT 3

)+ · · ·
)
.

因此，(3.43)可写成如下形式 [ 1N−1 −IN−1

]
⊗ In 0

0 1T
N ⊗ In

 Φ11

Φ21

x0

+

 [ 1N−1 −IN−1

]
⊗ In 0

0 1T
N ⊗ In

 ·

 Φ12

Φ22

 p0 =

 D

0

 .
进一步推导有 [ 1N−1 −IN−1

]
⊗ In ·Φ12

1T
N ⊗ In ·Φ22

 p0=

 D−
[
1N−1 −IN−1

]
⊗ In ·Φ12x0

0

 .
由线性方程和矩阵理论可知，如果是矩阵Φ12是可逆的，则以上关于p0的方程有

解。因此，下面的任务为证明Φ12是可逆的。

记

Π = tBBT +
t2

2!
(ABBT−BBT AT )+

t3

3!
(A2BBT −ABBT AT +BBT AT 2

)

+
t4

4!
(A3BBT −A2BBT AT +ABBT AT 2 −BBT AT 3

)+ · · · .

利用反证法，假设Π是奇异的，则至少存在一个非零向量α ∈ Rn，使得

αT Π = 0.

对上式关于时间t求1到(n−1)次导，并令t = 0，可得出

αT BBT=0,

αT (ABBT−BBT AT )=0,

αT (A2BBT −ABBT AT +BBT AT 2
)=0,

αT (A3BBT−A2BBT AT+ABBT AT 2−BBT AT 3
)=0,

· · · · · ·
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αT (An−1BBT−An−2BBT AT+An−3BBT AT 2−·· ·+(−1)n−1BBT AT n−1
)=0.

化简上面的等式有

αT BBT = 0, αT ABBT = 0, αT A2BBT = 0,

αT A3BBT = 0, · · · · · · ,αT An−1BBT = 0.

记

Q=
[

BBT ABBT A2BBT A3BBT · · · An−1BBT
]
,

则有αT Q = 0。由于α ̸= 0，可知(A,BBT )不可控。根据引理3.11可得出(A,B)是不

可控的，与假设条件矛盾。因此，可证明Π是非奇异的，进一步可得Φ12是可逆

的，即可求解方程(3.43)得出p0。定理得证。 �

注释 3.12: 注意到设计的控制律(3.44)是一个开环控制律，依赖于初始状态x0。

理论上，运动体只需要其他运动体在初始时刻的状态。因此，多运动体系统在

编队过程中允许丢包、时滞，甚至在初始时刻后可以不通讯。在控制律(3.44)推

导过程中，从t到t f对(3.38)进行积分，可得如下实时反馈控制律

u =−(IN ⊗BT ) ·
(
∆Φ(t f−t)E2

)−1

∆Φ(t f−t)E1x(t)−

 D

0

 , (3.47)

其依赖到当前状态，而不是初始状态。因此，在如上控制律下，系统即使在初

始状态或者控制输入存在扰动也可以在给定终端时刻达到理想的编队。跟针对

积分器模型所作的讨论一样，当不存在扰动时，所提出的实时反馈控制律等价

于控制律(3.44)。

注释 3.13: 考虑终端时间t f后存在扰动的情况，引入如下切换控制律

U =

 u, t ∈ [t0, t f )

u∗, t ≥ t f
,

其中，u∗为具有线性系统动力学的多运动体系统的渐近编队控制律，具体形式

可参考 [18, 71]。以上提出的切换控制律可在指定终端时刻t f达到理想编队，然

后切换到一般渐近控制律来保持理想编队。
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注释 3.14: 本文首次为一般线性多运动体系统设计有限时间编队控制律。相比

于已有结果，本文设计的控制律可在有限时间达到理想的编队，而且编队构型

和编队时间都可以根据编队任务提前指定。此外，本控制律可以保证相应的积

分型性能指标最优，这点对于燃料有限的控制系统是非常重要的。

基于上述定理，下面给出两个推论来求解高阶积分器多运动体系统和二阶

谐振子多运动体系统的有限时间编队问题。高阶积分器模型描述如下：

ẋi = Axi +Bui, i = 1, · · · ,N,

A =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1

0 0 0 0 0


, B =



0

0

0
...

1


.

显然这个系统是可控的。因此，有下面这个推论。

推论 3.15: 在假设3.1成立的前提下，对于由多个高阶积分器组成的多运动体系

统，在最优控制律(3.44)下，系统可在给定终端时刻t f达到理想编队构型(3.27)。

由多个二阶谐振子组成的多运动体系统动力学为 q̇i = pi

ṗi =−ω2qi +ui
, i = 1, · · · ,N, (3.48)

其中，qi ∈ R、pi ∈ R和ui ∈R分别是第i个运动体的位置、速度和控制输入，ω为

谐振子的频率。显然，很容易得出以上系统是可控的。因此有如下推论：

推论 3.16: 假设3.1成立的前提下，对于多运动体系统(3.48)，在最优控制

律(3.44)下，系统可在给定终端时刻t f达到理想编队构型(3.27)。

3.3 航天器有限时间编队飞行

在上一节中，我们提出最优控制律用于解决一般线性系统模型多运动体的

有限时间编队控制问题。作为实际应用例子，本节考虑近地轨道航天器的编队

飞行。
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图 3.4 LVLH坐标系

航天器编队飞行需要多个航天器之间精确的协调，各个航天器之间通过一

个共同的控制律耦合在一起 [72]。关于航天器编队飞行已有很多结果 [18, 73, 74]，其

中航天器动力学建模成二阶积分器、线性系统或者精确的非线性系统。在这些

已有结果中，对于多航天器系统设计出很多渐近控制律使得系统渐近地收敛到

理想的编队。在本节中，为了化简分析过程，假设航天器参考轨道是轨道半径

为R0的圆轨道或者近圆轨道，即参考轨道的偏心率满足er = 0。航天器相对于

参考轨道的相对运动可以在LVLH(local vertical local horizontal)坐标系中描述。

对于坐标系LVLH具体定义为，原点在参考轨道上，轨道半径方向为x̂轴，ẑ轴与

角动量方向平行指向轨道法线方向，ŷ轴与x̂轴和ẑ轴构成右手坐标系，可参考

图3.4，

假定r = [x,y,z]T为航天器的位置向量，并且有r = |r|。对于圆或者近圆参考
轨道，航天器相对于参考轨道的相对动力学可写为

mr̈+Cṙ+D(r)r+n(r,R0) =U , (3.49)

其中，m为航天器的质量，

C=2m


0 −nr 0

nr 0 0

0 0 0

 ,D(r)=m


µ
r3−nr

2 0 0

0 µ
r3−nr

2 0

0 0 µ
r3

 ,

n(r̃,R0) = mµ
[

R0
r̃3 − 1

R0
2 0 0

]T
,
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µ为地球重力常数，

nr =

√
µ/R0

3 (3.50)

为参考轨道的自然频率，U为控制力。此外，r̃ = [R0,0,0]T +r，并且r̃ = |r̃|。
想了解没有任何假设下的航天器相对动力学方程，请参考文献 [75]。进一步，

记u = U/m，并假定航天器与参考轨道之间的相对轨道半径远小于参考轨道

半径。在如上假设下，第i个航天器相对参考轨道的相对动力学可线性化为如

下Hill方程

Ẋi = AXi +Bui, i = 1, · · · ,n, (3.51)

其中，

A=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3nr
2 0 0 0 2nr 0

0 0 0 −2nr 0 0

0 0 −nr
2 0 0 0


, B=



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


,

并且Xi = [xi,yi,zi, ẋi, ẏi, żi]
T表示第i个航天器相对坐标系LVLH的位置和速度。

假定ri = [xi,yi,zi]
T表示位置向量。称航天器系统有限时间实现编队飞行是

指，它们的速度向量达到一致，而位置向量保持给定的编队构型，即在终端时

刻t f有ṙi → ṙ1, ri − r1 → di, i = 2, · · · ,n。上式中，di ∈ R3表示根据编队任务指定

的航天器i和航天器1之间的理想编队构型。通过简单数学计算，有

rank(B,AB,A2B, · · · ,A5B) = 6,

即，系统(3.51)是可控的。根据定理3.3可得，最优控制律(3.44)可使(3.51)在有限

时间内达到指定编队构型。

例: 考虑三个航天器相对于圆参考轨道R(t) = R0 × [cos(nr · t),sin(nr · t),0]T的编
队飞行，其中R0 = 4.224× 107m为参考轨道的轨道半径。已知地球质量Me和万

有引力常数G，可得µ = GMe = 3.986×1014m3/s2。因此，由式(3.50)可推出nr =

7.273×10−5s−1。假定所有航天器质量都为m = 410kg，并且航天器之间的通讯
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图 3.5 航天器编队飞行，且编队时间为t f = 135h (a，b) 航天器相对于参考轨道的x,y,z状
态；(c，d)航天器2和3相对于航天器1的状态

拓扑是一个完全图。提前指定理想的编队是三个航天器保持在一条直线上，

且相互之间距离为10km，即编队构型为d2 = [0,10,0]T km和d3 = [0,−10,0]T km。

为了简化，令初始时刻t0 = 0h，编队时间为135h。对于航天器选取如下初始状

态：

[r1(t0)]=[10,300,86]T km, [ṙ1(t0)]=[0,0,0]T km/s,

[r2(t0)]=[5,−100,−30]T km, [ṙ2(t0)]=[0,0,0]T km/s,

[r3(t0)]=[−10,100,−860]T km, [ṙ3(t0)]=[0,0,0]T km/s.

图3.5(a，b)、(c，d)分别描述了所有航天器相对于参考轨道的状态和航天

器2和3相对于航天器1的状态，其中(b)、(d)分别为图(a)、(c)的后半部分。可以

看出，系统可在给定终端时刻t f达到提前指定的理想编队构型，即在y轴达到指

定相对距离，其他方向达到状态一致。航天器在惯性坐标系中的运动轨迹在

图3.6中给出。图3.7为航天器控制输入曲线和总体性能指标曲线。由图可看出所

设计的控制输入可用于小推力的航天器。此外，总的性能指标为1.9839×103。

�
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图 3.6 航天器在惯性坐标系中的运动轨迹
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图 3.7 航天器编队飞行，且编队时间为t f = 135h (a)各个航天器的控制输入；(b)总体的性
能指标
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3.4 本章小结

本章研究欧氏空间上多运动体系统的有限时间最优编队问题。首先给出二

阶积分器模型多运动体系统有限时间最优编队问题描述，利用极大值原理设计

控制器使得系统在给定终端时刻达到理想编队，并保证对应的积分型性能指标

最优。进一步，考虑一般线性系统模型多运动体系统的最优编队问题，并设计

最优控制律。最后将所设计的控制律应用到航天器编队飞行，使得航天器在有

限时间达到理想编队。
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第四章 基于李群SE(3)的多运动体有限时间

最优编队控制

上一章基于欧氏空间在只考虑位置的情况下讨论了多个运动体的有限时间

编队问题。在实际应用中，例如卫星编队探测搜寻、飞机空中补给等，对于这

些刚体控制问题需要同时考虑它的位置和姿态。众所周知，刚体的位置和姿态

所在的空间，一般称为构型空间，是一个非线性空间。已有的多刚体编队控制

中，比较常见的是用Euler-Lagrange方程基于广义坐标来描述刚体姿态或是用欧

拉角、MPRs、四元素法对姿态进行参数化。不管是Euler-Lagrange方程或是参数

化方法，基本思路都是把刚体所在的非线性空间转化到我们所熟悉的线性空间

来处理。当考虑小范围的镇定或者轨迹跟踪问题时，这类方法是一个很好的近

似。但当处理一些大范围的控制问题时，这些方法的缺点就会显露出来。具体

地，Euler-Lagrange方程本质上是基于广义坐标，局部上把刚体的构型空间转化

成线性空间；欧拉角和MPRs等对姿态的三参数表示方法都具有奇异性，四元素

方法虽然没有奇异性，但由于一个姿态对应两组四元素组，因此当处理大范围

的控制问题时容易引起混淆。此外，如绪论中陈述的一样，如上提到的这些方

法无法处理非线性轨迹跟踪中的刚性编队问题。因此，在本章中，我们考虑直

接基于刚体的构型空间来处理多刚体的编队控制问题。

具体地，本章主要考虑基于矩阵李群SE(3)的多运动体的有限时间编队控制

问题。主要贡献为：

(1) 基于SE(3)上的运动学模型，考虑多个刚体运动体在提前给定编队时间和

编队任务下的有限时间编队控制问题。对于两个运动体的情况，给出精确

的编队控制律，对于多个对象的情况，所得控制律具有二阶近似精度；

(2) 基于SE(3)上的动力学模型，考虑多个运动体的最优编队跟踪问题。设计

跟踪控制律，使得运动体在给定有限时间跟踪上理想的参考轨迹。

4.1 多运动体最优编队控制――运动学模型

4.1.1 问题描述

考虑矩阵李群SE(3)上由n个运动体组成的多运动体系统。第k个运动体的运
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动学模型描述为：

ġk = gkξ̂k, (4.1)

其中，gk ∈ SE(3)为第k个运动体的的构型，ξ̂k为控制输入。假定性能指标如下

给出

J = 1
2

∫ t f

t0

n

∑
k=1

(
ξT

k (t)ξk(t)
)
dt, (4.2)

其中t0和t f分别为初始时刻和终端时刻。一般优化如上定义的性能指标就是优化

测地线长度或者控制能量。

定义 4.1: [39] 李群SE(3)上运动体 j相对于运动体k的相对构型定义为g jk =

g−1
k g j。

多运动体系统有限时间达到编队是指在给定终端时刻运动体构型满足如下

条件

g−1
1 (t f )gk+1(t f ) = gk+1,1, k = 1, · · · ,n−1, (4.3)

其中，gk+1,1 (k = 1, · · · ,n − 1)为根据编队任务要求提前指定的相对构型。

记g1,k+1为gk+1,1的逆。本节的目的为对于多运动体系统(4.1) 设计最优控制

律ξ̂k (k = 1, · · · ,n)，使得多运动体系统在终端时刻t f达到指定编队条件(4.3)，同

时保证性能指标(4.2)最小。

注释 4.2: 在本节中，主要考虑多运动体之间的左不变相对构型g jk = g−1
k g j。具

体地，左不变相对构型是指对每一个构型进行相同的左作用后求得的相对构型

与原相对构型保持不变。但所讨论的问题和得到的结果同样适用于右不变相对

构型ρ jk = g jg−1
k 的情形。同样地，这里所指的右不变相对构型是指对每一个构

型进行相同的右作用后求得的相对构型与原相对构型保持不变。

4.1.2 主要结果

设计控制律ξ̂k是一个最优控制问题。为此利用极大值原理2.2，对于(4.1)哈

密顿函数构造为

H =−1
2

n

∑
k=1

ξT
k ξk +

n

∑
k=1

P∗
gk
(gkξ̂k), (4.4)
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其中，P∗
gk
∈ T∗

gk
SE(3) (k = 1, · · · ,n)。为了方便，P∗

gk
简记为P∗

k。根据矩阵内积定

义有

H =−1
2

n

∑
k=1

ξT
k ξk +

n

∑
k=1

tr
(
diag(

1
2
,
1
2
,
1
2
,1)PT

k gkξ̂k
)
.

假定P̃k = Pkdiag(1
2 ,

1
2 ,

1
2 ,1)，并且称P̃k (k = 1, · · · ,n)为协态变量。因此，哈密顿函

数可化简为

H =−1
2

n

∑
k=1

ξT
k ξk +

n

∑
k=1

tr(P̃T
k gkξ̂k).

利用极大值原理2.2，所考虑控制问题的最优解满足如下必要条件

ġk =
∂H

∂P̃k
= gkξ̂k, (4.5)

˙̃Pk =−∂H
∂gk

=−P̃kξ̂T
k , k = 1,2, · · · ,n. (4.6)

其中，对于矩阵变量X，上式中的偏导定义为

∂ tr(AX)

∂ X
= AT .

称方程(4.5,4.6)为系统的哈密顿方程。

为了求解哈密顿方程，首先需要积分方程(4.6)。为此，给出如下引理。

引理 4.3: P̃k(t)gT
k (t)为常量.

证明: 由(4.5)，控制输入可写成

ξ̂k = g−1
k ġk.

把上式代入(4.6)，可得到

˙̃Pk =−P̃k(g−1
k ġk)

T =−P̃kġT
k
(
gT

k
)−1

.

因此，

˙̃PkgT
k + P̃kġT

k = 0,
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进一步有

d
dt (P̃kgT

k ) =
˙̃PkgT

k + P̃kġT
k = 0.

由此可看出P̃kgT
k不随时间t变化，即P̃kgT

k为常量。 �

利用se(3)上内积定义，对于任意ζ̂ ∈ se(3)都有

tr
(
(P̃kgT

k )
T ζ̂
)

= tr
(
diag(

1
2
,
1
2
,
1
2
,1)PT

k ζ̂gk
)

= ⟨Pk, ζ̂gk⟩gk

= P∗
k (TeRgk ζ̂)

=
(
(TeRgk)

∗P∗
k
)
(ζ̂)

=
(
P∗

k g∗k
)
(ζ̂), (4.7)

其中，Rgk( ·)表示右群作用，并且TeRgk : se(3) → TgkSE(3)为右群作用在单位

元e处的切映射。根据关系式(4.7)和引理4.3可得出P∗
k g∗k ∈ se∗(3)不随时间t变化。

因此，可作如下假设

P∗
k g∗k = ĉ∗k , k = 1, · · · ,n, (4.8)

其中，ĉ∗k为待定常数。考虑到P̂∗
g = (g−1)∗(p̂∗)，(4.8)可写成

(
g−1

k (t)
)∗ p̂∗k(t)g

∗
k(t) = ĉ∗k ,

p̂∗k(t) = g∗k(t)ĉ
∗
k
(
g∗k(t)

)−1
,

其中，p̂∗ ∈ se∗(3)。利用共轭伴随算子有

p̂∗k(t) = Adg∗k(t)
ĉ∗k .

根据Adg∗k(t)
ĉ∗k和Adg−1

k (t)ĉk之前的对偶关系，可推出

p̂k(t) = Adg−1
k (t)ĉk. (4.9)

哈密顿函数(4.4)为余切丛T∗SE(3)上的函数，在此考虑把它转化到空
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间se∗(3)上来。根据关系式(2.1)，哈密顿函数(4.4)有下列形式

H = −1
2

n

∑
k=1

ξT
k ξk +

n

∑
k=1

p̂∗k(ξ̂k)

= −1
2

n

∑
k=1

⟨ξk,ξk⟩+
n

∑
k=1

⟨pk,ξk⟩.

对于所考虑的最优编队问题，下面引理给出了最优控制律的形式。

引理 4.4: 对于所考虑的李群SE(3)上的最优编队问题，最优控制律由下式给出

ξ̂op
k (t) = Adg−1

k (t)ĉk, k = 1,2, · · · ,n. (4.10)

证明: 根据极大值原理，最优控制律满足如下关系式：

∂H
∂ξk

=−ξk + pk = 0.

因此，

ξop
k = pk, k = 1, · · · ,n.

进而，由关系式(4.8)可得

ξ̂op
k (t) = p̂k(t) = Adg−1

k (t)ĉk.

�

针对控制律已有形式，接下来的主要任务是确定(4.10)中的未知常数ĉk。下

面引理给出协态变量在终端时刻满足的横截条件。

引理 4.5: 对于给定编队条件(4.3)，对应的横截条件为

P̃1(t f ) =−
n

∑
k=2

P̃k(t f )gT
k1. (4.11)

证明: 对于给定编队条件(4.3)，记

fk = g−1
1 (t f )gk+1(t f ) = gk+1,1, k = 1, · · · ,n−1,

并且记 f i j
k 为 fk第i行第 j列的元素。根据极大值原理，协态变量在终端时刻满足如
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下横截条件

P̃pq
m (t f ) =

n−1

∑
k=1

4

∑
i, j=1

λi j
k

∂ f i j
k

∂gpq
m
(t f ), m = 1, · · · ,n,

其中，P̃pq
m (t f )和gpq

m 分别为P̃m(t f )和gm(t f )的第p行第q列的元素，并且λi j
k (i, j =

1, · · · ,4,k = 1, · · · ,n)为待定参数。

假定Λk ∈ R4×4 (k = 1, · · · ,n)为待定矩阵，λi j
k为Λk 第i行第 j列的元素。因

此，有

P̃pq
m (t f ) =

n−1

∑
k=1

tr
(

ΛT
k

∂ fk

∂gpq
m
(t f )

)
=

n−1

∑
k=1

tr

(
ΛT

k
∂(g−1

1 gk+1)

∂gpq
m

(t f )

)
.

当m = 1，

P̃pq
1 (t f ) =

n−1

∑
k=1

tr

(
ΛT

k
∂(g−1

1 gk+1)

∂gpq
1

)
(t f )

=
n−1

∑
k=1

tr
(
−ΛT

k g−1
1

∂g1

∂gpq
1

g−1
1 gk+1

)
(t f )

=
n−1

∑
k=1

tr
(
−ΛT

k g−1
1 Epqg−1

1 gk+1

)
(t f )

= −
n−1

∑
k=1

tr
(

Epqg−1
1 gk+1ΛT

k g−1
1

)
(t f )

= −
n−1

∑
k=1

(
g−1

1 gk+1ΛT
k g−1

1

)qp
(t f ),

其中，Epq ∈ R4×4为常数矩阵，只有第p行第q列元素为1，其它元素都为0。

当m = 2, · · · ,n，

P̃pq
m (t f ) =

n−1

∑
k=1

tr

(
ΛT

k
∂(g−1

1 gk+1)

∂gpq
m

)
(t f )

=
n−1

∑
k=1

tr
(

ΛT
k g−1

1
∂gk+1

∂gpq
m

)
(t f )

= tr
(

ΛT
m−1g−1

1 Epq

)
(t f )
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=
(
g−T

1 Λm−1
)pq

(t f ).

写成矩阵形式为

P̃1(t f ) = −
n−1

∑
k=1

(
g−1

1 gk+1ΛT
k g−1

1

)T
(t f ) =−

n−1

∑
k=1

(g−T
1 ΛkgT

k+1,1)(t f ),

P̃m(t f ) =
(
g−T

1 Λm−1
)
(t f ), m = 2, · · · ,n.

进一步，可推出

P̃1(t f ) =−
n

∑
k=2

P̃k(t f )gT
k1.

�

对于多运动体系统(4.1)的有限时间最优编队问题，下面给出两个运动体情

况下的最优控制器设计。

定理 4.1: 对于多运动体系统(4.1)，假定n = 2，则系统(4.1)在控制律

ξ̂op
1 (t) = 1

2(t f−t0)
Adg−1

1 (t) log
(

g2(t0)g12g−1
1 (t0)

)
,

ξ̂op
2 (t) = 1

2(t f−t0)
Adg−1

2 (t) log
(

g1(t0)g21g−1
2 (t0)

) (4.12)

下在给定终端时刻t f达到指定编队条件(4.3)，同时保证性能指标(4.2)最小。

证明: 对于n = 2，对应的横截条件为

P̃1(t f ) =−P̃2(t f )gT
21.

进一步推导有

P̃1(t f )gT
1 (t f ) =−P̃2(t f )gT

2 (t f ).

利用引理4.3关系式(4.7)可以得出

P∗
1 (t)g

∗
1(t) =−P∗

2 (t)g
∗
2(t), ∀t ∈ [t0, t f ].
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进而有

ĉ∗1 =−ĉ∗2, ĉ1 =−ĉ2.

将上式代入到(4.10)可得到

ξ̂op
1 (t) = Adg−1

1 (t)ĉ1, ξ̂op
2 (t) =−Adg−1

2 (t)ĉ1.

对于系统(4.1)，我们有

ġk = gkAdg−1
k (t)ĉk = ĉkgk.

求解上面方程有

gk(t) = eĉk(t−t0)gk(t0), k = 1,2. (4.13)

将解代入到编队条件(4.3)，可知c1满足如下关系式

g−1
1 (t0)e−2ĉ1(t f−t0)g2(t0) = g21.

进而，可推出

ĉ1 = − 1
2(t f − t0)

log
(

g1(t0)g21g−1
2 (t0)

)
=

1
2(t f − t0)

log
(

g2(t0)g12g−1
1 (t0)

)
.

因此，对于n = 2的多运动体系统，其最优控制律为

ξ̂op
1 (t) =

1
2(t f − t0)

Adg−1
1 (t) log

(
g2(t0)g12g−1

1 (t0)
)
,

ξ̂op
2 (t) =

1
2(t f − t0)

Adg−1
2 (t) log

(
g1(t0)g21g−1

2 (t0)
)
.

�

注释 4.6: 在上面定理中，终端时刻t f 是根据编队要求提前指定的。根据控制律

形式可以看出，控制输入大小与编队时间成反比。在实际应用中，由于硬件限
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制会对控制输入大小存在约束条件，编队时间不可能无穷小。因此，在给定控

制约束下，如何设计控制律，使得系统在最短时间内达到指定编队条件是非常

重要的。我们称这个问题为时间最优编队问题，这个问题是本小节所考虑问题

的一个对偶问题。在给定控制约束下，求解最短编队时间是一个非常复杂的问

题，但这个问题的解决在实际应用中有重要意义，是我们目前正在研究的课

题。

对于最优控制律(4.12)，对应的最优性能指标为

J∗ = 1
2

∫ t f

t0

2

∑
k=1

(ξop
k (t))T ξop

k (t)dt.

根据(4.12)可以推出

ξ̇op
1 =

1
2(t f − t0)

(
˙g−1

1 (t) log
(

g2(t0)g12g−1
1 (t0)

)
g1(t)

+g−1
1 (t) log

(
g2(t0)g12g−1

1 (t0)
)

ġ1(t)
)

=
1

2(t f − t0)

(
−g−1

1 (t)ġ1(t)g−1
1 (t) log

(
g2(t0)g12g−1

1 (t0)
)

g1(t)

+g−1
1 (t) log

(
g2(t0)g12g−1

1 (t0)
)

ġ1(t)
)
.

考虑到

ġ1(t) = g1(t)ξ
op
1

= g1(t) ·
1

2(t f − t0)
Adg−1

1 (t) log
(

g2(t0)g12g−1
1 (t0)

)
=

1
2(t f − t0)

log
(

g2(t0)g12g−1
1 (t0)

)
g1(t),

则

ξ̇op
1 = 0.

进而有

ξ̂op
1 (t) =

1
2(t f − t0)

Adg−1
1 (t0)

log
(

g2(t0)g12g−1
1 (t0)

)
=

1
2(t f − t0)

log
(

g−1
1 (t0)g2(t0)g12

)
,

ξop
1 (t) =

1
2(t f − t0)

[log
(

g−1
1 (t0)g2(t0)g12

)
]∨.
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类似地可以得到

ξop
2 (t) =

1
2(t f − t0)

[log
(

g−1
2 (t0)g1(t0)g21

)
]∨.

因此，最优性能指标表达式为

J∗=
1

8(t f − t0)

(∥∥[log
(

g−1
1 (t0)g2(t0)g12

)
]∨
∥∥2
+
∥∥[log

(
g−1

2 (t0)g1(t0)g21

)
]∨
∥∥2
)
.(4.14)

下面我们考虑多个运动体的编队控制问题。根据横截条件(4.11)有

n

∑
k=1

P̃k(t)gT
k (t) = 0.

容易得出
n

∑
k=1

ĉ∗k = 0,
n

∑
k=1

ĉk = 0.

进而有如下关系式成立

n

∑
k=1

[ĉk, ĉ j] = 0,
n

∑
k=1

[
ĉ j, [ĉ j, ĉk]

]
= 0,

其中，[ · , · ]为定义在李代数se(3)上的李括号。将(4.10)代入系统方程(4.1)并解方

程，可以得到

gk(t) = eĉk(t−t f )gk(t f ),

gk(t f )g−1
k = eĉk(t f−t), k = 1, · · · ,n.

因此有

gk(t)g jkg−1
j (t) = e−ĉk(t f−t)eĉ j(t f−t), j,k = 1, · · · ,n,

g jk = g−1
k (t f )g j(t f ) = g−1

k1 (t f )g j1(t f ),

其中，gk1和g j1可以根据编队条件(4.3)得出。利用Baker-Campbell-Hausdorff 公

式(参考引理2.3)有，

log(gk(t)g jkg−1
j (t))

= log(e−ĉk(t f−t)eĉ j(t f−t))
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= (ĉ j − ĉk)(t f − t)− 1
2
[ĉk, ĉ j](t f − t)2 +

1
12
([

ĉk, [ĉk, ĉ j]
]

+
[
ĉ j, [ĉk, ĉ j]

])
(t f − t)3 + · · · .

对上式从k = 1到n求和可推出

n

∑
k=1

log(gk(t)g jkg−1
j (t))

= (t f − t)
n

∑
k=1

(ĉ j − ĉk)−
(t f − t)2

2

n

∑
k=1

[ĉk, ĉ j]+
(t f − t)3

12
( n

∑
k=1

[
ĉk, [ĉk, ĉ j]

]
+

n

∑
k=1

[
ĉ j, [ĉk, ĉ j]

])
+ · · ·

= (t f − t)nĉ j +
(t f − t)3

12

n

∑
k=1

[
ĉk, [ĉk, ĉ j]

]
+ · · ·

= (t f − t)nĉ j +
(t f − t)3

12

n

∑
k=1

ad2
ĉk

ĉ j + · · · ,

其中，ad2
ĉk

ĉ j为二阶伴随算子。可解出ĉ j有如下形式

ĉ j =
1

n(t f − t)

n

∑
k=1

log(gk(t)g jkg−1
j (t))−

(t f − t)2

12n

n

∑
k=1

ad2
ĉk

ĉ j + · · · , j = 1, · · · ,n.

在实际应用中，对于大范围编队问题，无法确定最终编队的位置。因此，

本节中主要关注小范围内的编队问题。考虑在小范围编队问题中高阶李括号项

的影响会越来越小，所以在下面的讨论中忽略高阶李括号是合理的。基于如上

讨论，我们有

ĉ j =
1

n(t f − t)

n

∑
k=1

log(gk(t)g jkg−1
j (t)), j = 1, · · · ,n.

对于所考虑的多运动体编队控制问题，下面定理给出最优控制律。

定理 4.2: 对于由n个运动体组成的系统(4.1)，则系统(4.1)在控制律

ξ̂op
k (t) =

1
n(t f − t)

Adg−1
k (t)

n

∑
j=1

log(g j(t)gk jg−1
k (t)),

gk j = g−1
j1 (t f )gk1(t f ), k = 1, · · · ,n (4.15)

下在给定终端时刻t f达到指定编队条件(4.3)，同时保证性能指标(4.2)最小。此

外，这些控制律具有二阶近似精度。
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注释 4.7: 在控制律(4.15)推导过程中，忽略掉了三阶及以上阶的李括号。因此，

所得到的控制律是一个近似控制律。如果系统本身满足对于ĉk (k = 1,2, · · · ,n)的
二阶李括号恒等于零，则所得控制律为精确的，否则控制律具有二阶近似精

度。

注释 4.8: 相比于开环控制律(4.12), (4.15)为实时反馈控制律，其依赖于当前的

状态而不是初始状态。因此，即使在初始条件或者控制输入存在扰动，控制

律(4.15)也可在给定终端时刻达到理想编队。当不存在扰动时，实时反馈控制律

与相应的开环控制律等价。同样地，对于两个运动体的情况，实时反馈控制律

如下给出

ξ̂op
1 (t) =

1
2(t f − t)

Adg−1
1 (t) log

(
g2(t)g12g−1

1 (t)
)
,

ξ̂op
2 (t) =

1
2(t f − t)

Adg−1
2 (t) log

(
g1(t)g21g−1

2 (t)
)
. (4.16)

在实际应用中，终端时刻后，控制律将会切换到一般的渐近控制律来保持已达

到的编队。对于渐近编队控制律可参考文献 [40]

与两个运动体时做法一样，对于多运动体系统，可得如下性能指标

J∗ ≈ 1
2n2(t f − t0)

n

∑
k=1

∥∥∥∥ n

∑
j=1

[log(g−1
k (t0)g j(t0)gk j)]

∨
∥∥∥∥2

. (4.17)

4.1.3 数值仿真

本节给出两个数值仿真示例来验证理论分析的有效性。为简便起见，考虑

平面运动体的编队控制问题，此时运动体的构型空间为矩阵李群SE(2)，并且假

设t0 = 0。

例: 考虑两个构型空间在矩阵李群SE(2)上的运动体，其系统描述由式

给(4.1)出。给定编队时间为t f = 3，并且假定理想的编队为两个运动体构型

达到一致，即在终端时刻t f运动体相对构型满足

g21 =


1 0 0

0 1 0

0 0 1

 .
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图 4.1 平面上的两个运动体有限时间达到一致且t f = 3 (a)运动体平面运动；(b)运动体位置
和姿态变化曲线；(c)总体性能指标

选取初始条件为

g1(0) =


cosα1 −sinα1 3

sinα1 cosα1 2

0 0 1

 , g2(0) =


cosα2 −sinα2 0

sinα2 cosα2 4.5

0 0 1

 ,
其中，α1 = 2.7，α2 = 1.2。仿真时间为10。

图4.1为所考虑系统在实时反馈控制律(4.16)下的仿真结果。子图(a)描述了

两个运动体的平面运动轨迹，包括位置和姿态；子图(b)则给出运动体位置

和姿态的变化曲线；性能指标在子图(c)中给出。从仿真结果可以看出，在控

制律(4.17)下，多运动体系统在终端时间t f达到提前指定编队任务。此外，根
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据(4.14)可知最优性能指标的理论值为

J∗=
1

8(t f − t0)

(∥∥[log
(

g−1
1 (t0)g2(t0)g12

)
]∨
∥∥2
+
∥∥[log

(
g−1

2 (t0)g1(t0)g21

)
]∨
∥∥2
)
=1.7260.

由数值仿真可得出总体性能指标为1.7658，这个值与理论值非常接近。微小的差

别是由仿真中的数值计算引起的。 �

例: 考虑由四个运动体组成的系统(4.1)，理想的编队由下面的式子给定

g21 =


1 0 2

0 1 2

0 0 1

 , g31 =


1 0 4

0 1 0

0 0 1

 , g41 =


1 0 2

0 1 −2

0 0 1

 .
也就是说，理想的编队为四个运动体形成边长为2的正方形，且姿态达到一致。

此外，提前给定编队时间为10。选取初始构型为

g1(0) =


1 0 −8

0 1 −8

0 0 1

 , g2(0) =


0 −1 −8

1 0 18

0 0 1

 ,

g3(0) =


0.886 −0.5 18

0.5 0.886 18

0 0 1

 ,g4(0) =


0 −1 18

1 0 −8

0 0 1

 .
仿真时间为20。

图4.2给出系统(4.1)在实时反馈控制律(4.15)下的仿真结果。显然，系统在终

端时刻达到理想的编队。此外，由(4.17)可得出性能指标的理论值

J∗ ≈ 1
32(t f − t0)

4

∑
k=1

∥∥∥∥ 4

∑
j=1

[log(g−1
k (t0)g j(t0)gk j)]

∨
∥∥∥∥2

= 51.9833.

数值仿真得出总体性能指标为57.8706。因此，忽略掉高阶李括号所得出的控制

律可以有限时间达到理想的编队，且相应的性能指标近似最优。 �
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图 4.2 平面上的四个运动体有限时间编队且t f = 10 (a)运动体平面运动；(b)运动体位置和
姿态变化曲线；(c)总体性能指标

– 64 –



北京大学博士学位论文

4.2 多运动体最优编队跟踪控制――动力学模型

4.2.1 问题描述

考虑由n个运动体组成的多运动体系统，其中第i个运动体的动力学模型为

{
ġi = giξ̂i
˙̂ξi = ûi

, i = 1, · · · ,n. (4.18)

参考轨迹gd ∈ SE(3)由下列系统的构型给出：

{
ġd = gd ξ̂d,
˙̂ξd = ûd ,

(4.19)

并且在本节中假定参考轨迹的控制输入是已知的。

本节主要考虑针对运动体动力学模型的跟踪问题，为此先对系

统(4.18)和(4.19)作一下简单处理。记ei = gd
−1gi为运动体i相对与参考轨迹的

相对构型。相对构型ei对时间求导，可得

ėi =
d
dt
(gd

−1)gi +gd
−1ġi

= −gd
−1gd ξ̂dgd

−1gi +gd
−1giξ̂i

= ei(ξ̂i −Ade−1
i

ξ̂d).

记ξ̂ei = ξ̂i −Adei−1 ξ̂d为相对速度，则有

ėi = eiξ̂ei, i = 1, · · · ,n.

进一步，对相对速度求时间导数可得出

˙̂ξei =
˙̂ξi −Adei−1

˙̂ξd −
d
dt
(Adei−1)ξ̂d

= ûi −Adei−1 ûd −
d
dt
(Adei−1)ξ̂d.
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注意到

d
dt
(Adei−1)ξ̂d =−[ξ̂ei , ξ̂i] = [ξ̂i, ξ̂ei],

则有

˙̂ξei = ûi −Adei−1 ûd − [ξ̂i, ξ̂ei].

记ûei = ûi − (Adei−1 ûd +[ξ̂i, ξ̂ei])为相对控制输入，我们有如下相对运动动力学模

型

{
ėi = eiξ̂ei

˙̂ξei = ûei

, i = 1, · · · ,n. (4.20)

因此，系统(4.18)对于参考轨迹的跟踪问题就转化成相对模型(4.20)的运动规划

问题。

假定性能指标如下给出

J = 1
2

∫ t f

t0

n

∑
i=1

⟨ûei(t), ûei(t)⟩I dt, (4.21)

其中，t0和t f分别为根据跟踪任务提前给定的初始时刻和达到跟踪的终端时刻。

在实际应用中，上面提到的性能指标就是对控制能量的优化。

本节所考虑的跟踪问题可归纳为，对于给定理想的相对构型ei
∗ (i =

1, · · · ,n)，设计控制律ûi (i = 1, · · · ,n)，使得系统在终端时刻有

gd
−1(t f )gi(t f ) = e∗i , ξ̂i(t f )−Ade∗i

−1 ξ̂d(t f ) = 0, i = 1, · · · ,n,

同时满足性能指标(4.21)最小。我们称如上定义的问题为有限时间最优编队跟踪

问题。当e∗i = I，ξ̂i(t f ) = ξ̂d(t f ), i = 1, · · · ,n时，称相应的问题为有限时间最优构
型一致跟踪问题。注意到后者是前者的特殊情况，本节中主要处理编队跟踪问

题。

注释 4.9: 对于多运动体系统(4.18)，比较常见的性能指标为

J̃ = 1
2

∫ t f

t0

n

∑
i=1

⟨ûi(t), ûi(t)⟩I dt.
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但是，对于本节考虑的编队跟踪问题，设计好的控制律包含有参考轨迹的控制

信息，而且这部分信息是不能优化的。因此，优化性能指标(4.21)是符合实际

的，而且是有意义的。

4.2.2 主要结果

在上节中，编队跟踪问题已经转化为相对模型(4.20)的有限时间最优规划问

题。为此，我们首先求解关于(4.20)的规划问题。为简便起见，考虑如下模型和

性能指标的最优规划问题

{
ġi = giξ̂i
˙̂ξi = ûi

, i = 1, · · · ,n, (4.22)

J =
1
2

∫ t f

t0

n

∑
i=1

⟨ûi(t), ûi(t)⟩I dt, (4.23)

其中，t0和t f分别为规划问题的初始时刻和终端时刻，ûi ∈ se(3) (i = 1, · · · ,n)为
待设计的控制输入。下面的任务为设计最优控制律ûi ∈ se(3) (i = 1, · · · ,n)，使得
系统(4.22)在给定终端时刻达到理想的编队构型g∗i (t f )和ξ̂i(t f ) = 0 (i = 1, · · · ,n)，
同时保证性能指标(4.23)最小。

对于所考虑问题，哈密顿函数构造如下

H =−1
2

n

∑
i=1

⟨ûi(t), ûi(t)⟩I +
n

∑
i=1

P∗
gi
(giξ̂i)+

n

∑
i=1

P∗
ξ̂i
(ûi), (4.24)

其中，P∗
gi
∈ T∗

gi
SE(3)，P∗

ξ̂i
∈ se∗(3)。根据矩阵内积定义有

H = −1
2

n

∑
i=1

(
ui

T (t)ui(t)
)
+

n

∑
i=1

tr
(
diag(

1
2
,
1
2
,
1
2
,1)PT

gi
giξ̂i
)

+
n

∑
i=1

tr
(
diag(

1
2
,
1
2
,
1
2
,1)PT

ξ̂i
ûi
)
.

记

P̃gi = Pgidiag(
1
2
,
1
2
,
1
2
,1), P̃ξ̂i

= Pξ̂i
diag(

1
2
,
1
2
,
1
2
,1),

并且P̃gi和P̃ξ̂i
都为协态变量。进而有

H =−1
2

n

∑
k=1

(
ui

T (t)ui(t)
)
+

n

∑
k=1

tr(P̃T
gi

giξ̂i)+
n

∑
k=1

tr(P̃T
ξ̂i

ûi).
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利用极大值原理2.2，所考虑控制问题的最优解满足如下必要条件

ġi =
∂H

∂P̃gi

= giξ̂i, (4.25a)

˙̂ξi =
∂H

∂P̃ξ̂i

= ûi, (4.25b)

˙̃Pgi =−∂H
∂gi

=−P̃gi ξ̂i
T
, (4.25c)

˙̃Pξ̂i
=−∂H

∂ξ̂i
=−gi

T P̃gi, (4.25d)

同样地，对于矩阵变量X，上式中的偏导定义为

∂ tr(AX)

∂ X
= AT .

此外，最优控制ûi由下式确定

∂H
∂ûi

=−ûi + P̃ξ̂i
= 0,

即，

ûop
i = P̃ξ̂i

. (4.26)

为了得出ûop
i ，下面的任务就是求解哈密顿方程(4.25)。为此，首先介绍下

面的引理。

引理 4.10: [65]假定[P̃T
gi

gi, ξ̂i] = 0，则有−gi
T P̃gi为常量。

令

c1i =−gi
T P̃gi .

将上式代入(4.25c)，并对(4.25c)从t0到t积分，可得

P̃ξ̂i
= c1i ·(t − t0)+ P̃ξ̂i

(t0), (4.27)

其中，P̃ξ̂i
(t0)是P̃ξ̂i

的初值。因而，对于最优控制律的求解变成确定初始协态变

量P̃ξ̂i
(t0)和常数变量c1i。

对于所考虑的最优规划问题，下面定理给出了最优控制律的具体表达式。
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定理 4.3: 假定初始状态满足 ξ̂i(t0)
∥ξ̂i(t0)∥

=
log(g−1

i (t f )gi(t0))
∥log(g−1

i (t f )gi(t0))∥
，则对于所考虑有限时间最

优规划问题最优控制律为

ûop
i = c1i ·(t − t0)+ c2i, i = 1, · · · ,n, (4.28)

其中

c1i =
6

(t f − t0)2 ξ̂i(t0)−
12

(t f − t0)3 log(g−1
i (t0)gi(t f )),

c2i =− 4
(t f − t0)

ξ̂i(t0)+
6

(t f − t0)2 log(g−1
i (t0)gi(t f )).

证明: 记c2i = P̃ξ̂i
(t0)。将式(4.26)和(4.27)代入到(4.25b)中，并对(4.25b)从t0 到t积

分可以得到

ξ̂i(t) = c1i ·
(t − t0)2

2
+ c2i ·(t − t0)+ ξ̂i(t0), (4.29)

其中，ξ̂i(t0)为变量ξ̂i的初值。考虑到ξ̂i(t f ) = 0，则有

c1i ·
(t f − t0)2

2
+ c2i ·(t f − t0)+ ξ̂i(t0) = 0.

进一步有

c2i =−c1i ·
t f − t0

2
− ξ̂i(t0) ·

1
t f − t0

. (4.30)

记xi = log(g−1
i (t0)gi(t)) (i = 1, · · · ,n)，根据引理2.2有

ẋi = ξ̂i +
∞

∑
k=1

(−1)kBk

k!
adk

−xi
(ξ̂i). (4.31)

下面我们证明xi =
∫ t

t0 ξ̂i(τ) dτ是方程(4.31)的解。由(3.32)，xi(t)有如下形式

xi(t) = c1i ·
(t − t0)3

6
+ c2i ·

(t − t0)2

2
+ ξ̂i(t0) ·(t − t0).

根据(4.29)和关系式[c1i,ξi(t0)] = 0，可得出[c2i,ξi(t0)] = 0。因此有

ad−xi(ξ̂i) =−[xi, ξ̂i] = 0.

– 69 –



第四章基于李群SE(3)的多运动体有限时间最优编队控制

进一步，对于k ≥ 1，容易得出adk
−xi

(ξ̂i) = 0。于是，方程(4.31)可化为

ẋi = ξ̂i.

再一次对上式从t0到t f积分有

xi(t f ) = log(g−1
i (t0)gi(t f ))

= c1i ·
(t f − t0)3

6
+ c2i ·

(t f − t0)2

2
+ ξ̂i(t0) ·(t f − t0).

求解上述方程并将解代入(4.27)，即可得出定理所述结论。 �

类似前面章节的讨论，对于最优控制律(4.28)，有如下实时反馈控制律

ûop
i =− 4

(t f − t)
ξ̂i(t)+

6
(t f − t)2 log(g−1

i (t)gi(t f )), (4.32)

i = 1, · · · ,n.

此外，从上面的证明过程可以得出 ξ̂i(t)
∥ξ̂i(t)∥

=
log(g−1

i (t f )gi(t))
∥log(g−1

i (t f )gi(t))∥
。通过类似的推导，就

可得出反馈控制律(4.32)。同样地，对于无扰动的情况，新的控制律(4.32)等价

于开环控制律(4.28)，它们都可使系统在终端时刻达到目标。当在初始条件或者

控制输入存在扰动时，只有实时控制律(4.32)才可达到目标。

注释 4.11: 上述定理假定条件中的范数具体定义为，∥ξ̂i(t0)∥= ∥vee(ξ̂i(t0))∥。

注释 4.12: 在控制律的推导过程中，作了如下假设

ξ̂i(t0)

∥ξ̂i(t0)∥
=

log(g−1
i (t f )gi(t0))

∥log(g−1
i (t f )gi(t0))∥

.

根据这个假设有[ξi(t0), log(g−1
i (t f )gi(t0))] = 0。通过简单数学推导，对于得到

的c1i很容易可以得出[c1i,ξi(t)] = 0。因此，在上面的定理中，可以去掉假设条

件[P̃T
gi

gi, ξ̂i] = 0。

根据定理4.3，对于系统(4.30)的最优规划编队律为

ûop
ei

= c̃1i ·(t − t0)+ c̃2i, i = 1, · · · ,n, (4.33)
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其中，

c̃1i =
6

(t f − t0)2 ξ̂ei(t0)−
12

(t f − t0)3 log(e−1
i (t0)ei(t f )),

c̃2i =− 4
(t f − t0)

ξ̂ei(t0)+
6

(t f − t0)2 log(e−1
i (t0)ei(t f )).

在这个控制律下，系统(4.20) 在给定终端时刻t f达到指定的终端构型e∗i (i =

1, · · · ,n)，同时保证性能指标(4.21)最小。接下来，我们回到最初的跟踪问题。

考虑到

ei = gd
−1gi, ξ̂ei = ξ̂i −Adei−1 ξ̂d,

ûei = ûi − (Adei−1 ûd +[ξ̂i, ξ̂ei ]),

关于原跟踪问题有如下定理。

定理 4.4: 对 于 多 运 动 体 系 统(4.18)和 参 考 轨 迹gd(t)， 假 定
ξ̂ei(t0)

∥ξ̂ei(t0)∥
=

log(e−1
i (t f )ei(t0))

∥log(e−1
i (t f )ei(t0))∥

，那么对于给定编队跟踪时间t f和理想编队构型e∗i (i = 1, · · · ,n)，
最优跟踪控制律为

ûop
i = (Adei−1 ûd +[ξ̂i, ξ̂ei ])+ c̃1i ·(t − t0)+ c̃2i, i = 1, · · · ,n,

其中，

c̃1i=
6

(t f − t0)2 ξ̂ei(t0)−
12

(t f − t0)3 log(e−1
i (t0)ei(t f )),

c̃2i=− 4
(t f − t0)

ξ̂ei(t0)+
6

(t f − t0)2 log(e−1
i (t0)ei(t f )).

类似地，有如下实时反馈控制律

ûop
i = (Adei−1 ûd +[ξ̂i, ξ̂ei])−

4
(t f − t)

ξ̂ei(t)+
6

(t f − t)2 log(e−1
i (t)ei(t f )),

i = 1, · · · ,n. (4.34)

在实际应用中，终端时刻后，控制律将会切换到一般的渐近控制律来保持已达

到的编队。对于渐近控制律，可参考文献 [34]。
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4.2.3 数值仿真

本节给出数值仿真示例来验证理论分析的有效性。为简便起见，考虑平面

运动体的编队跟踪控制问题，此时运动体的构型空间为矩阵李群SE(2)，并且假

设t0 = 0。

例: 考虑两个平面运动体，分别记为follower 1 和follower 2，其动力学模型

由(4.18)描述。选取初始构型和初始速度为

g1(0) =


1 0 −20

0 1 20

0 0 1

 , g2(0) =


1 0 15

0 1 −15

0 0 1

 ,
ξ1(0) =

[
0.2586 0.9651 −0.0408

]T
, ξ2(0) =

[
0.7983 −0.5959 −0.0872

]T
.

记参考轨迹为leader，假定其初始构型、初始速度和控制输入分别为

gd(0) =


1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 1

 , ξ̂d =


0 0 0

0 0 0

0 0 0

 , ud =
[

3 0 −0.12
]T

.

提前选取达到跟踪目标的终端时刻t f = 5。理想的跟踪结果为，在给定终端时刻

两个平面运动体与参考轨迹的相对构型为

e∗1 =


1 0 −10

0 1 10

0 0 1

 , e∗2 =


1 0 −10

0 1 −10

0 0 1

 .
因此，容易得出如下关系

log(e−1
1 (t f )e1(t0))

∥log(e−1
1 (t f )e1(t0))∥

=


0 0.0408 0.2586

−0.0408 0 0.9651

0 0 0

 ,

log(e−1
2 (t f )e2(t0))

∥log(e−1
2 (t f )e2(t0))∥

=


0 0.0872 0.7983

−0.0872 0 −0.5959

0 0 0

 .
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图 4.3 两个平面运动体有限时间编队跟踪轨迹并且t f = 5

显然，这些初值条件满足定理4.4中的假设条件。

图4.3和图4.4为多运动体系统(4.18)和(4.19)在控制律(4.34)下的仿真结果。

图4.3为平面运动体的运动轨迹图，同时对运动体的位置和姿态给出描述。运动

体的构型、相对构型及速度随时间变化曲线在图4.4一一给出。可以看出，所考

虑的多运动体系统在控制律(4.34)下在给定终端时刻t f达到指定理想编队跟踪，

之后以给定编队模式跟踪参考轨迹。 �

4.3 本章小结

本章研究了矩阵李群SE(3)上多运动体系统的有限时间最优编队问题。首先

给出针对运动学模型的多运动体系统有限时间最优编队问题描述，利用极大值

原理设计控制器使得系统在给定终端时刻达到理想编队，并保证对应的积分型

性能指标最优。进一步，考虑基于动力学模型的多运动体系统的有限时间编队

跟踪问题，在所设计的控制律下，运动体在有限时间编队跟踪上参考轨迹。
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图 4.4 从上到下分别为：构型，平面运动体相对于参考轨迹的相对构型，速度；从左到右
分别为运动体的x坐标、y坐标和姿态角变化曲线
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结 论

多运动体系统协调控制是近年来系统与控制领域的一个热点研究方向，其

研究动机主要来源于广泛的工程应用，如航天器编队、无人机编队、机器人协

作等。对于多运动体具体的研究课题也很多，本文分别基于欧氏空间和矩阵李

群SE(3)研究了多运动体系统的有限时间最优编队问题。本文主要结果与贡献如

下：

(1) 在给定编队时间、编队条件和需要优化的性能指标的前提下，研究了二阶

积分器多运动体系统的有限时间最优编队问题。利用极大值原理设计最优

控制律，使得多运动体系统在给定编队时间达到编队，同时保证所考虑的

二次型性能指标最小。通常所优化的性能指标对应为测地线长度或者是控

制能量。值得一提的是，编队时间可根据实际情况提前精确指定，这一点

在实际应用中非常重要。此外，考虑到实际应用中由于硬件约束控制输入

不会无限大，研究了控制受约束情况下二阶积分器多运动体系统的时间最

优编队控制问题。此时，对于多运动体系统，时间最优编队控制问题是奇

异，无法直接给出最优解。为此，本文中首先给出两个运动体时的时间最

优控制律，进而设计迭代算法。通过有限次迭代，给出控制受约束下多运

动体系统编队问题的一个可行解。此可行解给出了给定控制约束下达到编

队要求的编队时间下界。在实际应用中，只要编队时间大于这个下界，所

得到的编队控制就会满足实际的控制约束。

(2) 研究了个体模型为一般线性系统的多运动体系统在编队时间、编队条件指

定的前提下的编队控制问题。基于一些可逆性条件，首次给出了一般线性

系统模型多运动体系统的有限时间编队控制律。考虑到验证所给出的可逆

性条件需要通过复杂的计算，对其进行进一步化简。证明了当线性系统满

足可控性条件时，在所设计控制律下，系统可在有限时间达到编队任务。

相比于可逆性条件，系统矩阵可控性更容易判定。最后，所设计的控制律

用于解决近地航天器编队飞行问题。

(3) 基于矩阵李群SE(3)研究了多运动体系统的有限时间最优编队问题。针

对SE(3)上的运动学模型，首先给出问题描述；进而引入矩阵内积构造所

考虑问题对应的哈密顿函数。利用微分流形极大值原理，对于多运动体系

统所含个体为两个的情况，给出精确的有限时间最优编队控制律；对于多

个运动体的情况，所得出的控制律具有二阶近似精度。相对于基于欧氏空

间的各种模型描述，如积分器模型、线性系统模型和各种非线性系统模
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型，矩阵李群SE(3)可以同时全局地描述运动体的位置和姿态。相比于基

于其他参数化姿态描述方法，如欧拉角、MPRs、四元素等，所得的控制

结果，此控制方法可使多运动体系统在非线性轨迹跟踪中保持刚性编队。

这是其他局部描述方法所不能实现的。

(4) 考虑了矩阵李群SE(3)上多个运动体动力学模型下的有限时间编队跟踪问

题。给定跟踪时间和参考轨迹，首先利用SE(3)的群结构和向量场的左不

变性，通过推导求出运动体相对于参考轨迹的相对模型，将原轨迹跟踪问

题化为SE(3)上的运动规划问题。然后，设计跟踪控制律，使得运动体在

指定编队时间精确地跟踪上参考轨迹。与已有结果相比，本文中所得到的

跟踪控制律由显式表达式直接给出，这样可以直接应用到实际工程中去。

关于多运动体系统协调控制，虽然目前已有很多结果，但还有很多问题需

要进一步的研究。关于本文，主要后续研究内容包括：

(1) 本文所考虑的多运动体有限时间编队问题，都假定多运动体之间的通讯拓

扑是一个完全图。考虑到在实际应用中每个个体能接受到的信息是有限

的，即每个运动体只能接受到其邻居的信息，研究其他拓扑下有限时间编

队控制问题更具有实际意义。此外，在有限时间编队基础上，还可以考虑

数据丢包、采样和通讯受限等实际工程问题。

(2) 对于矩阵李群SE(3)上的动力学模型，本文给出的有限时间轨迹跟踪控制

律要求运动体的初始构型必须满足一些条件。虽然这些条件不是特别苛

刻，但由于加了这些限制条件，从而减少了所得控制律的应用范围。如何

放松对初值的要求，设计与初值选择无关的有限时间轨迹跟踪控制律是一

个很有意义的研究课题。

(3) 本文的研究主要针对完整的运动学模型和动力学模型，并没有考虑非完整

模型所对应的控制问题。非完整运动体在实际应用中很常见，比如，汽车

就是一个非完整模型，表现为汽车不能侧移。对于非完整模型控制问题，

是否可控目前已得到很好的研究，但对于如何设计控制器还是一个难点。

对于可控的非完整模型，两个控制方向在李括号作用下可以产生新的控制

方向，这个新的控制方向可以保证所研究问题的可控性，但如何实施这个

控制方向是一个极具挑战力的研究方向，但同时也是一个很有意义很值得

探索的研究课题。
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