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A Geometric Study of Reduction of

Affine Control Systems

Qianqian Xia(Ph.D Candidate (Dynamical Systems and Control))

Directed by Zhiyong Geng

Abstract

Reduction theory dates back to the early roots of analytic mechanics through

the works of Euler, Lagrange, Hamilton and others. In the study of control

systems, the presence of control terms brings new problems and opportunities

as we think of the classical reduction theory of dynamics. For example, if

we consider feedback transformation, the problem of reduction becomes more

complicated. On the other hand, due to the presence of controlled vector fields,

some advances can be made in reduction problems in control theory analogous

to some unsolved problems in dynamics. In this paper a geometric framework is

presented for studying the reduction problems in affine control systems. Some

general results on the structure of reduction are obtained. In this framework,

we study the reduction of a subclass of Lagrangian mechanical control systems.

Besides, a subclass of affine control systems are recognized which have the

driftless property. Finally we put aside our interest in reduction and focus on

feedback linearization. The main results of this paper is as follows:

1. A geometric framework for studying the reduction problems in affine

control systems is presented. In this framework the geometric structures of

reduction are studied. An algebraic result is given to realize reduction. A

special case where the Lie algebra generated by vector fields is finite dimensional

is discussed.



2. The existence of a subclass of reduction of a subclass of Lagrangian

mechanical control systems which preserve the mechanical structure is investi-

gated. Under the framework of affine connection, both local and global sufficient

and necessary conditions are given for the geodesically accessible affine con-

nection control systems such that they can admit this subclass of reduction. The

structural properties of the quotient map and the quotient mechanical control

system are discussed.

3. The structure of a subclass of affine control system which have the

driftless property is discussed. The problem is studied from the viewpoint of

reduction. In the regular case, both local and global sufficient and necessary

conditions are given on the affine control system such that it admits the driftless

property. As a result, for generic two-input three-dimensional control systems,

they can always be transformed into systems with the driftless property. The

nonregular cases are also studied.

4. The sufficient and necessary conditions for feedback linearization with-

out the linear controllability assumption are proved by using the concept of

orbit symmetry. This idea once discussed in the paper ”Exact and approximate

feedback linearization without the linear controllability assumption [Automat-

ica 48 (2012) 2221-2228]” is not correctly used there. In this paper, we show how

to get the solution by the use of orbit symmetry.

Key Words: affine control system, reduction, differential geometry, local,

global
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Ä�½ÂÚPÒ§��©z[20]"X�AO�Ñ§©¥6/þ�1��ê§ëÏ�¢1w6/"¤kN�þ�1w"�½6/M§TMÚT∗M©OL«§��mÚ{�m§TxMÚT∗xML«§3x:?���mÚ{��m"Mþ�¤k1w¼ê�NP�C∞(M)"�½N�ψ : M→N§ψ∗L«ψ��N�"erankφ∗(p) = dimN§∀p ∈M,Kψ¡Ǒ��ìv"erankφ∗(p) = dimM§∀p ∈M,Kψ¡Ǒ��E\"éMþ����þ|ξ, ^Φξ : R×M → M L«dξ)¤�6"�½t ∈
R§ΦξtL«�©Ó�x→Φξ(t,x)"

Mþ��é¡s−ÆCÜþ|¡Ǒs−/ª"s−/ª�8ÜP�Ωs(M)"PΩ0(M) = C∞(M), KΩ(M) = ⊕∞
s=0
Ωs(M)´Mþ��	�ê"	�êP�d :

Ωs(M)→ Ωs+1(M)"��s−/ªβ¡Ǒ´4�§edβ = 0§β¡Ǒ´°(�e�3η ∈Ωs−1(M)§÷vβ= dη"�½N�ψ : M→NÚω ∈Ωs(N)§ω�.£ f ∗ω½ÂǑ f ∗(ω)(x)(v1, · · · ,vs)=ω( f (x))(Tx f (v1), · · · ,Tx f (vs))§ ùpvi ∈TxM, i= 1, · · · ,s"é1w6/MÚB§��n�m´���÷ìvN�π : M→ B¿�÷vÛÜ²�5"Ǒ=�36/F§÷vé?�:b ∈ B§�3b���W±9�©Ó�φ : π−1(W)→W× F§��π ◦φ−1 |W= IdW§¿�é?¿ü�ù���Iãk(W1,φ1), (W2,φ2), =£¼êφ1 ◦φ−1
2
´���©Ó�"ùpF�¡Ǒn�"n�m��¡´�N�X : B→M÷vπ◦X = IdB"^Γ(B)L«�¡�8Ü"R�fmV(B)dN�Tπ�Ø�Ñ"��3V(B)¥��þ|¡ǑBþ�R��þ|"

Mþ�©ÙD´TM���fm"D3x ∈M��Ò´f�mDx��ê"©ÙD¡ǑéÜ�§eé?���þ|X,Y ∈ Γ(D), k[X,Y] ∈ Γ(D)"f6/N¡ǑD���È©f6/§e§÷vTxN = Dx"∀x ∈ N"©ÙD¡Ǒ���È�§e∀x ∈M§Ñ�3D���4�È©f6/N,÷vTxN = Dx"�D�K§dFrobenius½n§éÜ5��È5�d"Mþ���©ÙA´TM���f8§÷v∀x ∈M§Ax := A∩TxM´TxM�����f�m"
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1�Ùý��£
2.2 ����XÚ������XÚ´��|èΣ = (M, { f0, f1, · · · , fr},U)§Ù¥MǑ��6/§{ f0, f1, · · · , fr}ǑMþ��x�þ|§a f f (U) = Rr"U¡ǑΣ���8"­�γ((t)¡Ǒ´Σ�;�§eγ((t)´ýéëY��÷v

γ̇(t) = f0(γ(t))+

r
∑

i=1

ui(t) fi(γ(t)), ui ∈U, i = 1, · · · ,r. (2.1)� f0 = 0�§¡éA�����XÚǑ�¤�"PΣ�¤k;��8ÜǑCtraj(Σ)"P½Â3[0,T]þ�Σ�¤k;��8ÜǑCtraj(Σ,T)"�½x0 ∈M§Σ3T�Ǒ���8Ǒ
RΣ(x0,T) = {γ(T) | γ ∈ Ctraj(Σ,T),γ(0) = x0}.PRΣ(x0,≤ T) = ∪t∈[0,T]RΣ(x0, t).½Â 2.1: ¡����XÚΣ3x0?´���§e�3T 
 0§��int(RΣ(x0,≤

t)) , ∅, ∀t ∈ [0,T].éAuΣk��©ÙAΣ:

(AΣ)x = { f0(x)+ui fi(x) | u = (u1, · · · ,ur) ∈Rr}.��§�½��©ÙA§¡����XÚΣ= (Ω, { f0, f1, · · · , fr},U)ǑA3x0:?���ÛÜ¢y§eAΣ = A |Ω,Ù¥ΩǑx0�ÛÜ��"�½�x1w�þ|X§^LieXL«�¹X�����þ|of�ê"½Â 2.2: ¡�þ|xX3x0 ∈M?÷vo�ê�^�(LARC),XJLieX (x0) =

Tx0M"½Â 2.3: XLx0 ∈M:�;�½ÂǑXe8Üµ
Orb(x0,X ) = {ΦX

t (x0) | X ∈X
k, t ∈Rk,k ∈Z
0}.½n 2.1 (21): �½�x1w�þ|X§(i)Orb(x0,X )ǑMþ��ëÏ�E\f6/;
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�®�ÆÆ¬Æ Ø©
(ii)?�x ∈Orb(x0,X )§

TxOrb(x0,X ) = span{Φ∗X(x) | Φ ∈Diff(X ),X ∈X }. (2.2)ùpDiff(X ) = {ΦX
t | X ∈X k, t ∈ Rk,k ∈ Z
0}´M��©Ó�+���f+"eX¥��þ|)Û§k

(iii)TxOrb(x0,X ) = LieX (x0).½n 2.2 (21): )Û����XÚΣ3x0?´�����=��þ|xX =

{ f0, f1, · · · , fr}3x0 ∈M?÷vo�ê�^�"
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1nÙ��(Ø1nÙ ��(Ø�Ù�8�´ǑïÄ����XÚ��z(�Jø��Ä�µe"Äk�Ñ�z(����5½Â",�Ú\ü�AÏ��z(�VgµG��mû(�ÚG��"û(�"�XïÄ«�ùüaû(������XÚ�AÛ(�¿�Äû(��o�ê¢y"
3.1 �z�½Â�Ä����XÚ

ẏ = f0(y)+

r
∑

i=1

ui fi(y), y ∈M, ui ∈R, i = 1, · · · ,r, (3.1)ùp§M´��1wëÏn�6/"¡m�1wëÏ6/þ�XÚ
ż = h0(z)+

s
∑

j=1

v jh j(z), z ∈N, v j ∈R, j = 1, · · · ,s, (3.2)ǑXÚ(3.1)�ûXÚ§XJ�31w÷N�ψ : M→ N, ÷véXÚ(3.1)�?�;�y(t), t ∈ I, z(t) = ψ(y(t)), t ∈ I Ñ´XÚ(3.2)�;�"d�¡N�ψǑ��ûN�"Xþ��5�½ÂdElkin3©z[22]¥�Ñ"Ǒ?�Ú²(XÚ(�§·��ÑXe½Âµ½Â 3.1: ¡����XÚ(3.2)ǑXÚ(3.1)�G��mûXÚ§XJ�31w÷N�ψ : M→N§÷vψ∗ f0 = h0, ψ∗ fi = hi, i = 1, · · · ,r¿�s= r"d�§¡N�ψǑ��G��mûN�"½Â3.1´û½�"eψ ÷vψ∗ f0 = h0, ψ∗ fi = hi, �oé?��XÚ(3.1)�;�y(t), t ∈ I, z(t) = ψ(y(t)), t ∈ I,w,´XÚ(3.2)�;�"ǑÒ´`§Xþ½Â�G��mûXÚ(´�aûXÚ"¡XÚ(3.1)ÛÜ(�Û)«���G��mûXÚ(3.2)§XJ�3G��mûN�ψ : U→ V (ψ : M→N)§ùpU§V©O�Lp0 ∈MÚq0 = ψ(p0) ∈N�ëÏ��"½Â 3.2 (23): 1w©ÙD¡Ǒ´é����XÚ(3.1)ØC�§eD´éÜ�§¿�÷v[ f0,D] ⊆D§[ fi,D] ⊆D§i = 1, · · · ,r"
– 8 –



�®�ÆÆ¬Æ Ø©~: �D Ǒ����XÚ(3.1)�ØC©Ù"�Ä:y0�ÛÜ��V§3ÛÜ�I(y1, y2)e§D = span
{

∂
∂y1

}"é��XÚ(3.1)kXeÛÜ©)µ
ẏ1 = f 1

0 (y1, y2)+

r
∑

i=1

ui f 1
i (y1, y2),

ẏ2 = f 2
0 (y2)+

r
∑

i=1

ui f 2
i (y2).d½Â3.1§XÚẏ2 = f 2

0
(y2)+

r
∑

i=1
ui f 2

i
(y2) ´����XÚ(3.1)��3ÛÜ��Vþ�G��mûXÚ"§�¡Ǒ´dXÚ(3.1)3y0NC�ØC©Ùp��"kXe(Øµ·K 3.3: �����XÚ(3.1)÷vo�ê�^�§¿��þ| f0, f1, · · · , frþ��§e(3.1)ÛÜ£�Û¤«���G��mûXÚ§KûN�Ǒ��ìv"y²: duûN�ψ÷vψ∗ f0 = h0, ψ∗ fi = hi, i = 1, · · · ,r§ψò{ f0, f1, · · · , fr

}�;�Op0N�{h0,h1, · · · ,hr}�;�Oq0¥"d	§ÏǑ f0, f1, · · · , fr��§K
Tψ(p)Oq0 = span

R

{

ψ∗X
}

(3.3)ùpX ∈ TpM§p ∈ Op0",��¡§duXÚ(3.1)÷vo�ê�^�§¤±
Lie∞

{

f0, f1, · · · , fr
}

p = TpM,é?��p ∈M.�âRashevsky-Chow½n[24,25]��Op0�uU (M)"duψ´��÷N�§Oq0�uV (N)"u´d(3.3)k
Tψ(p)V = span

R

{

ψ∗X
}

(resp.Tψ(p)N = span
R

{

ψ∗X
}

) (3.4)

�ùpX ∈ TpU (TpM)§p ∈U (M)"Ïdψ : U→ V (ψ : M→N)´��ìv"�Ä��©ÙD1 = { f0}+ span
{

f1, · · · , fr
}

, D2 = {h0}+ span {h1, · · · ,hs}.
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1nÙ��(Ø½Â 3.4 (23): ¡����XÚ(3.2)ǑXÚ(3.1)�G��"ûXÚ§XJ�31w÷N�ψ : M→N§÷vψ∗D1 =D2"d�¡N�ψǑ��G��"ûN�"½Â 3.5: 1w©ÙD¡Ǒ´é����XÚ(3.1)É�ØC�§eD´éÜ�§¿�÷v[ f0,D] ⊆D+F§[ fi,D] ⊆D+F§i = 1, · · · ,r"ùp§F= span
{

f1, · · · , fr
}

.~: �DǑ����XÚ(3.1)�É�ØC©Ù"�Ä:y0�ÛÜ��V§3ÛÜ�I(y1, y2)e§D = span
{

∂
∂y1

}"é��XÚ(3.1)§�3�"u = αv§���^��XÚkXeÛÜ©)µ̇
y1 = f̃ 1

0 (y1, y2)+

r
∑

i=1

vi f̃ 1
i (y1, y2),

ẏ2 = f̃ 2
0 (y2)+

r
∑

i=1

vi f̃ 2
i (y2).d½Â3.1§XÚẏ2 = f̃ 2

0
(y2)+

r
∑

i=1
vi f̃ 2

i
(y2) ´����XÚ(3.1)��3ÛÜ��Vþ�G��"ûXÚ"§�¡Ǒ´dXÚ(3.1)3y0NC�É�ØC©Ùp��"

3.2 ����XÚ�z�AÛ(�½n 3.1: [26]�L1ÚL2©OǑMÚNþ�1w�þ|x§N�Φ : M→ N÷vΦ∗L1 =L2"KΦòL1�;�N\L2�;�"eL1ÚL2¥��þ|þ��§KΦ��3z^;�þ´��n�m"�ó�§e����XÚ(3.2)ǑXÚ(3.1)�G��mûXÚ§��þ|x{ f0, · · · , fr
}Ú{h0, · · · ,hs}÷vo�ê�^�§KG��mûN�´��n�m"y²: ÏǑΦ∗L1 =L2§w,ΦòL1�;�N\L2�;�"d(2.2)§Φ��3z^;�þ´��÷ìv"�ÄNþq:?��ÛÜ�Iãk(U, (t1, · · · , tk)):

(t1, · · · , tk)→ ΦY1
t1
◦ · · · ◦ΦYk

tk
(p). (3.5)

�Ù¥§Y1, · · · ,Yk ǑL2 ä/ª(2.2)��þ|§kǑ;�L2��ê"Ké?�
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�®�ÆÆ¬Æ Ø©�p ∈ Φ−1(U)§�3(t1, · · · , tk)§÷vΦ(p) = ΦY1
t1
◦ · · · ◦ΦYk

tk
(q)"�ÄXeN�

Φ−1(U)→Φ−1(q)×U

p→ (Φ
Xk
−tk
◦ · · · ◦ΦX1

−t1
(p),Φ(p))Ù¥§Xi÷vΦ∗(Xi) = Yi"§´��ÛÜ�©Ó�, §�Ñ
M�ÛÜ�È(�§Φ−1(q)ǑÛÜn�"y�WǑNþéAÛÜn��Φ−1(q)�©Ó��:�8Ü§��WǑm8",��¡§N−WǑNþéAÛÜn�Ø�Φ−1(q)�©Ó��:�8Ü§��N−WǑm8"
NëÏ§ÏdW = N"Ïd§Φ : M→ N÷vÛÜ²�5"qé?¿ü�þãÛÜ�Iãk§=£¼ê´6EÜN�§§´���©Ó�"Ïd§Φ��3z^;�þ´��n�m"

3.3 o�êÓ��AÛ¢y�!l�êÆÝ�	XÚ��z(�§�Ñ�þ|o�êÓ����AÛ¢y"
3.3.1 ��(ØÄkÚ\½Âµ½Â 3.6: �½6/M§L ∈ Γ(TM)Ǒ��of�ê"L�¡Ǒ´D4�§XJ{X(x) | X ∈L } = TxM,∀x ∈M"L3x:?�Ǒ�f�êLx = {X ∈L | X(x) =

0x}"kµ½n 3.2: MǑüëÏ)Û6/§NǑ)Û6/"L1 ∈ Γω(TM),L2 ∈ Γω(TN)þǑD4of�ê"e�3o�ê÷Ó�φ : L1 → L2§÷v3:x0 ∈M, y0 ∈
N?§φ(L1x0

) ⊆L2y0
§K�3���n�mΦ : M→ N§÷vΦ(x0) = y0�φ =

Φ∗ |L1
"y²: PdimM = n.

(1)�Äd�È6/M×Nþd�þ|X = {(X,φ(X)) | X ∈ L1}Ü¤�©ÙD"w,§DéÜ"�ÄÝKN�pr1 : TM×TN→ TM"duL1´D4�, éx0 ∈
M, y0 ∈N, pr1��3D(x0,y0)þ´�Tx0M�÷N�"§Ǒ´ü�"ÏǑeX(x0) =
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1nÙ��(Ø
0§dφ(L1x0

) ⊆L2y0
§kφ(X)(y0) = 0,=(X,φ(x))(x0, y0) = 0"ÏdrankD(x0,y0) =

dimM = n"d ; � ½ n § � þ | xX = {(X,φ(X)) | X ∈ L1}L(x0, y0): � ;�Orb((x0, y0),X )´��ëÏ�n�E\f6/§Ïdé?��(x, y) ∈
Orb((x0, y0),X )§

rankD(x,y) = dimT(x,y)Orb((x0, y0)X ) = dimM = n. (3.6)k:

φ(L1x) ⊆L2y, (3.7)

∀(x, y) ∈ Orb((x0, y0),X ).�ÄÝKN�pr1 : D(x, y)→ TxM§d
ã§´÷�"�â(3.6)�§Ǒ´ü�"
(2)�½(x, y) ∈ Orb((x0, y0),X )±9X ∈ L1§eΦX

t (x)3(t1, t2)þk½Â§äóµΦφ(X)
t (y)3(t1, t2)þk½Â"b�Φφ(X)
t (y)3(t3, t4)þk½Â§t4 � t2"�½X1 ∈L1§�ÄXe­�µ

α(t) = (ΦX
−t)∗X1(x), t ∈ (a,b).

β(t) = (Φ
φ(X)
−t )∗φ(X1)(y), t ∈ (a,b).�ÄN�ϕ : TxM→ TyN:

ϕ(A) = φ(X)(y).ùp§X ∈L1�÷vX(x) = A"d(3.7)�ϕ´û½�"q
ϕ(

dk

dtk
|t=0 α(t)) =

dk

dtk
|t=0 β(t).�α,β)Û§K

ϕ((ΦX
−t)∗X1(x)) = (Φ

φ(X)
−t )∗φ(X1)(y), t ∈ (c,d). (3.8)�(a,b)¥��xÂñ�t4�S�(t j)§��limj→∞(Φ−t j

X)∗X1(x)�3"�â(3.8)±9L2���5��S�(Φ
φ(X)
t j

(y))Âñ§PT:Ǒy2"q�3y2�ÛÜ��V§��Φφ(X)
t j
3Vþ±9t ∈ (−ǫ,ǫ)Ñd½Â"�tk��Φφ(X)

tk
(y)) ∈

V�t4 − t j � ǫ"KΦφ(X)
t (y))�±*Ü�tk + ǫ 
 d§gñ"Ïdt4 ≥ t2"Ón�
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�®�ÆÆ¬Æ Ø©y§t1 ≥ t3"äó¤á"PπMǑlOrb((x0, y0),X )�M�ÝKN�"Äk§πM´÷�"dRashevsky-Chow½n(ë�©z[24,25])§∀x∈M§Ñ�3�þ|X1, · · · ,Xk ∈L1§r1, · · · , tk ∈R≥0§÷vx = Φ
Xk
tk
◦ · · · ◦ΦX1

t1
(x0).k

Φ
(Xk,φ(Xk))
tk

◦ · · · ◦Φ(X1,φ(X1))
t1

(x0, y0) ∈Orb((x0, y0),X ).¿�
πM(Φ

(Xk,φ(Xk))
tk

◦ · · · ◦Φ(X1,φ(X1))
t1

(x0, y0)) = x.äóµπMǑEUN�"Äk§πM´��ÛÜ�©Ó�"�ÄN�
Ψ : (−ǫ,ǫ)n→M

(t1, · · · , tn)→ΦXn
tn
◦ · · · ◦ΦX1

t1
(x) (3.9)

��span
R
{X1(x), · · · ,Xn(x)} = TxM§KΨ´����8��©Ó�"Ón§

Θ : (−ǫ,ǫ)n→Orb((x, y),X )

(t1, · · · , tn)→Φ(Xn,φ(Xn))
tn

◦ · · · ◦Φ(X1,φ(X1))
t1

(x, y)Ǒ´����8��©Ó�"ÏdΦ ◦Θ−1´���©Ó�"¤±πM´��ÛÜ�©Ó�"q∀(x, y1), (x, y2) ∈ π−1
M

(x)§�3(x, y1), (x, y2)�ÛÜ��U1,U2, ÷vU1 ∩U2 , ∅"ÄK§�3t1, · · · , tn ∈ (−ǫ,ǫ)§÷vΦφ(Xn)
tn

◦ · · · ◦
Φ
φ(X1)
t1

(y1) =Φ
φ(Xn)
tn

◦ · · · ◦Φφ(X1)
t1

(y2)"ùÒ�Ñy1 = y2"gñ"e¡y²π−1
M

(V) =

∪(x,y)∈π−1
M

(x)U(x, y)"ùp§V´x�ÛÜ��"U´Orb((x0, y0),X )3(x, y)�ÛÜ��"∀(x1, y1) ∈ π−1
M

(V)§�3t1, · · · , tn§÷vx1 = Φ
Xn
tn
◦ · · · ◦ΦX1

t1
(x)§-y =

Φ
φ(X1)
−t1

◦ · · · ◦Φφ(Xn)
−tn

(y1)§K(x, y) ∈Orb((x0, y0),X )�(x1, y1) ∈U(x, y)"duMüëÏ§ÏdπM´�©Ó�"
(3)-Φ = πN ◦ (πM)−1"
∀X ∈X ,x ∈M§(X(x),φ(X)(Φ(x)) ∈ T(x,Φ(x))Orb((x0, y0),X )"k

Φ∗X(Φ(x)) = Tπ−1
M

(x)πN ◦Txπ
−1
M (X(x))

= Tπ−1
M

(x)πN(X(x),φ(X)(Φ(x))) = φ(X)(Φ(x)).

(4)Φ���5"∀x ∈M§�3�3�þ|X1, · · · ,Xk ∈L1§r1, · · · , tk ∈ R≥0§÷
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1nÙ��(Øvx = Φ
Xk
tk
◦ · · · ◦ΦX1

t1
(x0).

Φ(x) = Φ◦ΦXk
tk
◦ · · · ◦ΦX1

t1
(x0)

= Φ
φ(Xk)
tk

◦Φ◦ΦXk−1
tk−1
◦ · · · ◦ΦX1

t1
(x0)

= Φ
φ(Xk)
tk

◦ · · · ◦Φφ(X1)
t1

(y0).2d½n3.1§��(Ø¤á"
3.3.2 k��o�ê���(Ø��!?Øþ�!SN���AÏ�/µ�þ|o�êǑk���AÛ¢y"½n 3.3: �½6/Mþ���D4of�êL ∈ Γ(TM)"eLǑk��o�ê�∀X ∈L§XÑ��"K�3�©Ó�Φ : M→ G½Φ : M→ G/H§ùpGǑ��ëÏo+§H´§�f+"y²: ÏǑLǑk��o�ê§¤±7�3ëÏ�üéÏo+G§±9o�êÓ�φ : g→ L§Ù¥gǑo+GéA��mØC�þ|)¤�o�ê"du∀X ∈ L§XÑ��§£�½n3.2�y²§���3n�mΦ : G→M§÷vφ = Φ∗ |g"�Äd�þ|xX = {(X,φ(X)) | X ∈ g}L(e, y0):�;�Orb((e, y0),X )§�HǑy0:?�Ǒ�f+§Ǒ=G¥÷v(x, y0) ∈ Orb((e, y0)X )�:�8Ü"é?��(x1, y1) ∈Orb((e, y0),X )§�3t1, · · · , tr±9X1, · · · ,Xr ∈ g§÷v

x1 = Φ
X1
t1
◦ · · · ◦ΦXr

tr
(e),

y1 = Φ
φ(X1)
t1

◦ · · · ◦Φφ(Xr)
tr

(y0).�(x2, y1) ∈Orb((e, y0),X )§��3s1, · · · ,sk±9Z1, · · · ,Zk ∈ g§÷v
x2 = Φ

Z1
t1
◦ · · · ◦ΦZk

tk
(e),

y1 = Φ
φ(Z1)
t1

◦ · · · ◦Φφ(Zk)
tk

(y0).·�k
x1
−1x2 ∈H. (3.10)

�
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�®�ÆÆ¬Æ Ø©,��¡§é?¿�h ∈ H§(x1h, y1) ∈ Orb((e, y0),X )"ùÒ�Ñ
G/H�Mm����©Ó�"½n�y"5º 3.7: ½n3.3Q3©z[27]¥�Ñ"ùpò[27]¥�(Øí2�������XÚ�.þ�§������5�(Ø½n3.2§òþã½n�ǑíØ�Ñ"
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1oÙ�a.�KFåÆ��XÚ��z(�1oÙ �a.�KFåÆ��XÚ��z(��ÙïÄ.�KFåÆ��XÚ��z(�".�KFåÆ��XÚ�Ǒ�aAÏ�����XÚ§Ù��äk´L�AÛ(�"Äk£��mþ�AÛ§�XÚ\.�KFåÆ��XÚ�."��X­?Øÿ/��åÆ��XÚ��z(�"
4.1 �mAÛ�!£��mþ�AÛ"n�6/Qþ���éä´��N�

∇ : Γ∞(TQ)×Γ∞(TQ)→ Γ∞(TQ)

(X,Y)→∇XY÷vXe^�µ
(AC1) (X,Y)→∇XYǑR-V�5¶
(AC2) ∇ f XY = f∇XY§ f ∈ C∞(Q)¶
(AC3) ∇X( f Y) = f∇XY+ (LX f )Y§ f ∈ C∞(Q)"3Qþ�ÛÜ�I(x1 · · · ,xn)e§��éä∇�ChristoffelÎÒΓk

i j
½ÂǑ

∇ ∂
∂xi

∂

∂x j
= Γk

i j

∂

∂xk
, i, j = 1, · · · ,n.

Qþ��éä∇�ÿ/�´Qþ�1w­�γ§ ÷v∇γ̇(t)γ̇(t) = 0"3ÛÜ�Ie§ ÿ/��§kXe/ªµ
ẍi+Γi

jk
ẋ jẋk = 0, i = 1, · · · ,n.ù
���§�duTQþ����§µ

ẋi = yi, i = 1, · · · ,n,
ẏ j = −Γ j

kl
ykyl, j = 1, · · · ,n.
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�®�ÆÆ¬Æ Ø©dþã�§½Â
TQþ��þ|S,¡ÙǑ∇þ�ÿ/¤"ÛÜ�Ie§
S = yi ∂

∂xi
−Γ j

kl
ykyl ∂

∂y j
.��éä∇¡Ǒ���§XJé?��x ∈ Q±9X ∈ TxQ§ �½�©^�(x,X)§ÿ/�γ(t)é¤k�tþk½Â"Ǒ=TQþ��þ|S´���"©ÙD ¡Ǒÿ/ØC�§XJé∇�?�ÿ/�c : [a,b]→ Q§eċ(a) ∈

Dc(a)§Ké?��t ∈ [a,b]§ ċ(t) ∈ Dc(t)"©ÙD¡Ǒ´�ÿ/�§XJ§´éÜ©Ù�ÿ/ØC�"·�¡��éä∇��3Dþ§XJé?¿X ∈
Γ∞(TQ)§Y ∈ Γ∞(D)§Ñk∇XY ∈ Γ∞(D)"

X,Y ∈ Γ∞(TQ)�é¡È½ÂǑXe�þ|
〈X : Y〉 = ∇XY+∇YX.©ÙD¡Ǒ´ÿ/ØC�§XJé?¿�X,Y∈ Γ∞(D)§〈X : Y〉 ∈ Γ∞(D)"½ÂLÇÜþT : Γ∞(TQ) × Γ∞(TQ) → Γ∞(TQ), T(X,Y) = ∇XY − ∇YX −

[X,Y]"·�¡∇´é¡�§XJé?¿X,Y ∈ Γ∞(TQ)§T(X,Y) = 0"3ÛÜ�Ie§kΓk
i j
= Γk

ji
,1 ≤ i, j,k ≤ n"½Â­ÇÜþR : Γ∞(TQ)×Γ∞(TQ)×Γ∞(TQ)→

Γ∞(TQ), R(X,Y)W = ∇X∇YW−∇Y∇XW−∇[X,Y]W"©¥¤k��éäþ�Ǒ´é¡�"éQþ���éä∇§é?¿vq ∈ TQ§·�k©)TvqTQ ≃ Hvq(TQ) ⊕
Vvq(TQ) (ë�©z[28,29])"ùpHTQ L«Y²fm§VTQ L«R�fm"3?��:vq ∈ TQ§�5N�TvqτQ : TvqTQ→ TqQ��3Y²f�mHvqTQþ´��Ó�"ùpτQ : TQ→QǑÝKN�"½Âuq�vq�Y²J,Xeµ

hlft(vq,uq) = (TvqτQ

∣

∣

∣

∣HvqTQ )−1(uq).�þ|X ∈ Γ∞(TQ)�Y²J,Ǒ�þ|XH ∈ Γ∞(TTQ)µ
XH(vq) = hlft(vq,X(q)).½Âuq�vq�R�J,Xe:

vlft(vq,uq) =
d

dt
(vq+ tuq) |t=0 , vq ∈ TQ.
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1oÙ�a.�KFåÆ��XÚ��z(��þ|X ∈ Γ∞(TQ)�R�J,Ǒ�þ|Xvlft ∈ Γ∞(TTQ):

Xvlft(vq) = vlft(vq,X(q)).ÛÜ�Ie,eX = Xi ∂
∂qi ,K

XH(vq) = Xi(q)(
∂

∂qi
−Γ j

ik
(q)vk ∂

∂v j
), (4.1)

Xvlft(vq) = Xi(q)
∂

∂vi
. (4.2)·�k

[S,Xvlft](vq) = (−X)H(vq)+vlft(vq,∇vqX), (4.3)

[Xvlft
1 , [S,Xvlft

2 ]](vq) = 〈X1 : X2〉vlft (vq), (4.4)

[S, [S,Xvlft]](vq) = hlft(vq,−2∇vqX)+vlft(vq,R(X(q),vq)vq)+vervq(∇H
hlft(vq,vq)Z),

(4.5)ùpZ´TQþ��þ|½ÂXe
Z(vq) = vlft(vq,∇vqX). (4.6)

∇HL«éä�Y²J,§ver�LR�ÝKN�vervq : TvqTQ→ VvqTQ"
4.2 .�KFåÆXÚ0���.�KFåÆ��XÚdXe|è�Ñ4�|(Q,∇,ℑ0,d)[30]:

(1) Q´��ëÏ�n��.6/¶
(2) ∇ǑQþ��é¡��éä¶
(3) ℑ0 = (g0, g1, · · · , gm)ǑQþ��þ|¶
(4) d : TQ→ TQ´òn�TqQN�n�TqQ��5N�§∀q ∈Q"ùpd�L�^3XÚþ�ÑÑå½úÚå§g0L«Ø��å§g1, · · · , gmL«É�å".�KFåÆXÚ�;�γ : I→Q, I ⊆R÷vµ

∇γ̇(t)γ̇(t) = g0(γ(t))+d(γ̇(t))+

m
∑

r=1

urgr(γ(t)). (4.7)
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�®�ÆÆ¬Æ Ø©�ǑTQþ�XÚ§·�kµ
Υ̇(t) = S(Υ(t))+ gvlft

0 (γ(t))+dvlft(γ̇(t))+

m
∑

r=1

urgvlft
r (γ(t)). (4.8)ùpS´∇�ÿ/¤"����éä��XÚ(Q,∇,ℑ)´d = 0, g0 = 0�.�KFåÆ��XÚµ

∇γ̇(t)γ̇(t) =

m
∑

r=1

urgr(γ(t)). (4.9)þã�§��Ǒµ
Υ̇(t) = S(Υ(t))+

m
∑

r=1

urgvlft
r (γ(t)). (4.10)

4.3 �a.�KFåÆ��XÚ��z(�
4.3.1 ¯K�ã�!�	�a��éä��XÚ�åÆ(��ûXÚ��35"3��éä��XÚ��ÆS�	���5�ÄkdLewis3©z[18]�Ñ"©z[18]éN�/ª�
��µ(φ,Dφ)§Ù¥φ´�.�m�m�N�"·��Ä���/§kXe¯Kµb�Qþ���éä∇þ��§�½ÿ/����éä��XÚ(Q,∇,ℑ)§

(i) Û��3��.�KFåÆ��XÚ(Q̃, ∇̃, ℑ̃0,d)±9��1w÷N�τ : U→ V§÷vµ
τ∗S = S̃+ g̃vlft

0 + d̃vlft,

τ∗gvlft
r = g̃vlft

r ? (4.11)ùp§UÚV©OL«(x0,v0) ∈ TQÚ(x̃0, ṽ0) ∈ TQ̃�ÛÜ��§v0 ∈ Tx0Q§ṽ0 ∈
Tx̃0Q̃"

(ii)Û��3��.�KFåÆ��XÚ(Q̃, ∇̃, ℑ̃0,d) ±9��1w÷N�τ : TQ→ TQ̃§÷v(4.11)?·�¡ÿ/����éä��XÚ(Q,∇,ℑ)ÛÜ(�Û¤«���G��m
– 19 –



1oÙ�a.�KFåÆ��XÚ��z(�ûåÆ��XÚ§XJ(i) ((ii))´�)�"��©z[18]¥�¯K§ùp¿Ø�½�.�m�mmN��?ÛAÏ/ª"Ì�8�Ò´(½�åÆ(��G��mûN��(�§l
£�ûåÆ��XÚ��35"
4.3.2 ÛÜ(Ø��!?Ø¯K(i)"�Ä.�KFåÆXÚ(4.7)"�SYM(g1, · · · , gm)´Qþ�¹Ñ\�þ|g1, · · · , gm ����©Ù§¿�§3déä∇½Â�é¡È$�e´4�"½Â 4.1: ¡.�KFåÆ��XÚ(4.7)3x0 ∈ Q :?´ÿ/���§eSYM(g1, · · · , gm)(x0) = Tx0Q"¡(4.7)´ÿ/���§eþã�ª3¤kx0 ∈
Q?þ¤á"Xe½n£�
þ�!¥�¯K(i)"½n 4.1: eQþ���éä∇ ´���§Kÿ/����éä��XÚ(Q,∇,ℑ)ÛÜ«���G��mûåÆXÚ��=��3½Â3x0 ∈ Q�ÛÜ��Wþ�éÜ©ÙD§����éä∇��3Dþ§∇�­ÇÜþR÷vé?¿�X ∈ Γ∞(D)§v ∈ Γ∞(TW)§kR(X,v)v ∈ Γ∞(D)§d	§[gi,D] ⊆ D§i =

1, · · · ,m"e¡·�r¯K(i)Údÿ/��åÆ��XÚ(Q,∇,ℑ)�ØC©Ùp��ûåÆ��XÚ��35¯K�éX"du��éä��XÚ(Q,∇,ℑ)´ÿ/���§��O���§§÷vo�ê�^�"duQþ���éä∇´���§·���ÿ/¤SǑ´���"�þ|gvlft
1
, · · · , gvlft

r ���5´w,�"�â·K3.3±9ìv�ÛÜL«§¯K(i)´�)���=��3dÿ/����éä��XÚ(Q,∇,ℑ)3,:(q0,v0) ∈ TQNC�ØC©Ùp��ûåÆ��XÚ(Q̃, ∇̃, ℑ̃0,d)"XeïÄÛ�ÿ/����éä��XÚ«�dØC©Ùp��ûåÆ��XÚ"£������XÚ�¡Ǒ´G��d�§e§�d���©Ó�éAu�Ó���Ñ\¤éX"äN5`§�Ä�����XÚ
ẏ = f0(y)+

r
∑

i=1

ui fi(y), y ∈M, (4.12)
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˙̃y = f̃0(ỹ)+

r
∑

i=1

ui f̃i(ỹ), ỹ ∈ M̃. (4.13)½Â 4.2: ¡XÚ(4.12)Ú(4.13)´G��d�§e�3�©Ó�φ : M→ M̃§÷v
φ∗ f0 = f̃0, φ∗gi = g̃i, i = 1, · · · ,r.XÚ(4.12)Ú(4.13)�¡Ǒ3z0 ∈ MÚz̃0 ∈ M̃:?´´ÛÜG��d�§e�3z0���U§±9z̃0 ���Ũ§÷vXÚ(4.12)��3UþÚXÚ(4.13)��3Ũþ´G��d�"�½2n�6/Mþ�����XÚ(3.1)§½ÂXe�þ|xS�µ

ν1 =
{

fi : 1 ≤ i ≤ r
}

ν2 =
{

[ fi,ad f0 f j] : 1 ≤ i, j ≤ r
}

· · ·
νi = ∪

p+l=i
[νp,ad f0νl]. (4.14)-

ν := span
R

∞
∪

i=1
νi.Kkµ·K 4.3: .�KFåÆXÚ(4.7)3x0 ∈Q?´ÿ/���§e�3y ∈ Tx0Q§÷v�ǑTQþ�����XÚ(4.8)§§÷vdimν(x0, y)= n"e����XÚ(3.1)3y0 ∈M?§ÛÜG��du��ÿ/��åÆXÚ(4.8)§Ké?¿�y0��S�:y§kµ

(1) dimν(y) = n and dim(ν+ [ f0,ν])(y) = 2n,

(2) [ν,ν](y) = 0"eXÚ(3.1)3y0 ∈M?ÛÜG��du��3"�Ý:(x0,0)NC�ÿ/��åÆ��XÚ§KØ
^�(1)Ú(2)§�k
(3) f0(y0) ∈ ν(y0).y²: éåÆ��XÚ(4.7)§kµ

〈

gi : g j

〉vlft
=

[

gvlft
i ,adS+gvlft

0
+dvlft g

vlft
j

]

. (4.15)

�
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1oÙ�a.�KFåÆ��XÚ��z(���O���·K¤á"Xe·K�Ñ
dÿ/��åÆXÚ�ØC©Ùp��ûåÆXÚ�åÆ(����5"éåÆ(���5�Vg§ë�©z[31]"·K 4.4: eÿ/��åÆ��XÚ«���dØC©ÙD̃p��ûåÆ��XÚ§KTûXÚ´ÿ/���"y²: �(x0,v0) ∈ TQ?�ÛÜ�I(U,xi)§��ØC©ÙD̃= span
{

∂
∂x1 , · · · , ∂

∂x2k

}

.-x = (x1, · · · ,x2k), y = (x2k+1, · · · ,x2n)"Kÿ/��åÆ��XÚkXeÛÜ©)µ
ẋ = f 1(x, y)+

m
∑

i=1

uig
1
i (x, y),

ẏ = f 2(y)+

m
∑

i=1

uig
2
i (y), (4.16)ùp

ẏ = f 2(y)+

m
∑

i=1

uig
2
i (y) (4.17)´��äk/ª(4.8)�åÆ��XÚ"éXÚ(4.16)§d(4.14)§·���éAu§�o�êν"K?��þ|G∈ νkXe/ªµ

G =















G1

G2















, (4.18)ùpG2´�â(4.14)éAuXÚ(4.17)�o�ê"�â·K4.3§dim(ν+ [ f ,ν])(z) = 2n"ùp§z = (z1,z2)3(x0,v0) = (z1
0
,z2

0
)�ÛÜ��S"dd§éz2

0
�ÛÜ��S�:z2§k

dim(ν̃+ [ f 2, ν̃])(z2) = 2n−2k. (4.19)¤±
dim ν̃(z2) ≥ n− k. (4.20)
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�®�ÆÆ¬Æ Ø©,��¡§du(4.17)´��2n−2k��åÆ��XÚ§K
dim ν̃(z2) ≤ n− k. (4.21)Ïd§�â(4.20)Ú(4.21)§éz2

0
�ÛÜ��S�:z2§k
dim ν̃(z2) = n− k. (4.22)

��â·K4.3§åÆ��XÚ(4.17)´ÿ/���"5º 4.5: e��ÿ/��åÆ��XÚ3"�Ý:NC«�dØC©Ùp��ûåÆ��XÚ§Kd·K4.3¥�(3)��§ûåÆ��XÚǑ´½Â33"�Ý:NC"d	§ûåÆXÚ3"�Ý:Ǒ÷vo�ê�^�"dd��§ûåÆXÚ´ÿ/���§ù´ÏǑXÚ3"�Ý:?÷vo�ê�^��duÿ/��5[32]",
§e�ÿ/��åÆ��XÚØ´3"�Ý:NC§ÒØUíäûXÚ´½Â3"�ÝNC"
åÆ��XÚ3�"�Ý?÷vo�ê�^�§¿ØU�Ñÿ/��5"dd��þã·K�7�5"é�°ÄåÆXÚ§kµíØ 4.6: d�°Ä.�KFåÆ��XÚ�ØC©Ùp��ûåÆXÚ�½´�°Ä�"y²: dþã·Ky²§(Øw,"Xe5£OUp�ûåÆ��XÚ�ØC©Ù�(�"·K 4.7: eÿ/��åÆ��XÚ3(x0,v0) ∈ TQ:NC«�d2k�ØC©ÙD̃p��ûåÆ��XÚ§�o�3:x0 ∈ Q��þ�k�©ÙD§÷vé(x0,v0)ÛÜ��S�?¿:(q,v)§ÑkDvlft(q,v) ⊆ D̃(q,v)"y²: À�(x0,v0) ∈ TQ��þ��I(U,xi)§��D̃ = span
{

∂
∂x1 , · · · , ∂

∂x2k

}"Px =

(x1, · · · ,x2k), y = (x2k+1, · · · ,x2n). K�ÿ/��åÆ��XÚkXe©)µ
ẋ = f 1(x, y)+

m
∑

i=1

uig
1
i (x, y),
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1oÙ�a.�KFåÆ��XÚ��z(�
ẏ = f 2(y)+

m
∑

i=1

uig
2
i (y).d·K4.4��§ûåÆ��XÚ

ẏ = f 2(y)+

m
∑

i=1

uig
2
i (y) (4.23)´ÿ/���"�â(4.14)§·���ÿ/��åÆXÚ�o�êν§�±ÀJn�3(x0,v0) = (z1

0
,z2

0
)ÛÜ��þ�5Õá��þ|V1, · · · ,Vn§¿�÷v3ÛÜ�I(U,xi)þ§V1, · · · ,Vn÷v

span
{

V2
i : i = 1, · · · ,n

}

(z2) = ν̃(z2),éz2
0
ÛÜ��S�?¿:z2þ¤á"ùp

Vi = (V1
i ,V

2
i ),

V2
i
´�â(4.14)���XÚ(4.23)�o�êν̃§dudim ν̃(z2) = n− k§b�V2

1
, · · · ,V2

n−k
´�5Õá�§�±���3¼êα j

i
∈ C∞(y)§÷v

V2
i = α

j

i
V2

j , (4.24)éi = n− k+1, · · · ,n§ j = 1, · · · ,n− k.-
Ṽi = Vi−α j

i
V j. (4.25)

i = n− k+1, · · · ,n, j = 1, · · · ,n− k.KXek��5Õá�þ|
Ṽn−k+1, · · · , Ṽn ∈ Γ∞(D̃). (4.26)�â(4.24)Ú·K4.3¥�(2)§kµ

[α
j

i
V2

j ,V
2
l ] = 0,
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i = n− k+1, · · · ,n, j = 1, · · · ,n− k l = 1, · · · ,n§dd

V2
l (α

j

i
) = 0.duα j

i
∈ C∞(y)§K

Vl(α
j

i
) = 0, (4.27)

i = n− k+1, · · · ,n, j = 1, · · · ,n− k, l = 1, · · · ,n.� Äx0 ∈ Q N C � Û Ü � I(V,qi)§ § � ÑTQþ � Û Ü �I(q1, · · · ,qn,v1, · · · ,vn)"3ù��Ie§
span {V1, · · · ,Vn} = span

{

∂

∂v1
, · · · , ∂

∂vn

}

. (4.28)

�u´�â(4.27)§kα j

i
∈ C∞(q1, · · · ,qn)"�â(4.25), Ṽi äkXe/ªṼi = vvlft

i
, i = n− k+1, · · · ,n§ùpvn−k+1, · · · ,vn´q0 ∈ QÛÜ��þ�k��5�'�þ|"-D = span {vn−k+1, · · · ,vn}"K�â(4.26)§·K¤á"Xey²½n4.1"y²: I�y²Xe·K:ÿ/����éä��XÚ(Q,∇,ℑ)3:(x0,v0) ∈ TQ NC«�dØC©Ùp��ûåÆXÚ��=��3½Â3x0 ∈ Q �ÛÜ��Wþ�éÜ©ÙD§÷v��éä∇��3Dþ§∇�­ÇÜþR÷vR(X,v)v ∈ Γ∞(D)§é?¿�X ∈ Γ∞(D), v ∈ Γ∞(TW)§d	§[gi,D] ⊆D§i = 1, · · · ,m.K�âXþ?Ø��½n4.1¤á"Äky²”=�”Ü©"-D̃Ǒÿ/����éä��XÚ(Q,∇,ℑ)�2k�ØC©Ù§§p�ûåÆ��XÚ"K�â·K4.7§k

Dvlft(q,vq) ⊆ D̃(q,vq),ùpD´��½Â3x0 ∈ Q�ÛÜ��Wþ�k�©Ù§(q,vq)3(x0,v0)�ÛÜ��W̃S§¿�τQ(W̃) =W"ùpτQ : TQ→ Q´ÝKN�"duD̃3ÿ/¤Se´ØC�§k
[

S,Dvlft
]

⊆ D̃.
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1oÙ�a.�KFåÆ��XÚ��z(�ÏǑdimspan
{

Dvlft,
[

S,Dvlft
]}

= 2k = dimD̃§K
D̃ = span

{

Dvlft, [S,Dvlft]
}

.du[S, [S,Dvlft]] ⊆ D̃§K�â(4.3)Ú(4.5)��
∇vqX ∈ Γ∞(D), (4.29)é?��X ∈ Γ∞(D), (q,vq) ∈ W̃"��éä∇´R-V�5�§¿�©ÙD��3:q ∈Qþ´�5�m§Ïdk
∇vqX ∈ Γ∞(D), (4.30)é?��X ∈ Γ∞(D),vq ∈ TqW"ǑÒ´`§��éä∇��3Dþ"dd§

D̃ = span
{

DH,Dvlft
}

. (4.31)�â(4.5)§
vlft(vq,R(X(q),vq)vq)+vervq(∇H

hlft(vq,vq)Z) ∈Dvlft(vq)é?¿�X ∈ Γ∞(D), (q,vq) ∈ W̃"ùpZ´TQþ��þ|§k/ª(4.6)"Ï Ǒ∇ � � 3Dþ § � â∇H� ½ Â § é ? ¿ �X ∈
Γ∞(D)§vervq(∇H

hlft(vq,vq)
Z) ∈Dvlft(vq)"u´

R(X(q),vq)vq ∈D(q). (4.32)é?��X ∈ Γ∞(D), (q,vq) ∈ W̃§ùÒk
R(X(q),vq)vq ∈D(q). (4.33)é?��X ∈ Γ∞(D),vq ∈ TqW"ÏǑD̃´éÜ�§K
[[

S,Dvlft
]

,
[

S,Dvlft
]]

⊆ D̃.�â(4.3)§DéÜ"
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�®�ÆÆ¬Æ Ø©�â(4.31)§du[gvlft
i
,D̃
]

⊆ D̃, i = 1, · · · ,m§¤±
[

gvlft
i ,XH

]

= (∇Xgi)
vlft ∈ Γ∞(D̃),é?��X ∈ Γ∞(D), i = 1, · · · ,m.Ïd∇Xgi ∈ Γ∞(D).u´é?��X ∈ Γ∞(D)§i = 1, · · · ,m,

[

X, gi
]

= ∇Xgi−∇gi
X ∈ Γ∞(D).ǑÒ´`

[

gi,D
] ⊆D, (4.34)

i = 1, · · · ,m. ¯ ¢ þ § 3 Û Ü � I(x, y)e £ ù p(x, y)÷ vD =

span
{

∂
∂x1 , · · · , ∂∂xk

}¤§ÏLO���
D̃ = span

{

∂

∂x1
, · · · , ∂

∂xk
,
∂

∂y1
, · · · , ∂

∂yk

}

.Ïd3ÛÜ�I(x, y)e§ûXÚäkXe/ª
ẋk+1 = yk+1,

· · ·
ẋn = yn,

ẏk+1 = −
∑

k+1≤i, j≤n

Γk+1
i j (xk+1, · · · ,xn)yiy j+

m
∑

i=1

uigk+1
i (xk+1, · · · ,xn),

· · ·

ẏn = −
∑

k+1≤i, j≤n

Γn
ij(x

k+1, · · · ,xn)yiy j+

m
∑

i=1

uign
i (xk+1, · · · ,xn), (4.35)§´����éä��XÚ"e¡y²¿©5"b��3k�éÜ©ÙD÷v½n4.1¥�ã�^�"-

D̃ = span
{

Dvlft, [S,Dvlft]
}

.
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1oÙ�a.�KFåÆ��XÚ��z(�du��éä∇��3Dþ§�â(4.3)§
D̃ = span

{

DH,Dvlft
}

.,��¡§du­ÇÜþ÷vR(X,v)v ∈ Γ∞(D)§é?¿�X ∈ Γ∞(D), v ∈
Γ∞(TW)§¿���éä∇��3Dþ§�o�â(4.5)§

[

S,
[

S,Dvlft
]]

⊆ span
{

DH,Dvlft
}

.Ïd
[

S,D̃
]

⊆ span
{

D̃,
[

S,
[

S,Dvlft
]]}

= D̃. (4.36)d	§du[gi,D
] ⊆D§¿���éä∇��3Dþ§K

[

gvlft
i ,XH

]

= (∇Xgi)
vlft = (∇gi

X+
[

X, gi
]

)vlft ∈ Γ∞(Dvlft),é?��X ∈ Γ∞(D)"ùÒk
[

gvlft
i ,D̃

]

⊆ D̃, (4.37)

i = 1, · · · ,m. du©ÙDéÜ���éä∇��3Dþ§��O���D̃´éÜ�"Kd(4.36)Ú(4.37)��D̃ÿ/����éä��XÚ(4.10)���ØC©Ù"e¡=Iy²d©ÙD̃p��ûXÚ´åÆ��XÚ"À�ÛÜ�I(x, y)÷vD = span
{

∂
∂x1 , · · · , ∂∂xk

}§ÏLO�·�k
D̃ = span

{

∂

∂x1
, · · · , ∂

∂xk
,
∂

∂y1
, · · · , ∂

∂yk

}

. (4.38)

�K3ÛÜ�I(x, y)e§ûXÚäk/ª(4.35)§§´åÆ��XÚ"ÏL½n4.1Ú·K4.4�y²§·�Ó�Ǒ¼�eãíØ§d§��§dÿ/����éä��XÚ�ØC©Ùp��ûåÆ��XÚ�½U«���éä��XÚ�åÆ(�"íØ 4.8: e¯K(i)�)§KûN�τ : U→ V�½äkXe/ªµτ= (Φ,TΦ)§Ù¥Φ : U1→ V1´��ìv§U1ÚV1©O´x0 ∈QÚx̃0 ∈ Q̃�ÛÜ��§TΦ�LΦ��N�"d	§ûåÆXÚǑ´��ÿ/����éä��XÚ"é�ÿ/����éä��XÚ§þãíØØ�½¤á"ûåÆXÚk�U$�Ø´����éä��XÚ"Þ~Xeµ
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�®�ÆÆ¬Æ Ø©~: �ÄR3þ���éä��XÚ
ẋ1 = y1,

ẋ2 = y2,

ẋ3 = y3,

ẏ1 = (y1)2+ y1y2,

ẏ2 = (y1)2− (y2)2+ y1y2+u,

ẏ3 = v. (4.39)�½��ìvτ :R6→R2§τ(x1,x2,x3, y1, y2, y3) = (y1, y2)§·�kXeûXÚµ
ẏ1 = (y1)2+ y1y2,

ẏ2 = (y1)2− (y2)2+ y1y2+u. (4.40)-
x̃1 = y1,

x̃2 = (y1)2+ y1y2,

y1 < 0§KXÚ(4.40)CǑ
˙̃x
1
= x̃2,

˙̃x
2
= 4x̃1x̃2− (x̃1)3+ x̃1u. (4.41)

�XÚ(4.41)´��3Q̃ = {x : x < 0}þ�.�KFåÆXÚ§�§Ø´��éä��XÚ§¿�§�åÆ(�ǑØ´l�XÚ(4.39)¥U«
5"
4.3.3 �Û(Ø�!?Ø¯K(ii)"½n 4.2: eQþ���éä∇��§¿�G¥��þ|þ��§Kÿ/����éä��XÚ(Q,∇,ℑ)�Û«���G��mûåÆ��XÚ��=��.6/Q«�n�m(�§¿�R�©ÙD÷v��éä∇���Dþ§∇�­Ç
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1oÙ�a.�KFåÆ��XÚ��z(�ÜþR÷vR(X,v)v ∈ Γ∞(D)§é?��X ∈ Γ∞(D), v ∈ Γ∞(TQ)§d	§[gi,D] ⊆
D§i = 1, · · · ,m"ùp§GL«�¹ℑ����þ|8Ü§¿�§3d∇½Â�é¡È$�e´4�"y²: e¯K(ii)�)§�â(4.11)§k

τ∗νi = ν̃i, i ∈N>0, (4.42)ùpνiÚν̃i ©O´d(4.14)�Ñ�§éAuÿ/����éä��XÚ(Q,∇,ℑ)Ú§�ûXÚ(Q̃, ∇̃, ℑ̃0,d)��þ|8Ü",��¡§�â·K3.3§·���ûN�τ : TQ→ TQ̃´��ìvN�"Kdþ!§τkXe/ªτ= (Φ,TΦ)§Ù¥§Φ : Q→ Q̃´��ìv"?�Ú§ûåÆ��XÚǑ´ÿ/����éä��XÚ"Ïd�â(4.42)§k
Φ∗G = G̃, �ùp§G̃L«�¹g̃i§i = 1, · · · ,m,����þ|8Ü§÷v3é¡È$�e�45"duξÚξ̃�;�©OǑQÚQ̃§�â½n3.1��§Φ : Q→ Q̃´n�m"�â½n4.1§(Ø¤á"ùÒ�¤
/=�0Ü©�y²"½n¿©5w,"£���iù6/¡�´Ø��z�§eTxQ?ÚW+�L«´Ø��z�"·�kXeíØµíØ 4.9: �(Q, g)´Ø��ziù6/, ∇ǑéA�Levi-Civitaéä"Ké?��ÿ/����éä��XÚ(Q,∇,ℑ)ÑØ�U�Û«�G��mûåÆ��XÚ"y²: l½n4.2�y²L§¥��§eÿ/����éä��XÚ�Û«�G��mûåÆ��XÚ§KûN�τ : TQ→ TQ̃äkXe/ªµτ = TΦ§ùp§Φ : Q→ Q̃´��ìv"¿�éÜ©ÙkerTΦ ÷v§��éä∇��3kerTΦþ"Ïd©ÙkerTΦ´ÿ/���",��¡§·�����iù6/´Ø��z���=�Qþ����ÿ/©Ù´TQ"dd§(Ø¤á"5º 4.10: l·K3.3�y²¥��§Ǒ�(3.3)¤á§�þ| f0, f1, · · · , fr���5^�´¿©�"d;�½n��§e{h0,h1, · · · ,hr}ǑNþ��x)Û�þ|§
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�®�ÆÆ¬Æ Ø©KTqOq0 = Lie∞ {h0,h1, · · · ,hr}q, é?��q ∈ Oq0"3ù«�/e§ª(3.3)Ǒ¤á"aquþãy²§·���3)Û5b�e§G��mûN�´��÷ìv"Ïd§e�K∇���5b�§UǑ��¯K(i)§(ii)¥�¤ké�Ñ´)Û�§K¤k±þ(Øþ¤á"
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1ÊÙ�aä�¤A5�����XÚ1ÊÙ �aä�¤A5�����XÚ�Ùl�¤XÚÆÝÑu§�	����XÚ��z(�"Äk�Ñ¯K�ã9ïÄÄÅ",�ké�"�K��/�Ñ(Ø"��?Ø��K�/"
5.1 ïÄ�µÚ¯K�ã�½n�6/Qþ�����XÚΣQ

ẋ = f0(x)+

m
∑

i=1

ui fi(x). (5.1)�ÄXe¯KµÛ��3Xe/ª�����XÚ
ż =

m
∑

i=1

vihi(z),

ẇ = h0(w), (5.2)÷v(5.1)´(5.2)�G��"ûXÚºïÄþã¯K���ÄÅ5gu��XÚ�$Ä5y¯K"¤¢$Ä5y=´�O��Ç�§U
3�½�mSò��XÚl�©G�°Ä��½ª�G��¯K"ù�¡ïÄ¥�Ǒ�õ�(ØÌ�´�é�5XÚÚ�¤XÚ[33−37]"'u����XÚ��5(�ïÄ§gþ­VÔ�
�±5®²k
éõ(Ø[38−44]"ùp§·�l�¤XÚÆÝÑu§F"ÏLþã¯K�ïÄ§5�«�
����XÚ�S3�¤A5§��¡&?XÚ(���§,��¡§lA^ÆÝ§ÏL|^®k��¤XÚ$Ä5y(Ø§�±)û�a�¤£�XÚ�$Ä5y¯K"AO/§kXe¯Kµ¯K1!Û�XÚ(5.1)´dä/ª(5.2)�XÚ�É�ØC©Ùp��ÛÜG��"ûXÚº¯K2!Û�XÚ(5.1)´dä/ª(5.2)�XÚ�É�ØC©Ùp���ÛG��"ûXÚºe¡·�£�Xþ¯K§(½XÚ(5.1)�(�"
– 32 –



�®�ÆÆ¬Æ Ø©
5.2 ä�¤A5�����XÚ
5.2.1 Frobenius½n�í2Ún 5.1: �r�©ÙD1Úm�©ÙD´n�6/Qþ�ü�éÜ©Ù§÷vD1 ⊆
D"K©ÙD1�?¿�|��Ä{X1, · · · ,Xr}§Ñ�*¿Ǒ©ÙDþ���Ä"y²: À��5Õá�þ|Xr+1, · · · ,Xm ∈D§÷v

D = span
R
{X1, · · · ,Xm} .À��þ|Xm+1, · · · ,Xn§��n��þ|X1, · · · ,Xn ´�5Õá�"-φi

t(x)L«d�þ|Xi)¤�L:x²L�mt�6"½Âx0 ∈QNC�ÛÜ�Iu1, · · · ,un

x(u) = φ1
u1

(φ2
u2

(· · ·φn
un

(x0))). (5.3)duX1, · · · ,Xr��§dd��X j =
∂
∂u j
, j = 1, · · · ,r.d	§

D = span
R

{

∂

∂u1
, · · · , ∂

∂um

}

. (5.4)

�(Ø¤á"Ún 5.2: �m1� © ÙD1Úm2� © ÙD2 Ǒn� 6 /Qþ � é Ü ©Ù "{X1, · · · ,Xm1

} Ǒ © ÙD1� � | � � Ä § ÷ v{Xm1−m3+1, · · · ,Xm1

}´© ÙD1 ∩ D2 � � | � � Ä " eXi÷ v[Xi,D2] ⊆ D2,i = 1, · · · ,m1,K{Xm1−m3+1, · · · ,Xm1

} �±*¿ǑD2 ��|��Ä{Y1, · · · ,Ym2

}§¿�÷v[Xi,Y j] = 0, i = 1, · · · ,m1, j = 1, · · · ,m2"y²: À��þ|Xm1+1, · · · ,Xn÷v
span

R

{

Xm1−m3+1, · · · ,Xm1+m2−m3

}

=D2¿�{X1, · · · ,Xn}´�5Õá�"�Ä�IC�(5.3)§kX j =
∂
∂u j

, j = 1, · · · ,m1. du[Xi,D2] ⊆D2§K
(

φi
t

)

∗D2 ⊆D2, i = 1, · · · ,m1. (5.5)

�
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1ÊÙ�aä�¤A5�����XÚÏdk ∂
∂u j
∈D2§ j =m1+1, · · · ,m1+m2−m3"u´(Ø¤á"½n 5.1: �m1�©ÙD1Úm2�©ÙD2Ǒn�6/Qþ�éÜ©Ù§¿�÷v©ÙD1+D2Ǒ~�éÜ©Ù"Ké?�p∈Q§�3ÛÜ�Ix= (x1, · · · ,xm1+m2−m3)÷vD1 = span

R

{

∂
∂x1
, · · · , ∂

∂xm1

}

, D2 = span
R

{

∂
∂xm1−m3+1

, · · · , ∂
∂xm1+m2−m3

}

.ùpm3L«©ÙD1∩D2��ê"y²: �{X1, · · · ,Xm3

}Ǒ©ÙD1 ∩D2��|��Ä"�âÚn5.1§·��±kò§*¿Ǒ©ÙD2��|��Ä{X1, · · · ,Xm2

}§2ò{X1, · · · ,Xm2

}*¿Ǒ©ÙD1+D2��|��Ä{X1, · · · ,Xm1+m2−m3

}"K�3Qþ�1w¼êbi
j
÷v

X̃ j = X j+m2
+

m2
∑

i=m3+1

bi
jXi ∈D1,

j = 1, · · · ,m1−m3"ÏLO���
[

X̃ j,Xk

]

∈ span
R

{

Xm3+1, · · · ,Xm2

}

, (5.6)¿�[X̃ j, X̃i

]

∈ span
R

{

Xm3+1, · · · ,Xm2

}

, i, j = 1, · · · ,m1−m3,k = 1, · · · ,m2.,��¡§duD1éÜ§K[X̃ j,Xl

]

∈D1§[X̃ j, X̃i

]

∈D1§i, j = 1, · · · ,m1−m3§l =

1, · · · ,m3"ùÒk
[

X̃i,Xl

]

=
[

X̃i, X̃ j

]

= 0

i, j = 1, · · · ,m1−m3, l = 1, · · · ,m3.ǑÒ´`§·���©ÙD1��|��Ä
{

X̃1, · · · , X̃m1−m3 ,X1, · · · ,Xm3

}

(5.7)

�Ù¥{X1, · · · ,Xm3

}´D1∩D2��|��Ä"d	§�â(5.6)§[X̃i,D2

]

⊆ D2§i =

1, · · · ,m1−m3"�âÚn5.2§��½n¤á"5º 5.3: ½n5.1Q3©z[23]¥�Ñ"ùpJø�y²�Ñ
Ïé��Ä���wª�{§;m
�) �©�§"2�â6Ý½n�wª)[44]§ÒU
��O�Ñþã½n¥��I"
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5.2.2 ÛÜ(Ø��!£�5.1!¥�¯K1"½n 5.2: ¯K£1¤´�)���=�XÚ(5.1) ÷vÛÜ�3Qþ�m2�¼êγ j

i
±9m�¼êβ j§��[ f0, fi] = γ

j

i
f j+β

j[ f j, fi]§i = 1, · · · ,m"y²: Ǒy²/=�0Ü©§�ÄXe½Â3*Ü6/Q×R�ÛÜ��þ��þ|
F = ( f0(x)+ fi(x)βi(x, y))

∂

∂x
+ g0(x, y)

∂

∂y
,

G = ( fi(x)αi
j(x, y))

∂

∂x
+ g j(x, y)

∂

∂y
,ùp(α

j

i
)m×m�ÛÉ"·�k

Φ∗F = h0(w)
∂

∂w
, Φ∗G = h j(z)

∂

∂z
.Ïd

[F,G] = 0,dd
αi

j

[

f0
∂

∂x
, fi
∂

∂x

]

+ (( f0
∂

∂x
)(αi

j)) fi
∂

∂x
+αi

jβ
l

[

fi
∂

∂x
, fl
∂

∂x

]

+αi
j(( fi

∂

∂x
)(βl)) fl

∂

∂x

− βl(( fl
∂

∂x
)(αi

j)) fi
∂

∂x
− ((g j

∂

∂y
)(βl)) fl

∂

∂x
+ ((g0

∂

∂y
)(αi

j)) fi
∂

∂x
= 0. (5.8)du(αi

j
)�ÛÉ§K

[ f0, fi]
∂

∂x
= γ

j

i
(x, y) f j

∂

∂x
+βl(x, y)[ fl, fi]

∂

∂x
, i = 1, · · · ,m. (5.9)du�þ|[ f0, fi], f j, [ fl, fi]´6/Qþ��þ|§d(5.9)��§¼êγ j

i
§βl ==�6Cþx"ǑÒ´`§γ j

i
= γ

j

i
(x)§βl = βl(x)"7�5�y"Ǒy²/�0Ü©§du[ f0, fi] = γ

j

i
f j+β

j[ f j, fi]§K
[ f0−β j f j, fi] = γ

j

i
f j+β

j[ f j, fi]−β j[ f j, fi]+ fi(β
j) f j = ξ

j

i
f j ⊆ span

R
{ f j}.
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1ÊÙ�aä�¤A5�����XÚùpξk
i
= γk

i
+ fi(β

k)"- f̃0 = ( f0 − β j f j)
∂
∂x
+ ∂
∂y

, f̃ j = f j
∂
∂x
"K f̃0, f̃ jǑQ×R��þ|"·�íä§�½�3m2�¼êη j

i
(x, y)÷v

[ f̃0,η
j

i
f̃ j] = 0. (5.10)��O�k

[ f̃0,η
j

i
f̃ j] = η

j

i
ξk

j (x) fk
∂

∂x
+ (( f0−β j f j)

∂

∂x
+
∂

∂y
)(ηk

i ) fk
∂

∂x
. (5.11)du( f0−β j f j)

∂
∂x
+ ∂
∂y
�òz§ÒkQ×Rþ�ÛÜ�I(x1, · · · ,xn,xn+1)÷v

( f0−β j f j)
∂

∂x
+
∂

∂y
=

∂

∂x1
.K�â(5.11), (5.10)�du

η
j

i
ξk

j +
∂

∂x1
(ηk

i ) = 0. (5.12)ù´�����5�§§Ïd)o�3"-(η
j

i
)(0) = I§K(5.12)k)η j

i
§÷vÝ
(ηi

j
)3":¿©���S�ÛÉ"�ÄéÜ©ÙD= Lie∞

{

f1
∂
∂x
, · · · , fm

∂
∂x

}

.ÏǑ[ f̃0, fi
∂
∂x

] = [ f0−β j f j, fi]
∂
∂x
∈D§u´

[ f̃0,D] ⊆D.du f̃0 <D,�o�â½n5.1§�3Q×Rþ�ÛÜ�I(z,w)§÷v
D = span

R

{

∂

∂z1
, · · · , ∂

∂zk

}

,±9
f̃0 =

∂

∂w
.du[ f̃0,η

j

i
f̃ j] = 0§K

η
j

i
f̃ j = h1

i (z)
∂

∂z1
+ · · ·+hk

i (z)
∂

∂zk
. (5.13)

�Ïd¯K1�)"5º 5.4: lþã½n��E5y²¥��§�¯K1�)�§o�±ÀJXe/
– 36 –



�®�ÆÆ¬Æ Ø©ª�
ẏ = 1, u = α(x, y)v+β(x),3�"�^e§*ÜXÚCǑ

ż =

m
∑

i=1

vihi(z), ẇ = 1.�é{`§�mCþ���G�*¿v±©l¤£�"Xe�Ñ���{Vã§�â§�±�ÑÛÜ�©Ó�Φ�wªO�
Ø^) �©�§"���{{{VVVããã. �½����XÚ(5.1).Ú½1. u�½n5.2¥�^�§¼�Qþ�¼êγ j

i
§β j"Ú½2. -D1 = span

R

{

f̃0 = ( f0−β j f j)
∂
∂x
+ ∂
∂y

}§D2 = Lie∞
{

f1
∂
∂x
, · · · , fm

∂
∂x

}"�â½n5.1y²¥�wªÚ½§O�D2��|��Ä§÷v§�� f̃0�Ó�¤©ÙD1+D2��|��Ä"
Step 3. �â[44]¥½n2.2�Ñ�wª�IC�§òÚ½3¥���©ÙD1+

D2��|��ÄIOz§dd¼�ÛÜ�©Ó�Φ"íØ 5.5: �½�Ñ\����XÚ(5.1)§e[ f0, fi
] ∈ span

R

{

f1, f2,
[

f1, f2
]}§i =

1,2§K¯K1�)"y²: �â½n5.2§¯K1�)��=�
[ f0, f1] = α1

1 f1+α
2
1 f2+β

1[ f1, f1]+β2[ f1, f2],

[ f0, f2] = α1
2 f1+α

2
2 f2+β

1[ f2, f1]+β2[ f2, f2].dd��(Ø¤á"íØ 5.6: �½�Ñ\n�����XÚ(5.1)§§÷vdimLie∞
{

f1, f2
}

= 3§K¯K1�)"y²: dudimLie∞
{

f1, f2
}

= 3§K[ f0, fi
] ∈ span

R

{

f1, f2,
[

f1, f2
]}

, i = 1,2"�âíØ5.5��(Ø¤á"
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1ÊÙ�aä�¤A5�����XÚ5º 5.7: é����Ñ\n�����XÚ§íØ5.6¥�^�oU�÷v"ù�¯¢3�½§ÝþNy
�{�k�5"~: �ÄR3þ�����XÚΣ
ẋ1 = 4x2x3+u1,

ẋ2 = −2x3−2x1u2,

ẋ3 = 1+u2, (5.14)

f0 = 4x2x3
∂
∂x1
−2x3

∂
∂x2
+ ∂
∂x3
, f1 =

∂
∂x1
, f2 = −2x1

∂
∂x2
+ ∂
∂x3
.��O���§Σ÷v½n5.2�^�§Ù¥β1 = 1−4x2x3, β

2 = 0"�ÄG�*ÜXÚ
ẋ1 = 4x2x3+u1,

ẋ2 = −2x3−2x1u2,

ẋ3 = 1+u2,

ẋ4 = 1. (5.15)-u1 = 1−4x2x3+v1,u2 = v2.K f̃0 =
∂
∂x1
−2x3

∂
∂x2
+ ∂
∂x3
+ ∂
∂x4

. ÏL�IC�
z1 = x1, z2 = x2+2x1x3−x2

1,

z3 = x3−x1, z4 = x4−x1,·�k
ż1 = 1+v1, ż2 = 2v1z3,

ż3 = v2−v1, ż4 = −v1,

f̃0� C � ¤ ∂
∂z1
" Ǒ I O z d � þ | ∂

∂z1
+ 2z3

∂
∂z2
− ∂

∂z3
−

∂
∂z4
, ∂∂z3
Ú[ ∂∂z1

+2z3
∂
∂z2
− ∂
∂z3
− ∂
∂z4
, ∂∂z3

]Ü¤�éÜ©Ù§�ÄXe�IC�
w1 = z1+ z4, w2 = z2, w3 = z3, w4 = z4. (5.16)

�3�IC�±9�"C��^e§*ÜXÚC¤
ẇ1 = 1, ẇ2 = 2w3v1,
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�®�ÆÆ¬Æ Ø©
ẇ3 = v2−v1, ẇ4 = −v1,§äk/ª(5.2)"

5.2.3 �Û(Ø
GǑëÏo+§g´§�o�ê"g��5zf½ÂXe

N = {F ∈ V∞(G) : ∀Y ∈ g, [F,Y] ∈ g} .

Gþ��þ|F�¡Ǒ´���§e§áuN"�ÄGþ���XÚ
ẋ =X(x)+

m
∑

i=1

uiXi(x) (5.17)Ù¥§X´���§Xiáug"·K 5.8: [27]o+þ����þ|´���"kXe�Û5(Øµ½n 5.3: �½o+þ�����XÚ(5.17)§K¯K2�)��=��3~êα j

i
§β j§÷v[X,Xi] = α

j

i
X j+β

j[Xi,X j], i = 1, · · · ,m"y²: =Iy²/�0Ü©"ÏǑ[X,Xi] = α
j

i
X j+β

j[Xi,X j]§K
[X+β jX j,Xi] = γ

k
i Xk ∈ span

R
{X1, · · · ,Xm},ùp§γk

i
´~ê"·�íä§�½�3η j

i
(y)§÷v

[

(X+βkXk)
∂

∂x
+
∂

∂y
, (η

j

i
(y)X j)

∂

∂x

]

= 0. (5.18)

(5.18)�du
dηk

i

dy
+η

j

i
γk

j = 0þªk)(η j

i

)

= eAy§A =
(

γk
j

)"duGþ��þ|X+β jX j´���§�â·K5.8§X+β jX j´���"½Â�
– 39 –



1ÊÙ�aä�¤A5�����XÚÛ�©Ó�Φ : G×R→ G×R

z = Φ
(−X−β jX j)
y (x),

w = y. (5.19)

�

Φò�þ|(X+β jX j)
∂
∂x +

∂
∂yCǑ ∂

∂w"é�þ|(η
j

i
(y)X j)

∂
∂x
§du(5.18)¤á§·�k

Φ
((−X−β jX j)

∂
∂x
− ∂
∂y

)

t Φ
η

j

i
(y)X j

∂
∂x

s (x0, y0) = Φ
η

j

i
(y)X j

∂
∂x

s Φ
((−X−β jX j)

∂
∂x
− ∂
∂y

)

t (x0, y0),éx0 ∈ G, y0 ∈R§dd
Φ

(−X−β jX j)

t Φ
η

j

i
(y0)X j

s (x0) = Φ
η

j

i
(y0−t)X j

s Φ
(−X−β jX j)

t (x0).3þã�§¥-t= y0§K
Φ

(−X−β jX j)
y0

Φ
η

j

i
(y0)X j

s (x0) = Φ
η

j

i
(y0−y0)X j

s Φ
(−X−β jX j)
y0

(x0)

= Φ
η

j

i
(0)X j

s Φ
(−X−β jX j)
y0

(x0) = Φ
Xi
s Φ

(−X−β jX j)
y0

(x0).dd���þ|(η
j

i
(y)X j)

∂
∂x
3�©Ó�(5.19)eCǑXi

∂
∂z
"u´��XÚ(5.17)´

ż =

m
∑

i=1

Xi(z)vi,

ẇ = 1��ÛG��"ûXÚ§ûN�ä²�m(�"5º 5.9: �
¢~�XfN=ÄSO(3)±9fN$ÄSE(3)��[45]þ÷vþã½n�^�"
5.2.4 í2�/��!�Ä¯K1�í2�/"½Â 5.10: ¡6/Qþ�XÚ˙̃x = f̃0(x)+

k
∑

i=1
ui f̃i(x)´XÚ(5.1)�fXÚ§e{ f̃0}+

span
R

{

f̃1, · · · , f̃k
}

⊆ { f0}+ span
R

{

f1, · · · , fm
}"
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�®�ÆÆ¬Æ Ø©¯K3!´Ä�3XÚ(5.1)�fXÚ§§´dä/ª(5.2)�XÚ�É�ØC©Ùp��ÛÜG��"ûXÚºXe~f`²
Xþ¯KäÕá�¿Â"~: �ÄR4þ�����XÚ
ẋ1 = 1, ẋ2 = u1

ẋ3 = x1u2, ẋ4 = u2.ùp f0 =
∂
∂x1
§ f1 =

∂
∂x2
§ f2 = x1

∂
∂x3
+ ∂
∂x4

”��O���
[ f0, f2] < span

R

{

f1, f2, [ f1, f2]
}

. (5.20)d½n5.2��§éTXÚ¯K1Ø�)"�+Xd§�Ä�"u1 = v, u2 = 0,§òþãXÚCǑ
ẋ1 = 1, ẋ2 = v,

ẋ3 = 0, ẋ4 = 0, (5.21)

�TXÚä�¤A5"·K 5.11: e¯K3�)§K�½�3Qþ�¼êα1, · · · ,αm ÷vαi[ f0, fi] ∈
span

R

{

fl,
[

f j, fk
]

, l, j,k = 1, · · · ,m
}§ùpα1, · · · ,αmØ�Ǒ""y²: d�§(5.8)��"·K 5.12: �½����XÚ(5.1)§e�3�òz�þ|g∈ span

R

{

f1, · · · , fm
}÷v[ f0, g] = 0§K¯K3�)"y²: �Ä�"ẏ = 1, ui = αiv,ùp§αi fi = g"��(Ø¤á"��AÏ�/´�©Ùspan

R

{

f1, · · · , fm
}éÜ�µ·K 5.13: �½����XÚ(5.1)§ f1, · · · , fm�òz§©Ùspan

R

{

f1, · · · , fm
}éÜ§K¯K3�)��=��3Qþ�¼êα1, · · · ,αm ÷vαi[ f0, fi] ∈

span
R

{

f1, · · · , fm
}§ùpα1, · · · ,αmØ�Ǒ""
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1ÊÙ�aä�¤A5�����XÚy²: Ǒy²/�/Ü©§du�3Qþ�¼êα1, · · · ,αm ÷vαi[ f0, fi] ∈
span

R

{

f1, · · · , fm
}§K

[

f0,α
i fi
]

= γ j f j.äóµ�½�3¼êβ1, · · · ,βm÷v
[

f0+β
j f j,α

i fi
]

= 0. (5.22)-[ f j, fi
]

= ξk
ji

fk"K(5.22)�du
(αi fi)(β

j)−βi( fi(α
j)−αkξ

j

ik
)+γ j = 0. (5.23)

�§´�)�§ÏǑ�þ|αi fi�òz"- f̃0 = ( f0+β
j f j)

∂
∂x
+ ∂
∂y
§ f̃ = (αi fi)

∂
∂x
"K f̃0�òz�[ f̃0, f̃

]

= 0"u´ÏL�"ẏ=

1, ui = αiv+βi,·�¼�äk/ª(5.2)�����XÚ"�â·K5.11��/=�0Ü©¤á"
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�®�ÆÆ¬Æ Ø©18Ù G��"�5z�Ù?Ø��;K§G��"�5z¯K"
6.1 ®k(Ø£��Ä����XÚ

ẋ = f0(x)+

k
∑

i=1

fi(x)ui,u = (u1, · · · ,uk)T ∈Rk,x ∈M. (6.1)XÚ(6.1)�¡Ǒ3q0 ∈M:NCÛÜG��"�du���5XÚ
ẏ = Ay+

k
∑

i=1

biv
i, y ∈Rn. (6.2)e�3ÛÜ�©Ó�Φ : U→ V±9�"C�

Φ : U×Rk→Rk,

Φ(q,u) = α(q)+β(q)u,òXÚ(6.1)C�Ǒ(6.2)"ùp§UǑq0 ∈M�ÛÜ��§V´Rn¥���mf8§β(q)´���_Ý
"3�k��5b��
Je§³/��XÚg����&E§G��"�5zkXe(Øµ�ÄXef�mx
Dm

q = span
R
{(ad f0) j fi(q) | j = 0, · · · ,m−1, i = 1, · · · ,k} ⊆ TqM.½n 6.1 (21): XÚ(6.1))ÛÜG��"�du�����5XÚ(6.2)��=�µ

(1)dimDm
q ,m = 1, · · · ,nØ�6uq;

(2)Dn
q = TqM;

(3)©ÙDm,m = 1, · · · ,néÜ"
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18ÙG��"�5z
6.2 ���5b��G��"�5z�!?Ø���5b�e�G��"�5z¯K"3�©AÛïÄ¥§k�Ǒ&?AÛé�g��¯K§~~¬/Ï�
	3(�"~Xn�mnØ§"AÛ¥�"Ó�ïÄ[46]�"ùpÏLÚ\��AÏ(���þ|§3�ØXÚ��5b�e§�ÑG��"�5z�Ǒx"½Â 6.1 (47): �©Ó�y = φ(x),φ : Rn → Rn�¡Ǒ´�CðÓ�(near iden-

tity)§eφ(0) = 0,
∂φ(x)

∂x
|x=0= E§ùpEǑn×nðÓÝ
"éüÑ\�/§k½n 6.2: ��þ| fi3p:?´)Û�§i ∈ {0,1}, f0(p) = 0§ f1�òz"K�33x = 0:?)Û�αÚβ§α(0) = 0§β(0) , 0§��(6.1)ÏL���CðÓ)ÛÓ�C�¤�5XÚ(6.2), Ù¥Ae1 = 0§��=��3�CðÓ)ÛÓ�y = ϕ(x)§÷v§-gε = ϕ∗ g̃ε§Ù¥g̃ε = εe1+ y§ké?��ε ∈ R, [ f0, gε] =

γε f1§[ f1, gε] = δε f1§Ù¥γε(x),δε(x) ∈R´3x = 0?�)Û¼ê"y²: 7�5y²w,"ey¿©5"-ϕ∗ f1 = (a1 a2 · · · an)T. du f1�òz§Ø���5§b�a1(0) , 0"Pϕ∗ f ′1 = 1
a1
ϕ∗ f1"Kϕ∗ f ′1 = (1 b2 · · · bn)§ùpbi =

ai
a1

. du[ϕ∗ f
′
1
, y] ∈

span
R
{ϕ∗ f

′
1
}§ � � O � � �[ϕ∗ f

′
1
, y] = ϕ∗ f

′
1
" Ǒ =ϕ∗ f ′1´ � � ~ � þ|§b2, · · · ,bnǑ~ê"�Ä�þ| f0"du[ f0, gε] = γε f1§K

[ϕ∗ f0, y] ∈ span
R
{ϕ∗ f

′
1}, (6.3)±9

[ϕ∗ f0,e1] ∈ span
R
{ϕ∗ f

′
1}. (6.4)-ϕ∗ f0 = (c1 c2 · · · cn)T”Pb1 = 1. K�â(6.3)Ú(6.4)§k

∂ci

∂y1
= τbi, i = 1, · · · ,n.

c j−
n
∑

k=1

yk

∂c j

∂yk
= ξb j, j = 1, · · · ,n.
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�®�ÆÆ¬Æ Ø©ùpτ,ξ3y = 0?)Û"�Ä¼êd j = c j− b jc1§ j = 2, · · · ,n§·�k
∂d j

∂y1
= 0, (6.5)

d j−
n
∑

k=1

yk

∂d j

∂yk
= 0, j = 2, · · · ,n. (6.6)

�dud j3y = 0?)Û§Ïd3y = 0?kTaylor�ª"d(6.5) Ú(6.6)��d j =
n
∑

i=2
l jiyi§c j = b jc1+

n
∑

i=2
l jiyi, j = 2, · · · ,n,ùpl ji´~ê"�ÄG��"u = −ϕ
∗c1

ϕ∗a1
+ 1
ϕ∗a1

v, K4ÜXÚC�Ǒ�5XÚẏ = Ay+ bv,ÏL)ÛÓ�y = ϕ(x),Ù¥§(A)i1 = 0§i = 1, · · · ,n"Ǒ=Ae1 = 0"¿©5�y"éõÑ\�/§k½n 6.3: � fi(x)3x = 0:?)Û§i ∈ {0,1, · · · ,m}§ f0(0) = 0§ f1, · · · , fm3x = 0:ÛÜ�5Õá"K�33x = 0:?)Û�α§β§Ù¥α(0) = 0§det(β(0)) , 0§��4ÜXÚ
ẋ = f0(x)+F(x)α(x)+F(x)β(x)vd�CðÓ)ÛÓ�C�¤�5XÚ

ẏ = Acy+Bv, Ac ∈Rn×n,B ∈Rn×m,Ù¥Ace1 = 0, ��=��3�CðÓ)ÛÓ�y = ϕ(x)§÷v-gε = ϕ∗ g̃ε§Ù¥g̃ε = εe1 + y, ké?¿�ε ∈ R, [ f0, gε] = Fγε§[F, gε] = Fδε§Ù¥γε(x) ∈ Rm

δε(x) ∈Rm×m3x = 0)Û"y²: 7�5y²w,"ey¿©5"-D = span
R
{ϕ∗ f1, · · · ,ϕ∗ fm}.-ϕ∗ fi = (ai1 · · · ain)T§i = 1, · · · ,m"Ø���5§b�a11(0) , 0, ·�^ 1

a11
ϕ∗ f1 5�Oϕ∗ f1"y3a11 = 1"�X^−a j1ϕ∗ f1 + ϕ∗ f j5�Oϕ∗ f j§ j =

2, · · · ,m. Ka j1 = 0§ j = 2, · · · ,m"duϕ∗ f1,ϕ∗ f2�5Õá§b�a22 , 0"·�^ 1
a22
ϕ∗ f25�Oϕ∗ f2§,�^−ak2ϕ∗ f2 +ϕ∗ fk 5�Oϕ∗ fk§k = 3, · · · ,m. Kak1 =

ak2 = 0§k = 3, · · · ,m.�E�^þãÚ½§Ø���5§·���ϕ∗ fl§Ù¥al1 = · · ·= al(l−1) = 0, all = 1.
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18ÙG��"�5zd	§D = span
R
{ϕ∗ f1, · · · ,ϕ∗ fm}.duϕ∗ fm÷v

[ϕ∗ fm, y] = τ1ϕ∗ f1+ · · ·+τmϕ∗ fm, (6.7)ùpτ1, · · · ,τm3y= 0?)Û§�âϕ∗ f1, · · · ,ϕ∗ fm�Xþ/ª§kτ1= · · ·= τm−1 =

0§τm = 1"u´[ϕ∗ fm, y] = ϕ∗ fm"Ǒ=ϕ∗ fmǑ��~�þ|"8 B Ú ½ " b �span
R
{ϕ∗fm−k+1, · · · ,ϕ∗fm} = span

R
{bm−k+1, · · · ,bm},ùpb j´~�þ|§(b j)1 = · · · = (b j) j−1 = (b j) j+1 = · · · = (b j)m = 0§(b j) j = 1, j =

m − k + 1, · · · ,m − 1, bm = ϕ∗ fm. y�Ä�þ|ϕ∗ fm−k§Ù¥a(m−k)1 = · · · =
a(m−k)(m−k−1) = 0§a(m−k)(m−k) = 1. du[ϕ∗ fm−k, y] ∈ D, aqª(6.7)e�íä§k

n
∑

i=1

yi

∂a(m−k) j

∂yi
=

m
∑

l=m−k+1

ζl(bl) j, (6.8)

j =m− k+1, · · · ,n§ùpζl3y = 0?)Û"d(6.8)��
n
∑

i=1

yi

∂a(m−k)l

∂yi
= ζl, l =m− k+1, · · · ,m.�ÄXe3y = 0?)Û¼ê

c j = a(m−k) j−
k
∑

i=1

(bm−k+i) ja(m−k)(m−k+i), (6.9)

j =m− k+1, · · · ,n. ÏLO���
n
∑

i=1

yi

∂c j

∂yi
= 0. (6.10)

(6.10)`²c jǑ~ê§ j =m− k+1, · · · ,n. Ïd�â(6.9)·�k
ϕ∗ fm−k− bm−k ∈ span

R
{bm−k+1, · · · ,bm},ùp§bm−kǑ~�þ|§(bm−k) j = 0, j , m− k and j ≤ m, (bm−k)m−k = 1. ǑÒ´`§

span
R
{ϕ∗fm−k, · · · ,ϕ∗fm} = span

R
{bm−k, · · · ,bm}.
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D = span

R
{b1, · · · ,bm}, (6.11)Ù¥b1, · · · ,bm´�5Õá~�þ|§(bi) j = 0, j , i§ j ≤m, (bi)i = 1, i = 1, · · · ,n.�Ä�þ| f0. �ϕ∗ f0 = (d1 · · ·dn)T.du[ϕ∗ f0, y] ∈D = span

R
{b1, · · · ,bm}, [ϕ∗ f0,e1] ∈D = span

R
{b1, · · · ,bm},K

di−
n
∑

k=1

yk
∂di

∂yk
=

m
∑

l=1

ξl(bl)i, i = 1, · · · ,n,

∂d j

∂y1
=

m
∑

l=1

τl(bl) j, j = 1, · · · ,n,ùp§ξ1, · · · ,ξm,τ1, · · · ,τm´y = 0?�)Û¼ê"�Ä¼ê
d̃i = di−

m
∑

l=1

(bl)idl, i =m+1, · · · ,n. (6.12)ÏLO���
∂d̃i

∂y1
= 0, (6.13)

d̃i−
n
∑

k=1

yk
∂d̃i

∂yk
= 0. (6.14)d(6.13)Ú(6.14)��d̃i =

n
∑

k=2
likyk§Ù¥lik´~ê"2�â(6.12)§·�k

(ϕ∗ f0−Ay) ∈D, (6.15)

�Ù¥Ý
A÷v(A)i1 = 0, i = 1, · · · ,n, (A)lk = 0, l = 1, · · · ,m and k = 1, · · · ,n.d(6.11)Ú(6.15)��¿©5¤á"Xe·K3�½§Ýþ`²
þã(Ø���5µ·K 6.2 (47): é�5XÚ(6.2)§e�3bi , 0, K�3�5G��"Ú�5�IC�§��C����5XÚ̇
z = Acz+

k
∑

i=1

b̃iv
i,z ∈Rn. (6.16)
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18ÙG��"�5z÷vAce1 = 0"~: �Ä����XÚ(6.1)§Ù¥ f0 =















−1
2x1

−x2















, f1 =















1

2x1















"� Ä � þ |g(x) =















x1
x1−1

2x1−1

− 1
2x1−1(x2

1
−2x2x1+x2)















§g(x)3x = 0? ) Û §g(0) =

0§∂g(x)
∂x |x=0 = E§¿�[ f0, g] = γ f1,Ù¥γ = −1

2

x2
1

(2x1−1)2 .

[

f1, g
]

= δ f1,Ù¥δ = 2x2
1
−2x1+1

(2x1−1)2 "�ÄXe�CðÓ�©Ó�
y = ϕ(x) =















x1−x2
1

x2−x2
1















,K
ϕ∗ f0 =















1
4 (
√

1−4y1−1)
√

1−4y1

−y2















,ϕ∗ f1 =















√

1−4y1

0















,ϕ∗g =















y1

y2















.

�

¨ˇK˘G˘”

u = (y) + (y)vp(y) = 1
4

√
1−4y1−1+4y1√

1−4y1

, β̃(y) = 1√
1−4y1

"Kϕ∗ f0 + ϕ∗ f1(α̃ + β̃v) =















v

−y2















"§´���5XÚ"
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�®�ÆÆ¬Æ Ø©( Ø�©�é����XÚ�.l�©AÛÆÝïÄÙ�z(�§JÑ¿ïÄ
ü�AÛVgµG��mûN�ÚG��"ûN�"éG��mûN�§�©�Ñ
�êÓ��AÛ¢y§¿£�
�a�.�KF(��G��mûN���35"�©lG��"ûN�ÆÝÑu§(½
�aä�¤A5�����XÚ(�"��ïÄ
���5b��G��"�5z¯K"Xe·��Ñ�
�YïÄSN"
1!1oÙ)û
�aéä��XÚG��mûN���35"?�Ú�¯K´§XÛ?nG��"ûN��/º��J:3uXÛǑx��©ÙD = {S}+ span

{

g
vl f t

1
, · · · , gvl f t
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