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Preface

Control theory has been well developed in the last 80 years ever since the

establishment of the Nyquist criterion in the 1930s. A central issue in

control science is to analyze the stability of specific motions and to design

controllers to realize those motions even when the systems are subject to

uncertainties or perturbations. Using a simple algebraic technique, the

aforementioned problem can be transformed into the stability problem of

a system at its equilibrium, and the design of a controller is to make the

corresponding close-loop system stable. This approach has come to be well-

known today as the stabilization problem, and therefore it is believed that

the most fundamental problem in control science is the stability analysis of

the system equilibrium and how to design a controller to stabilize it.

The concept of motion or equilibrium stability was formulated and care-

fully studied by Lyapunov more than a century ago. It originated from the

continuous dependence of the solutions of an ordinary differential equation

(ODE) on its initial values, and was then developed by extending the time-

domain to the infinite interval. This concept and various corresponding

analytic methods stimulated the rapid and fruitful developments of stabil-

ity theory to the benefit of control science. As a result, much of modern

control theory focuses on stability and stabilization issues.

There are two methods to describe a control system. One is formulated

in the time-domain, often referred to as the state-space method, which

considers time as an independent variable and uses differential or other ap-

propriate equations to describe the system dynamics. In the state-space set-

ting, both the input and the output signals are expressed as time-dependent

functions. The relationship between the input and the output is expressed

via system state equations indirectly, and the characteristics of the sys-

tem are usually not represented explicitly by the equations. Even so, this
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way of description is widely adopted by control scientists and engineers,

since there are a lot of mature mathematical tools that can be utilized,

especially for LTI systems where many powerful mathematical methods,

such as linear algebra and numerical mathematics, can be applied. The

other one is formulated in the frequency-domain, which is very popular in

the study of LTI systems. Theoretically, it can be obtained from integral

transformation (Fourier transform) of time-domain equations because of its

time-invariance. Essentially, it gives the input/output relationship in the

frequency-domain based on the fact that for LTI systems a harmonic input

will generate a harmonic steady output of the same frequency. This rela-

tionship can also be interpreted as that the system steady output is the

product of the system frequency characteristic and the system input. This

model uses the frequency of harmonic wave as the independent variable and

has clear physical meaning. Therefore, it has been widely used in control

engineering. For a practical system, usually only the input and the output

information can be obtained. The system states and the state equations

are determined only in the sense of mathematical equivalence. For instance,

when there is a revertible linear transformation on the system states in an

LTI system, although the equations that describe the system have been

changed, the basic input-output relationship through the equations remain

unchanged. Obviously, the approach based on frequency characteristics

or transformation functions has the superiority for describing the input-

output relationship with more explicit physical interpretation. Moreover,

frequency-domain descriptions can be obtained via experiments, and there

are also a handful of approximate but effective engineering methods for

systems analysis and design. Therefore, frequency methods are welcomed

by researchers and practitioners in control system applications. With the

rapid development of computer science, many effective computing meth-

ods have been applied to solving complicated and large-scale problems in

science and engineering, e.g., using algorithms related to numerical linear

algebra, which makes the state-space approach even more efficient and ef-

fective. Using these methods, it is possible to design controllers without

considering their physical meanings, then verify and improve the original

ideas through simulations. In this way, both the frequency-domain methods

and state-space methods can be further developed swiftly.

In the history of control science development, there were several suc-

cessful encounters between frequency-domain methods and state-space

methods. These encounters have led to a spurt in the evolvement of con-

trol science, and have established a strong link between frequency-domain
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methods, which possess physical and practical characteristics, and the state-

space methods, that have the powerful support of mathematical tools, thus

being able to handle time-varying and even nonlinear systems. This impor-

tant link has actually become a new growing point of control science.

As early as the time when Wiener proposed the filtering and prediction

problems of stationary stochastic processes, the solutions of the integral

equations describing the process could be archived via Fourier transform

in the frequency-domain framework. At that time, this method was just

an interesting experiment. The real encounter between time-domain and

frequency-domain methods took place through the important research on

absolute stability of control systems.

The notion of absolute stability was first proposed by Lur’e and Post-

nikov in the 1940s. Since then, a large number of papers and monographs

have appeared which investigate the problem of absolute stability. The ba-

sic system considered is composed of a linear time-invariant feed-forward

part and a nonlinear memoryless feedback part, subject to a sector-bounded

constraint. The system is said to be absolute stable if for any nonlinear

function satisfying the sector-bounded constraint the system is globally

asymptotically stable in the sense of Lyapunov. The fundamental problem

in the study of absolute stability is to establish conditions of absolute sta-

bility for the system. The conditions should consist of parameters of the

sector-bounded constraint and the information provided by the linear part

of the given system.

From the very beginning, Lur’e studied this problem in the state-space

framework. Therefore, a natural idea is to construct a quadratic Lyapunov

function containing the states and the nonlinear characteristics of the sys-

tem to determine the asymptotic stability of the system. However, Lya-

punov equations and inequalities had not been fully studied at that time.

Most of the research was carried out based on the Jordan canonical form

through linear transformations, and the conditions on absolute stability

was reduced to the existence of solutions to some algebraic equations. For

more than ten years after the problem was proposed, it had been widely

believed that Lyapunov method is the most appropriate and perhaps the

only effective way to solve the problem of absolute stability.

In 1960, the First International Federation Automatic Control (IFAC)

World Congress was held in Moscow. It symbolized the globalization of

control science in the scientific world. In that conference, V. M. Popov

presented an amazing result on the frequency-domain criterion of absolute

stability derived by using only Fourier transformation. Thereafter, this re-
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sult was developed and finally formulated as the Popov criterion and Circle

criterion. This is a “strong stimulus” which motivated many people to try

to find out the basic relationship between the frequency-domain criteria

and the time-domain Lyapunov methods. A naturally occurring problem

is, which of these two methods is more effective? If one method can be

used to test the system stability, can the other one do the same? With

a long-time effort made by many scientists from different countries world-

wide, this intrinsic relationship was gradually revealed. It is now known

that the frequency-domain criterion for absolute stability is formulated in

terms of some frequency-domain inequalities about the frequency response

of the linear part of the system and the parameters of the nonlinear sector-

bounded constraints; while in the Lyapunov function method, the prob-

lem of absolute stability is reduced to the existence of a positive-definite

matrix P to a matrix inequality with system matrices and parameters of

the sector-bounded constraints as coefficients. The feasibility of the LMI

(Linear Matrix Inequalities) condition ensures the negative definiteness of

the total derivative of the Lyapunov function xT Px. Now, it is also known

that the Kalman-Yakubovic-Popov (KYP) Lemma bridges the gap between

these two methods and establishes the equivalence relationship between the

frequency-domain and time-domain inequalities. The well-known positive

real lemma and the bounded real lemma can be regarded as special forms

of the KYP lemma.

The dynamics of a system should be reflected by the global nature of

the direction of the trajectory flow in the system state space. To describe

the global nature, a Lyapunov function in terms of the system states is usu-

ally considered. The value of the function determines a hypersurface in the

space. If the time derivative of the function along all the trajectories has

a fixed sign (for instance, a negative sign), then one knows the global flow

direction of all points on the hypersurface along the moving direction of

the system trajectories. Due to this geometric view, the Lyapunov method

has become an effective tool for determining the asymptotic stability or the

instability of a system. For linear systems, when the quadratic Lyapunov

function is positive definite, the corresponding hypersurface is an ellipsoid

and the system is asymptotically stable. If the function has a negative

value, then the system is unstable. In fact, whether the total derivative

(along all of the system trajectories) has a fixed sign or not is the essence

of the Lyapunov method, which can be used to discuss not only the asymp-

totic stability or instability of a single equilibrium, but also other system

properties such as boundedness of trajectories.
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Linear system models are comparatively simple, since the principle of

linear superposition holds for linear models. The dynamic characteristics

of a linear system in the whole state space can be obtained by investigat-

ing that in the neighborhood of the equilibrium, the origin of coordinates.

For time-invariant linear systems, when a quadratic Lyapunov function is

adopted, an important result on the system dynamics is described in the

following theorem.

Theorem. For an n-dimensional time-invariant linear system

ẋ = Ax, x ∈ R
n, A ∈ R

n×n

where A is a constant real matrix, suppose that A has k eigenvalues with

negative real parts and n − k eigenvalues with positive real parts. If there

exists a symmetric matrix P such that

PA + AT P = −Q, Q > 0,

then P has n − k negative eigenvalues and k positive eigenvalues.

This theorem is an extension of a corresponding classical Lyapunov re-

sult. It can also be used to discuss some other global properties of nonlinear

systems.

When a global property of a system is considered, it should describe the

global nature of the system rather than just some peculiar properties of a

specific solution of the system; for instance, the existence of multiple equi-

librium states in the system, if the system is just with a single equilibrium

state and it is asymptotically stable, the boundedness of all solutions, the

existence of auto-oscillations, and the nonexistence of chaos, etc. Mean-

while, such a property should be operational, or in other words mathemati-

cally provable or computationally tractable. In this book, we mainly study

global properties by means of the Lyapunov function method, dynamic

system analysis and ordinary differential equations theory, where the time-

domain results will be interpreted in the frequency-domain framework via

the KYP Lemma.

The main difficulties of nonlinear problems come from two aspects. One

is the dimensional difficulty. For a one-dimensional system, ξ̇ = ξ3, for in-

stance, although the equation is nonlinear, it can be easily checked as if

its solution is asymptotically stable without using advanced mathematics.

For a one-dimensional time-variant system, ξ̇ = a(t)ξ, for instance with

a(t) ≤ −β < 0, the asymptotic stability of the solution can be obtained im-

mediately. It also indicates that the frozen-coefficient method is applicable
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in this case. When the dimension is greater than one, the solution of the

system may generate “rotation”, and the above discussion may not be valid.

In the case when the dimension is only two, there still exist some theoret-

ical results based on the qualitative theory of planar dynamical systems.

When the dimension is greater than two, however, difficulties encountered

in analysis are far more than one can imagine. The other aspect is the es-

sential nonlinearity in the system, which is the main difficulty in nonlinear

analysis which typically cause many complicated dynamic behaviors that

would never happen in linear systems. A convenient method for a nonlin-

ear analysis is to use the same framework for linear systems, but it cannot

solve the essential nonlinearity problem in nonlinear systems. Similar to

the most fundamental non-convexity difficulty in nonlinear programming,

there are no available mathematical tools for effectively handling the essen-

tial nonlinearity in the study of general nonlinear control systems.

Nonlinear systems theory originated from research on nonlinear oscil-

lations, since auto-oscillation is the most common nonlinear phenomenon

found in nonlinear mechanical systems, such as the escapements frequently

used in clocks and watches, or such as found in the van der Pol circuit.

This phenomenon corresponds to an isolated periodic solution of the sys-

tem which cannot exist in linear systems. The research on auto-oscillations

was the first hot topic in the field of nonlinear systems research, from the

1940s to the 1960s. But the work was restrained to second-order systems

due to the lack of powerful computational tools and mathematical analysis

methods.

The second phase in the development of nonlinear science starts from

the finding of chaos, which is far more complicated than auto-oscillations.

The occurrence of auto-oscillations did not go beyond common imagina-

tions, because this phenomenon frequently emerges, in both natural and

artificial systems such as the beating of the heart and the swinging of pen-

dulums in mechanical clocks. In geometry, it is just a circle repeating itself

constantly, therefore a kind of regular motion as compared to chaotic dy-

namics. What is needed to study is why this periodic dynamic behavior

can be produced and how to produce it in a specific nonlinear system with-

out external periodic excitement. However, this is not the case for chaos,

which demonstrates some so-called fantastic nonlinear properties and com-

pletely altered people’s conventional view from several aspects. First of all,

the existence of chaos indicates that a deterministic system can produce

stochastic-like dynamical behaviors with the ergodicity property. Secondly,

it shows high sensitivity to initial conditions that linear and general nonlin-
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ear systems do not have. Thirdly, it typically demonstrates a strange attrac-

tor of the system, which is not the usual fixed point (zero-dimensional) and

limit cycle (one-dimensional) but a set of points with a very complicated

structure having a fractional dimension. Such a special dynamic process

has attracted a lot of interest from almost all scientific communities in the

past half a century. However, for the same reason as of lacking powerful

mathematical tools, although there are many qualitative results for low-

dimensional systems, quantitative analysis of higher-dimensional chaotic

systems basically relies on numerical computations and approximate ana-

lytic approaches today.

From the control theoretic point of view, the main research interest on

auto-oscillations or chaos is focused on how to design a controller to affect

the dynamic behavior; that is, to produce or eliminate such a behavior in

the given system by means of control. Both auto-oscillations and chaos

are non-convergent but bounded evolutionary processes. Auto-oscillations

also have the property of isolation. Neither of these two phenomena can

exist in linear systems, but exist only in two kinds of bounded evolutionary

processes: one is the trivial equilibrium point, which is either a unique point

or a subspace; the other is a compound oscillation composing of one or

several simple harmonic oscillations. A constant multiple of a same class of

compound oscillations is still a possible oscillation and all of them together

still compose a subspace. Apart from these two kinds of bounded dynamical

behaviors, the solutions of a linear system can be divided into two parts,

one is the convergent solutions and the other is unbounded solutions. When

the system does not have eigenvalues located on the imaginary axis, all its

bounded solutions will converge. This property is known as the property of

dichotomy. For a linear system, dichotomy is not a crucial property, but for

a nonlinear system this property can be used to exclude all processes that

are bounded but not convergent, such as auto-oscillations and chaos. When

a system does not have eigenvalues located on the imaginary axis, from the

premier theorem the distribution of the eigenvalues of the solution matrix P

to the Lyapunov equation is converted to that of the system relative to the

imaginary axis. This fact provides a fundamental principle for, and indeed

facilitates, the study of dichotomy and the construction of the existing area

of limit cycles.

The demands on control systems are numerous and in various forms,

many of their problems cannot be reduced to the stability of a single equi-

librium. Sometimes, demanding stability is hard to satisfy, at other times,

it may be unnecessary. Since some nonlinear characteristics of the system
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are uncertain, the equilibrium position may move constantly. In this case, it

is unreasonable to design a controller to stabilize such an equilibrium state,

and the primary demand would be that all the solutions of the system are

bounded, i.e., there are no divergent solutions in the system. Furthermore,

one may require every solution be convergent to a certain equilibrium. This

property is known as a gradient-like behavior in systems with multiple iso-

lated equilibria. An interesting fact for a time-invariant nonlinear system

is that when the system is gradient-like, there must exist at least one equi-

librium that is not asymptotically stable in the sense of Lyapunov. This

conclusion is drawn from the following contradiction: if all the equilibria

are asymptotically stable, then each equilibrium has an open set of domain

of attraction, while denumerable open sets cannot cover the whole space.

It is also known that even though a system is gradient-like, the character-

istics of the trajectories and the equilibria of the system in the phase space

are considerably complicated. Such a complex situation is very common in

electric power systems, for instance, and is a key to further understand the

modern power systems.

With so many and so complex non-conventional dynamic characteris-

tics, it is hard to make progress if one addresses the problems based on a

very general model of nonlinear systems, since the available mathematical

theory can only provide general conclusions rather than concrete details.

Therefore, the theme of this book will be focused on a commonly used

model in control science and engineering — the Lur’e-type systems, which

is composed of a linear feed-forward part and a nonlinear feedback part, as

depicted by the following block diagram:

G(s)

ϕ(·)

−

- g - -

¾

6
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This model was first proposed by Lur’e, with the background that a

hydraulic valve was used as the actuator in a driving system at that time.

Since the characteristic curve of the hydraulic valve is nonlinear with un-

certainty, ϕ(σ) is an uncertain function with constraints. The feature that

the nonlinearity can be separated from the linear part brought convenience

to the understanding and study of many physical systems. In fact, many

typical nonlinear systems, such as Chua’s circuit and the Lorenz system,

can be classified into this type. As a matter of fact, Lur’e system has be-

come a preferable model for investigating nonlinear dynamics such as chaos

today. During the first two decades since the proposal of the Lur’e system

framework, the research focus was on the absolute stability. Afterwards,

Leonov and some other researchers further extended the research scope to

other properties of the Lur’e systems, including dichotomy, gradient-like

behaviors and auto-oscillations. These efforts made it possible to design

controllers guaranteeing or eliminating some dynamical properties of the

given system. The main controller design methods adopted in this book is

to embed the controller parameters into some matrix inequalities by means

of the KYP lemma and to reduce the problem to the feasibility of solving

such matrix inequalities. By taking advantage of the peculiar merits of ma-

trix inequality methods, this book will further extend the frequency-domain

results on global properties, developed by Leonov et al., to controllers de-

sign and robustness analysis, which will provide a basic theoretical and

methodological framework for future investigations and applications.

This book is organized as follows: Chapters 1–2 are two introductory

chapters, presenting basic definitions and the major analytical tools that

will be used to study systems with stationary equilibrium sets. More specifi-

cally, Chapter 1 reviews some basic system concepts and formulas related to

linear matrix inequalities; Chapter 2 introduces some useful tools in control

systems synthesis and the linear matrix inequality approach to the standard

optimal and suboptimal H∞ control theory. Chapter 3 discusses analysis

and control problems for positive realness. In Chapter 4, a unified frame-

work is proposed for analyzing the absolute stability and dichotomy of Lur’e

systems. Chapter 5 introduces two kinds of special forms of pendulum-like

feedback systems and gives both time-domain and frequency-domain con-

ditions on global properties of such systems. Chapter 6 is devoted to con-

trollers design for a class of pendulum-like systems, which can ensure some

global properties and preserve physical and dynamical phenomena of the

pendulum-like systems simultaneously. Chapter 7 studies control problems

for a class of systems with input nonlinearities. In Chapter 8, a time-domain



ANALYSIS AND CONTROL OF NONLINEAR SYSTEMS WITH STATIONARY SETS - Time-Domain and Frequency-Domain 
Methods
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/chaos/6862.html

December 30, 2008 15:56 WSPC/Book Trim Size for 9in x 6in preface

xiv Preface

approach to robust analysis and control for uncertain feedback nonlinear

systems is presented and discussed. Chapter 9 is devoted to robust analysis

and synthesis on the nonexistence of periodic oscillations in nonlinear Lur’e

systems. Chapter 10 considers interconnected systems and discusses the ef-

fects of interconnections on system stability and performances. Chapter 11

demonstrates some applications of the theories established in the previous

chapters using Chua’s circuit as the main example. Finally, a bibliography

and index are provided to complete the presentation of the entire book.
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