您的位置:首页 >> 教职员工 >> 王启宁

Selected Publications: (* for corresponding author)

Books:

[3] Q. Wang*, N. Vitiello, Y. Hasegawa, Wearable Robotics for Motion Assistance and Rehabilitation, Springer, 2018. (accepted) 

[2] Q. Wang*, J. Zhu, Y. Huang, K. Yuan, L. Wang, Segmented foot with compliant actuators and its applications to lower-limb prostheses and exoskeletons, Smart actuation and sensing systems - Recent advances and future challenges, Edited by G. Berselli, R. Vertechy, G. Vassura, InTech, 2012. [Book Chapter] 

[1] Q. Wang*, C. Rong, G. Xie, L. Wang, Collaborative localization and gait optimization of sharPKUngfu team, Robotic Soccer, Edited by Pedro U. Lima, Vienna, I-Tech Education and Publishing, 2007. [Book Chapter]  

Journal Publications:

[73] E. Zheng*, J. Zhang, Q. Wang, H. Qiao, Continuous multi-DoF wrist kinematics estimation based on a human-machine interface with electrical-impedance-tomography (EIT), Frontiers in Neurorobotics, vol. 15, article 734525, 2021. 

[72] Y. Chen, Y. Zhao, D. Zhou, Y. Li, Q. Wang*, Z. Zhao*, Growth mechanism of transfer-free graphene synthesized from different carbon sources and verified by ion implantation, Journal of Applied Physics, vol. 130, no. 10, pp. 105105-1-7, 2021. 

[71] D. Xu, Q. Wang*, Noninvasive human-prosthesis interfaces for locomotion intent recognition: A review, Cyborg and Bionic Systems, vol. 2021, 9863761, pp. 1-14, 2021. 

[70] D. Huang, J. Li, T. Li, Z. Wang, Q. Wang*, Z. Li*, Recent advances on fabrication of microneedles on the flexible substrate, Journal of Micromechanics and Microengineering, vol. 31, no. 7, 073001, pp. 1-28, 2021. 

[69] E. Zheng*, J. Wan, L. Yang, Q. Wang, H. Qiao, Wrist angle estimation with a musculoskeletal model driven by electrical impedance tomography signals, IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2186-2193, 2021.

[68] S. Gao, J. Mai, J. Zhu, Q. Wang*, Mechanism and controller design of a transfemoral prosthesis with electrohydraulic knee and motor-driven ankle, IEEE/ASME Transactions on Mechatronics, vol. 26, no. 5, pp. 2429-2439, 2021. 

[67] E. Zheng*, Y. Li, Z. Zhao, Q. Wang, H. Qiao, An electrical-impedance-tomography-based interface for human-robot collaboration,  IEEE/ASME Transactions on Mechatronics, vol. 26, no. 5, pp. 2373-2384, 2021. 

[66] D. Xu, Y. Yang, R. Yang, Q. Wang*, Maximum dorsiflexion detection based on an on-board adaptive algorithm for transtibial amputees with robotic prostheses, IEEE Transactions on Automation Science and Engineering, vol. 18, no. 2, pp. 437-447, 2021.

[65] T. Yang, D. Huang, C. Li, D. Zhao, J. Li, M. Zhang, Y. Chen, Q. Wang, Z. Liang, X. Liang, Z. Li*, Y. Huang*, Rolling microneedle electrode array (RoMEA) empowered nucleic acid delivery and cancer immunotherapy, Nano Today, vol. 36, pp. 1-14, 2021. 

[64] Q. Wang*, Z. Zhou, Z. Zhang, Y. Lou, Y. Zhou, S. Zhang, W. Chen, C. Mao, Z. Wang, W. Lou, J. Mai, An underwater lower-extremity soft exoskeleton for breaststroke assistance, IEEE Transactions on Medical Robotics and Bionics, vol. 2, no. 3, pp. 447-462, 2020.   

[63] Y. Feng, J. Mai, S. Agrawal, Q. Wang*, Energy regeneration from electromagnetic induction by human dynamics for lower-extremity robotic prostheses, IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1442-1451, 2020.  

[62] X. Liu, Q. Wang*, Real-time locomotion mode recognition and assistive torque control for unilateral knee exoskeleton on different terrains, IEEE/ASME Transactions on Mechatronics, vol. 25, no. 6, pp. 2722-2732, 2020. 

[61] D. Xu, Q. Wang*, On-board training strategy for IMU-based real-time locomotion recognition of transtibial amputees with robotic prostheses, Frontiers in Neurorobotics, vol. 14, no. 47, pp. 1-12, 2020.  

[60] Y. Feng, Q. Wang*, Adjusting ankle angle measurement based on a strain gauge bridge for powered transtibial prosthesis, ASME Journal of Dynamic Systems, Measurement and Control, vol. 142, no. 7, pp. 1-10, 2020. 

[59] P. Sun, D. Xu, J. Mai, Z. Zhou, S. Agrawal, Q. Wang*, Inertial sensors based torso motion mode recognition for an active postural support brace, Advanced Robotics, vol. 34, no. 1, pp. 57-67, 2020.  

[58] C. Gong, D. Xu, Z. Zhou, N. Vitiello, Q. Wang*, BPNN-based real-time locomotion mode recognition for an active pelvis orthosis with different assistive strategies, International Journal of Humanoid Robotics, vol. 17, no. 1, pp. 1-18, 2020. 

[57] E. Zheng, Q. Wang*, H. Qiao, Locomotion mode recognition with robotic transtibial prosthesis in inter-session and inter-day applications, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 9, pp. 1836-1845, 2019.  

[56] D. Xu, X. Liu, Q. Wang*, Knee exoskeleton assistive torque control based on real-time gait event detection, IEEE Transactions on Medical Robotics and Bionics, vol. 1, no. 3, pp. 158-168, 2019.    

[55] S. Crea, S. Manca, A. Parri, E. Zheng, J. Mai, R. M. Lova, N. Vitiello, Q. Wang*, Controlling a robotic hip exoskeleton with noncontact capacitive sensors, IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 2227-2235, 2019.   

[54] X. Liu, Z. Zhou, J. Mai, Q. Wang*, Real-time mode recognition based assistive torque control of bionic knee exoskeleton for sit-to-stand and stand-to-sit transitions, Robotics and Autonomous Systems, vol. 119, pp. 209-220, 2019.  

[53] Y. Feng, Q. Wang*, Using one strain gauge bridge to detect gait events for a robotic prosthesis, Robotica, vol. 37, no. 11, pp. 1987-1997, 2019.   

[52] C. Ophaswongse, R. C. Murray, V. Santamaria, Q. Wang, S. K. Agrawal*, Human evaluation of wheelchair robot for active postural support (WRAPS), Robotica, vol. 37, no. 12, pp. 2131-2146, 2019. (Cover Story) 

[51] Y. Lou, R. Wang, J. Mai, N. Wang, Q. Wang*, IMU-based gait phase recognition for stroke survivors, Robotica, vol. 37, no. 12, pp. 2195-2208, 2019. 

[50] Y. Feng, W. Chen, Q. Wang*, A strain gauge based locomotion mode recognition method using convolutional neural network, Advanced Robotics, vol. 33, no. 5, pp. 245-263, 2019.  

[49] L. Huang, J. Mai, Q. Zhu, Z. Guo, S. Qin, P. Yang, X. Li, Y. Shi, X. Wang, Q. Wang, Na Li, C. Xie*, H. Liu*, Reversible rearrangement of magnetic nanoparticles in solution studied using time-resolved SAXS method, Journal of Synchrotron Radiation, vol. 26, pp. 1294-1301, 2019.

[48] D. Xu, Y. Feng, J. Mai, Q. Wang*, Real-time on-board recognition of continuous locomotion modes for amputees with robotic transtibial prostheses, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 10, pp. 2015-2025, 2018. 

[47] E. Zheng, J. Mai, Y. Liu, Q. Wang*, Forearm motion recognition with noncontact capacitive sensing, Frontiers in Neurorobotics, vol. 12, no. 47, pp. 1-13, 2018.  

[46] Y. Feng, Q. Wang*, Combining push-off power and nonlinear damping behaviors for a lightweight motor-driven transtibial prosthesis, IEEE/ASME Transactions on Mechatronics, vol. 22, no. 6, pp. 2512-2523, 2017.   

[45] A. Parri, K. Yuan, D. Marconi, T. Yan, S. Crea, M. Munih, R. M. Lova, N. Vitiello, Q. Wang*, Real-time hybrid locomotion mode recognition for lower limb wearable robots, IEEE/ASME Transactions on Mechatronics, vol. 22, no. 6, pp. 2480-2491, 2017. 

[44] E. Zheng, S. Manca, T. Yan, A. Parri, N. Vitiello, Q. Wang*, Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators, IEEE Transactions on Biomedical Engineering, vol. 64, no. 10, pp. 2419-2430, 2017.  

[43] G. Kong, Z. Zhou, Q. Wang, K. Kording, K. Wei*, Credit assignment between body and object probed by an object transportation task, Scientific Reports, 7:13415, 2017.  

[42] Z. Guan, T. Cai, Z. Liu, Y. Dou, X. Hu, P. Zhang, X. Sun, H. Li, Y. Kuang, Q. Zhai, H. Ruan,  X. Li, Z. Li, Q. Zhu, J. Mai, Q. Wang, L. Lai, J. Ji, H. Liu, B. Xia, T. Jiang, S. Luo, H. Wang, C. Xie*, Origin of the reflectin gene and hierarchical assembly of its protein, Current Biology, vol. 27, no. 18, pp. 2833-2842, 2017. (Cover Story)

[41]  G. Chen, Z. Zhou, N. Wang, Q. Wang*, Range-of-motion measurement with therapist-joined method for robot-assisted ankle stretching, Robotics and Autonomous Systems, vol. 94, pp. 34-42, 2017. 

[40] K. Yuan, Q. Wang, L. Wang*, Energy-efficient braking torque control of robotic transtibial prosthesis, IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 149-160, 2017.

[39] E. Zheng, Q. Wang*, Noncontact capacitive sensing-based locomotion transition recognition for amputees with robotic transtibial prostheses, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 2, pp. 161-170, 2017.

[38] Y. Huang, Q. Huang, Q. Wang*, Chaos and bifurcation control of torque-stiffness-controlled dynamic bipedal walking, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1229-1240, 2017. (ESI Highly Cited Paper) 

[37] Z. Zhou, Y. Sun, N. Wang, F. Gao, K. Wei, Q. Wang*, Robot-assisted rehabilitation of ankle plantar flexors spasticity: A 3-month study with proprioceptive neuromuscular facilitation, Frontiers in Neurorobotics, vol. 10, no. 16, pp. 1-14, 2016. 

[36] B. Chen, Y. Feng, Q. Wang*, Combining vibrotactile feedback with volitional myoelectric control for robotic transtibial prostheses, Frontiers in Neurorobotics, vol. 10, no. 8, pp. 1-14, 2016

[35] G. Chen, Z. Zhou, B. Vanderborght, N. Wang, Q. Wang*, Proxy-based sliding mode control of robotic ankle-foot system for post-stroke rehabilitation, Advanced Robotics, vol. 30, no. 15, pp. 992-1003, 2016.

[34] Y. Huang, Q. Wang*, Torque-stiffness-controlled dynamic walking: Analysis of the behaviors of bipeds with both adaptable joint torque and joint stiffness, IEEE Robotics and Automation Magazine, vol. 23, no. 1, pp. 71-82, 2016. 

[33] S. Sun, Y. Huang, Q. Wang*, Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking, Journal of Theoretical Biology, vol. 388, pp. 108-118, 2016. 

[32] Q. Wang*, K. Yuan, J. Zhu, L. Wang, Walk the walk: A lightweight active transtibial prosthesis, IEEE Robotics and Automation Magazine, vol. 22, no. 4, pp. 80-89, 2015.

[31] B. Chen, X. Wang, Y. Huang, K. Wei, Q. Wang*, A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution, Mechatronics, vol. 32, pp. 12-21, 2015.  

[30] Z. Zhou, Y. Zhou, N. Wang, F. Gao, K. Wei, Q. Wang*, A proprioceptive neuromuscular facilitation integrated robotic ankle-foot system for post stroke rehabilitation, Robotics and Autonomous Systems, vol. 73, pp. 111-122, 2015.

[29] B. Chen, Q. Wang*, L. Wang, Adaptive slope walking with a robotic transtibial prosthesis based on volitional EMG control, IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2146-2157, 2015.

[28] Y. Huang, Q. Wang*, Disturbance rejection of central pattern generator based torque-stiffness-controlled dynamic walking, Neurocomputing, vol. 170, pp. 141-151, 2015.

[27] K. Yuan, Q. Wang*, L. Wang, Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees, IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 618-630, 2015.

[26] B. Chen, E. Zheng, Q. Wang*, L. Wang, A new strategy for parameter optimization to improve phase-dependent locomotion mode recognition, Neurocomputing, vol. 149, pp. 585-593, 2015. 

[25] E. Zheng, L. Wang, K. Wei, Q. Wang*, A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees, IEEE Transactions on Biomedical Engineering, vol. 61, no. 12, pp. 2911-2920, 2014. 

[24] Y. Huang, B. Vanderborght, R. Van Ham, Q. Wang*, Torque-stiffness-controlled dynamic walking with central pattern generators, Biological Cybernetics, vol. 108, pp. 803-823, 2014.

[23] J. Zhu, Q. Wang*, L. Wang*, Effects of toe stiffness on ankle kinetics in a robotic transtibial prosthesis during level-ground walking, Mechatronics, vol. 24, pp. 1254-1261, 2014. 

[22] K. Wei*, J. Glaser, L. Deng, C. Thompson, I. Stevenson, Q. Wang, G. Hornby, C. J. Heckman, K. Kording, Serotonin affects movement gain control in the spinal cord, Journal of Neuroscience, vol. 34, no. 38, pp. 12690-12700, 2014.

[21] P. Cherelle*, G. Mathijssen, Q. Wang, B. Vanderborght, D. Lefeber, Advances in propulsive bionic feet and their actuation principles, Advances in Mechanical Engineering, pp. 1-21, 2014.

[20] B. Chen, E. Zheng, Q. Wang*, A locomotion intent prediction system based on multi-sensor fusion, Sensors, vol. 14, no. 7, pp. 12349-12369, 2014.

[19] J. Zhu, Q. Wang*, L. Wang, On the design of a powered transtibial prosthesis with stiffness adaptable ankle and toe joints, IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4797-4807, 2014.

[18] E. Zheng, B. Chen, X. Wang, Y. Huang, Q. Wang*, On the design of a wearable multi-sensor system for recognizing motion modes and sit-to-stand transition, International Journal of Advanced Robotic Systems, vol. 11, pp. 1-8, 2014.

[17] K. Wei*, X. Yan, G. Kong, C. Yin, F. Zhang, Q. Wang, K. Kording, Computer use changes generalization of movement learning, Current Biology, vol. 24, pp. 1-4, 2014.

[16] F. Tao*, Y. Laili, Y. Liu, Y. Feng, Q. Wang, L. Zhang, L. Xu, Concept, principle and application of dynamic configuration for intelligent algorithms, IEEE Systems Journal, vol. 8, no. 1, pp. 28-42, 2014.

[15] E. Zheng, B. Chen, K. Wei, Q. Wang*, Lower limb wearable capacitive sensing and its applications to recognizing human gaits, Sensors, vol. 13, no. 10, pp. 13334-13355, 2013.

[14] B. Chen, E. Zheng, X. Fan, T. Liang, Q. Wang*, K. Wei, L. Wang, Locomotion mode classification using a wearable capacitive sensing system, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 5, pp. 744-755, 2013.

[13] Y. Huang, B. Vanderborght, R. Van Ham, Q. Wang*, M. Van Damme, G. Xie, D. Lefeber, Step length and velocity control of a dynamic bipedal walking robot with adaptable compliant joints, IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 598-611, 2013.

[12] X. Yan, Q. Wang, Z. Lu, I. Stevenson, K. Kording, K. Wei*, Generalization of unconstrained reaching with hand weight changes, Journal of Neurophysiology, vol. 109, no. 1, pp. 137-146, 2013.

[11] Q. Ding, I. H. Stevenson, N. Wang, W. Li, Y. Sun, Q. Wang, K. Kording, K. Wei*, Motion games improve balance control in stroke survivors: a preliminary study based on the principle of constraint-induced movement therapy, Displays, vol. 34, no. 2, pp. 125-131, 2013.

[10] Y. Huang, Q. Wang*, Gait selection and transition of passivity-based bipeds with adaptable ankle stiffness, International Journal of Advanced Robotic Systems, vol. 9, pp. 99-110, 2012.

[9] Y. Huang, Q. Wang*, B. Chen, G. Xie, L. Wang, Modeling and gait selection of passivity-based seven-link bipeds with dynamic series of walking phases, Robotica, vol. 30, pp. 39-51, 2012.

[8] Y. Huang, Q. Wang*, Y. Gao, G. Xie, Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints, Acta Mechanica Sinica, vol. 28, no. 5, pp. 1457-1465, 2012.

[7] J. Wen, Q. Ding, Z. Yu, W. Sun, Q. Wang, K. Wei*, Adaptive changes of foot pressure in hallux valgus patients, Gait and Posture, vol. 36, no. 3, pp. 344-349, 2012.

[6] Q. Wang*, Y. Huang, J. Zhu, B. Chen, L. Wang, Dynamic walking on uneven terrains with passivity-based bipedal robots, Lecture Notes in Electrical Engineering, vol. 85, pp. 187-199, Springer-Verlag, 2011.

[5] Q. Wang*, Y. Huang, J. Zhu, L. Wang, D. Lv, Effects of foot shape on energetic efficiency and dynamic stability of passive dynamic biped with upper body, International Journal of Humanoid Robotics, vol. 7, no. 2, pp. 295-313, 2010.

[4] Q. Wang*, Y. Huang, L. Wang, Passive dynamic walking with flat feet and ankle compliance, Robotica, vol. 28, pp. 413-425, 2010.

[3] Q. Wang*, H. Li, F. Huang, G. Xie, L. Wang, Collaborative localization based formation control of multiple quadruped robots, Lecture Notes in Artificial Intelligence, vol. 5399, pp. 649-659, Springer-Verlag, 2009.

[2] C. Rong, Q. Wang*, Y. Huang, G. Xie, L. Wang, Autonomous evolution of high-speed quadruped gaits using particle swarm optimization, Lecture Notes in Artificial Intelligence, vol. 5399, pp. 259–270, Springer-Verlag, 2009.

[1] Q. Wang*, Y. Huang, G. Xie, L. Wang, Let robots play soccer under more natural conditions: experience-based collaborative localization in four-legged league, Lecture Notes in Artificial Intelligence, vol. 5001, pp. 353-360, Springer-Verlag, 2008.

Conference Publications:

[113] X. Liu, Q. Wang*, Incrementally classifying different walking activities based on wearable sensors, Proc. of the IEEE International Conference on Mechatronics and Machine Vision in Practice, Shanghai, China, 2021. (accepted)

[112] X. Wu, Z. Zhou, Q. Wang*, Real-time kinematics measurement of human lower-limb underwater motions based on inertial units, Proc. of the IEEE International Conference on Mechatronics and Machine Vision in Practice, Shanghai, China, 2021. (accepted)

[111] T. Wang, Y. Zhao, Q. Wang*, Flexible non-contact capacitive sensing for hand gesture recognition, Proc. of the International Conference on Intelligent Robotics and Applications, Yantai, China, 2021. (accepted)

[110] M. Xu, Z. Zhou, J. Shao, Q. Wang*, Design of a dynamic waist strap for reducing migration of knee exoskeletons, Proc. of the International Conference on Intelligent Robotics and Applications, Yantai, China, 2021. (accepted)

[109] G. Fu, J. Zhu, Z. Wang, J. Mai, Q. Wang*, Mechatronic design of a low-noise active knee prosthesis with high backdrivability, Proc. of the IEEE International Conference on Robotics and Automation, Xi'an, China, 2021, pp. 7027-7032.

[108] D. Huang, J. Li, Z. Wang, Z. Zhang, Q. Wang*, Z. Li*, Ultra-thin Flexible Neuro Probe Utilizing Biodegradable Collagen Microneedle, Proc. of the IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, China, 2021, pp. 1839-1842.

[107] T. Li, J. Li, Z. Wang, Y. Ren, Y. Jin, D. Huang, Q. Wang, Z. Li*, A dissolvable microneedle patch based on medical adhesive tape for transdermal drug delivery, Proc. of the IEEE 34th International Conference on Micro Electro Mechanical Systems, Munich, Germany, 2021, pp. 18-21.

[106] J. Li, Z. Zhang, Z. Wang, Y. Ren, D. Huang, Q. Wang, Z. Li*, Annular micro-needle array as a minimally invasive flexible dry electrode for on-hair EEG recording, Proc. of the IEEE 34th International Conference on Micro Electro Mechanical Systems, Munich, Germany, 2021, pp. 270-273.

[105] D. Xu, S. Crea, N. Vitiello, Q. Wang*, Capacitive sensing-based continuous gait phase estimation in robotic transtibial prostheses, Proc. of  the IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, New York, USA, 2020, pp. 298-303.

[104] P. Sun, Y. Lu, Q. Wang*, Design and mathematical model for soft pneumatic bending actuators with asymmetric cavity, Proc. of the IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, New York, USA, 2020, pp.346-351.  

[103] X. Guo, Z. Zhou, J. Mai, Q. Wang*, Kinematic and kinetic analysis of 3-RPR based robotic lumbar brace, Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Boston, USA, 2020, pp. 1828-1833.  

[102] Z. Zhou, Z. Wang, Q. Wang*, On the design of rigid-soft hybrid exoskeleton based on remote cable actuator for gait rehabilitation, Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Boston, USA, 2020, pp. 1902-1907.

[101] D. Xu, S. Crea, N. Vitiello, Q. Wang*, Online estimation of continuous gait phase for robotic transtibial prostheses based on adaptive oscillators, Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Boston, USA, 2020, pp. 1890-1895. 

[100] E. Zheng*, J. Zeng, D. Xu, Q. Wang, H. Qiao, Non-periodic lower-limb motion recognition with noncontact capacitive sensing, Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Boston, USA, 2020, pp. 1816-1821.  

[99] C. Mao, Y. Feng, Q. Wang*, Effects of ankle angle and braking torque on gait symmetry of transtibial amputee with robotic prosthesis, Proc. of the IEEE International Conference on Real-time Computing and Robotics, Asahikawa, Japan, 2020. (accepted) 

[98] E. Zheng*, J. Wan, D. Xu, Q. Wang, H. Qiao, Identification of muscle morphology with noncontact capacitive sensing: Preliminary study, Proc. of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, Canada, 2020, pp. 4109-4113. 

[97] Y. Lv, H. Fang, J. Xu, Q. Wang, X. Zhang*, A heterogeneous model for gait analysis of the lower-limb and the prosthesis coupled system, Proc. of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, St. Louis, USA, 2020. (accepted)

[96] S. Gao, C. Wang, J. Zhu, J. Mai, Q. Wang*, Hydraulic damping adaptation and swing assistance control of a robotic electrohydraulic transfemoral prosthesis: Preliminary results, Proc. of the IEEE International Conference on Advanced Robotics and Its Social Impacts, Beijing, China, 2019, pp. 365-368. 

[95] D. Xu, Q. Wang*, BP neural network based on-board training for real-time locomotion mode recognition in robotic transtibial prostheses, Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 2019, pp. 8152-8157. 

[94] E. Zheng*, Y. Li, Q. Wang, H. Qiao, Toward a human-machine interface based on electrical impedance tomography for robotic manipulator control, Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 2019, pp. 2768-2774. 

[93] Z. Zhou, X. Liu, Q. Wang*, Concept and prototype design of a soft knee exoskeleton with continuum structure (SoftKEX), Proc. of the 12th International Conference on Intelligent Robotics and Applications, Shenyang, China, 2019, pp. 73-82.  

[92] D. Xu, Q. Wang*, Capacitive sensing based knee-angle continuous estimation by BP neural networks, Proc. of the 12th International Conference on Intelligent Robotics and Applications, Shenyang, China, 2019, pp. 64-72.  

[91] Z. Zhou, Q. Wang*, Concept and prototype design of a robotic ankle-foot rehabilitation system with passive mechanism for coupling motion, Proc. of the IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Suzhou, China, 2019, pp. 1002-1005.  

[90] E. Zheng*, Q. Wang, H. Qiao, An automatic labeling strategy for locomotion mode recognition with robotic transtibial prosthesis, Proc. of the IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Suzhou, China, 2019, pp. 1010-1013.  

[89] D. Xu, Y. Yang, J. Mai, Q. Wang*, Capacitive sensing based recognition of ankle movement imagery in patients after amputation surgery, Proc. of the IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Suzhou, China, 2019, pp. 998-1001. 

[88] E. Zheng*, Z. Zhang, J. Mai, Q. Wang, H. Qiao, A pilot study on continuous breaststroke phase recognition with fast training based on lower-limb inertial signals, Proc. of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 2019, pp. 1228-1232. 

[87] Z. Zhou, X. Liu, Y. Jiang, J. Mai, Q. Wang*, Real-time onboard SVM-based human locomotion recognition for a bionic knee exoskeleton on different terrains, Proc. of the WearRAcon Conference, Arizona, USA, 2019, pp. 34-39. 

[86] C. Gong, D. Xu, Z. Zhou, N. Vitiello, Q. Wang*, Real-time on-board recognition of locomotion modes for an active pelvis orthosis, Proc. of the IEEE International Conference on Humanoid Robots, Beijing, China, 2018, pp. 346-350. (Best Interactive Paper Award Finalist) 

[85] P. Sun, J. Mai, Z. Zhou, S. Agrawal, Q. Wang*, Upper-body motion mode recognition based on IMUs for a dynamic spine brace, Proc. of the IEEE International Conference on Cyborg and Bionic Systems, Shenzhen, China, 2018, pp. 167-170.  

[84] Z. Zhang, Z. Zhou, E. Zheng, Y. Zhou, S. Zhang, J. Mai, Q. Wang*, Concept and prototype design of an underwater soft exoskeleton, Proc. of the IEEE International Conference on Cyborg and Bionic Systems, Shenzhen, China, 2018, pp. 139-143.  (Best Paper Award, Third Prize)

[83] J. Mai, W. Chen, S. Zhang, D. Xu, Q. Wang*, Performance analysis of hardware acceleration for locomotion mode recognition in robotic prosthetic control, Proc. of the IEEE International Conference on Cyborg and Bionic Systems, Shenzhen, China, 2018, pp. 607-611.  

[82] X. Liu, Z. Zhou, Q. Wang*, Real-time onboard recognition of gait transitions for a bionic knee exoskeleton in transparent mode, Proc. of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, USA, 2018, pp. 3202-3205.  

[81] E. Zheng*, Q. Wang, H. Qiao, Identification of the relationships between noncontact capacitive sensing signals and continuous grasp forces: Preliminary study, Proc. of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, USA, 2018, pp. 3922-3925.  

[80] X. Liu, Z. Zhou, Q. Wang*, Real-time onboard human motion recognition based on inertial measurement units, Proc. of the IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Tianjin, China, 2018, pp. 724-728.  

[79] Y. Lou, R. Wang, J. Mai, N. Wang, Q. Wang*, IMU-based gait phase recognition for stroke survivors: preliminary results, Proc. of the IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Tianjin, China, 2018, pp. 802-806.  

[78] D. Xu, Q. Wang*, Real-time onboard cascaded classification of continuous locomotion modes for prosthetic control, Dynamic Walking Conference, Florida, USA, 2018.

[77] J. Mai*, D. Xu, H. Li, S. Zhang, J. Tan, Q. Wang, Implementing a SoC-FPGA based acceleration system for on-board SVM training for robotic transtibial prostheses, Proc. of the IEEE International Conference on Real-time Computing and Robotics, Maldives, 2018, pp. 150-155.  

[76] D. Xu, Y. Yang, J. Mai, Q. Wang*, Muscle redistribution surgery based capacitive sensing for upper-limb motion recognition: Preliminary results, Proc. of the IEEE International Conference on Cyborg and Bionic Systems, Beijing, China, 2017, pp. 125-129. (Best Student Paper Award Finalist)  

[75] Z. Zhang, D. Xu, Z. Zhou, J. Mai, Z. He, Q. Wang*, IMU-based underwater sensing system for swimming stroke classification and motion analysis, Proc. of the IEEE International Conference on Cyborg and Bionic Systems, Beijing, China, 2017, pp. 268-272.  

[74] Y. Feng, J. Zhu, Q. Wang*, A strain gauge based calibration method for ankle joint angle measurement in powered transtibial prosthesis, Robotics: Science and Systems (RSS) Workshop on Human-Centered Robotics: Interaction, Physiological Integration and Autonomy, Cambridge, USA, 2017.

[73] J. Mai, Z. Zhang, Q. Wang*, A real-time intent recognition system based on SoC-FPGA for robotic transtibial prosthesis, Proc. of the 10th International Conference on Intelligent Robotics and Applications, Wuhan, China, 2017, pp. 280-289. 

[72] X. Liu, Z. Zhou, J. Mai, Q. Wang*, Multi-class SVM based real-time recognition of sit-to-stand and stand-to-sit transitions for a bionic knee exoskeleton in transparent mode, Proc. of the 10th International Conference on Intelligent Robotics and Applications, Wuhan, China, 2017, pp. 262-272. 

[71] E. Zheng*, Q. Wang, H. Qiao, A preliminary study of upper-limb motion recognition with noncontact capacitive sensing, Proc. of the 10th International Conference on Intelligent Robotics and Applications, Wuhan, China, 2017, pp. 251-261.  

[70] Z. Zhou, C. Wang, Z. Zhang, J. Mai, S. Yan, Z. Huang, N. Wang, Q. Wang*, Mechatronic design of an ankle-foot rehabilitation robot for children with cerebral palsy and preliminary clinical trial, Proc. of the 18th IEEE International Conference on Industrial Technology, Toronto, Canada, 2017, pp. 825-830. 

[69] Y. Huang, Y. Gao, Q. Wang*, Local stability of flat-foot dynamic bipedal walking with compliant joints, Proc. of the 18th IEEE International Conference on Industrial Technology, Toronto, Canada, 2017, pp. 819-824. 

[68] X. Liu, Z. Zhou, Q. Wang*, Recognizing sit-stand and stand-sit transitions for a bionic knee exoskeleton, Proc. of the Design of Medical Devices Conference, Minneapolis, USA, 2017.

[67] Y. Feng, J. Zhu, Q. Wang*, Metabolic cost of level-ground walking with a robotic transtibial prosthesis combining push-off power and nonlinear damping behaviors: preliminary results, Proc. of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, USA, 2016, pp. 5063-5066.

[66] B. Chen, Q. Wang*, Design and evaluation of a vibrotactile feedback system to improve volitional myoelectric control for robotic transtibial prostheses: A preliminary study, Proc. of the 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Singapore, 2016, pp. 1049-1054.

[65] Y. Huang*, B. Chen, L. Meng, Z. Yu, X. Chen, Q. Huang, Q. Wang, Exploiting human walking speed transitions using a dynamic bipedal walking robot with controllable stiffness and limb coordination, Proc. of the IEEE-RAS International Conference on Humanoid Robots, Cancun, Mexico, 2016, pp. 509-514. 

[64] S. Sun, X. Cao, Q. Wang*, Continuous decoding of movement onset and offset of sustained movements from cortical activities, Proc. of the IEEE/SICE International Symposium on System Integration, Sapporo, Japan, 2016, pp. 809-814.

[63] Z. Zhou, Y. Liao, C. Wang, Q. Wang*, Preliminary evaluation of gait assistance during treadmill walking with a bionic knee exoskeleton, Proc. of the IEEE International Conference on Robotics and Biomimetics, Qingdao, China, 2016, pp. 1173-1178. 

[62] Y. Feng, J. Zhu, Q. Wang*, Adding push-off power to a robotic transtibial prosthesis with nonlinear damping behaviors, Proc. of the 19th International Conference on Climbing and Walking Robots, London, UK, 2016, pp. 26-33

[61] K. Yuan, Q. Wang*, L. Wang, An energy-efficient torque controller based on passive dynamics of human locomotion for a robotic transtibial prosthesis, Proc. of the IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 2016, pp. 3543-3548.

[60] K. Yuan, A. Parri, T. Yan, L. Wang, M. Munih, Q. Wang*, N. Vitiello, A realtime locomotion mode recognition method for an active pelvis orthosis, Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, 2015, pp. 6196-6201.

[59] J. Zhu, Q. Wang*, X. Li, W. Sun, H. She, Q. Huang, Importance of series elasticity in a powered transtibial prosthesis with ankle and toe joints, Proc. of the IEEE International Conference on Robotics and Biomimetics, Zhuhai, China, 2015, pp. 541-546. (Finalist of Best Conference Paper Award)

[58] B. Chen, Q. Wang*, Combining human volitional control with intrinsic controller on robotic prosthesis: a case study on adaptive slope walking, Proc. of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 2015, pp. 4777-4780.

[57] K. Yuan, A. Parri, T. Yan, L. Wang, M. Munih, N. Vitiello, Q. Wang*, Fuzzy-logic-based hybrid locomotion mode classification for an active pelvis orthosis: preliminary results, Proc. of the  Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 2015, pp. 3893-3896.

[56] B. Chen, Y. Feng, Q. Wang*, Combining vibrotactile stimulation with volitional myoelectric control for robotic transtibial prostheses: preliminary results, Second Workshop on Present and Future of Non-Invasive PNS-Machine Interfaces: Progress in Restoring the Human Functions, Singapore, 2015. 

[55] E. Zheng, N. Vitiello, Q. Wang*, Gait phase detection based on non-contact capacitive sensing: preliminary results, Proc. of the 14th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics, Singapore, 2015, pp. 43-48.

[54] G. Chen, Z. Zhou, Y. Feng, R. Wang, N. Wang, Q. Wang*, Improving the safety of ankle-foot rehabilitation system with hybrid control, Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Busan, Korea, 2015, pp. 700-705.

[53] Y. Huang, L. Chen, B. Vanderborght, Q. Wang*, Transitions of three gaits in dynamic bipedal robot with adaptable joint stiffness, Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Busan, Korea, 2015, pp. 1334-1339.

[52] Y. Feng, B. Chen, K. Yuan, Q. Wang*, Robotic transtibial prosthesis with damping control improves amputee's level-ground walking at different speeds, Proc. of the 18th International Conference on Climbing and Walking Robots, Hangzhou, China, 2015, pp. 19-26. (Best Technical Paper Award, First Prize) 

[51] Y. Gao, Y. Huang, Q. Wang*, Local stability of a flat-foot biped with ankle compliance under energy shaping control, Dynamic Walking Conference, Columbus, USA, 2015.

[50] Y. Feng, B. Chen, T. Huang, Q. Wang*, Walking metabolic cost of transtibial amputee at slow speed using robotic prosthesis with damping behaviors, Dynamic Walking Conference, Columbus, USA, 2015.

[49] Y. Liao, Z. Zhou, Q. Wang*, BioKEX: A bionic knee exoskeleton with proxy-based sliding mode control, Proc. of the IEEE International Conference on Industrial Technology, Seville, Spain, 2015, pp. 125-130.

[48] S. Sun, B. Chen, Z. Zhou, B. Lv, J. Ge, Q. Wang*, Discrimination of imagined dorsiflexion and plantar flexion: preliminary results, IEEE EMBS BRAIN Grand Challenges Conference, Washington, USA, 2014.  

[47]  E. Zheng, J. Mai, Q. Wang*, On the design and implementation of a tri-ellipsoid unmanned autonomous blimp, Proc. of the IEEE/SICE International Symposium on System Integration, Tokyo, Japan, 2014, pp. 724-729.  

[46] J. Mai, L. Zhang, Q. Wang, Z. Fu, Y. He, F. Tao, 3D Atmospheric environment monitoring architecture and Voronoi diagrams-based concentration estimation model, Proc. of the IEEE/SICE International Symposium on System Integration, Tokyo, Japan, 2014, pp. 690-694.

[45] B. Chen, Q. Wang*, L. Wang, Promise of using surface EMG signals to volitionally control ankle joint position for powered transtibial prostheses, Proc. of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA, 2014, pp. 2545-2548.

[44] Z. Zhou, Y. Zhou, N. Wang, F. Gao, L. Wang, K. Wei, Q. Wang*, Changes of Achilles tendon properties via 12-week PNF based robotic rehabilitation of ankle joints with spasticity and/or contracture, Proc. of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA, 2014, pp. 1214-1217. 

[43] Y. Song, J. Mai, S. Yang, J. Tan, Y. Huang, Q. Wang*, An unconventional unmanned autonomous blimp: design, modeling and simulation, Proc. of the Asia Simulation Conference, Springer Communications in Computer and Information Science, vol. 474, 2014, pp. 356-367. 

[42] Y. Song, Y. Zhu, E. Zheng, F. Tao, Q. Wang*, Optimizing support vector machine with genetic algorithm for capacitive sensing based locomotion mode recognition, Proc. of the 13th International Conference on Intelligent Autonomous Systems, Padova, Italy, 2014.  

[41] Y. Huang, B. Vanderborght, Q. Wang*, Gait transitions of a torque-stiffness-controlled dynamic walking robot with central pattern generators, Dynamic Walking Conference, Zurich, Switzerland, 2014. 

[40] K. Yuan, Q. Wang*, J. Zhu, L. Wang, Motion control of a robotic transtibial prosthesis during transitions between level ground and stairs, Proc. of the European Control Conference, Strasbourg, France, 2014, pp. 2040-2045.

[39] S. Sun, Y. Huang, Q. Wang*, Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of limit cycle walking, Proc. of the 17th International Conference on Climbing and Walking Robots, Poznan, Poland, 2014, pp. 361-368. (Best Technical Paper Award, First Prize) 

[38] K. Yuan, Q. Wang*, J. Zhu, L. Wang, A hierarchical control scheme for smooth transitions between level ground and ramps with a robotic transtibial prosthesis, Proc. of the 19th IFAC World Congress, Cape Town, South Africa, 2014, pp. 3527-3532. 

[37] Z. Zhou, Y. Zhou, N. Wang, F. Gao, K. Wei, Q. Wang*, On the design of a robot-assisted rehabilitation system for ankle joint with contracture and/or spasticity based on proprioceptive neuromuscular facilitation, Proc. of the IEEE International Conference on Robotics and Automation, Hong Kong, China, 2014, pp. 736-741.

[36] Q. Wang*, K. Yuan, J. Zhu, L. Wang, Finite-state control of a robotic transtibial prosthesis with motor-driven nonlinear damping behaviors for level ground walking, Proc. of the 13th International Workshop on Advanced Motion Control, Yokohama, Japan, 2014, pp. 155-160.

[35] Y. Huang, B. Chen, Y. Gao, Q. Wang*, L. Wang, Adding adaptable stiffness joints to CPG-based dynamic bipedal walking generates human-like gaits, Proc. of the International Conference on Robot Intelligence Technology and Applications, Denver, USA, 2013, pp. 569-580.

[34] Y. Song, Y. Zhu, E. Zheng, F. Tao, Q. Wang*, Classifier selection for locomotion mode recognition using wearable capacitive sensing systems, Proc. of the International Conference on Robot Intelligence Technology and Applications, Denver, USA, 2013, pp. 763-774.

[33] E. Zheng, L. Wang, Y. Luo, K. Wei, Q. Wang*, Non-contact capacitance sensing for continuous locomotion mode recognition: design specifications and experiments with an amputee, Proc. of the 13th International Conference on Rehabilitation Robotics, Seattle, USA, 2013.

[32] K. Yuan, S. Sun, Z. Wang, Q. Wang*, L. Wang, A fuzzy logic based terrain identification approach to prosthesis control using multi-sensor fusion, Proc. of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013, pp. 3361-3366.

[31] Y. Huang, Q. Wang*, Torque-stiffness-controlled dynamic walking, Dynamic Walking Conference, Pittsburgh, USA, 2013.

[30] H. Wang, J. Mai, Y. Song, C. Wang, L. Zhang, F. Tao, Q. Wang, A 3D visualization framework for real-time distribution and situation forecast of atmospheric chemical pollution, Proc. of the Asia Simulation Conference, Springer Communications in Computer and Information Science, vol. 402, 2013, pp. 415-420.

[29] K. Yuan, Q. Wang*, Z. Wang, S. Sun, L. Wang, Proprioceptive-interactive fusion for real-time terrain identification in powered transtibial prostheses, Proc. of the IEEE International Conference on Industrial Technology, Cape Town, South Africa, 2013.

[28] E. Zheng, B. Chen, Q. Wang*, K. Wei, L. Wang, A wearable capacitive sensing system with phase-dependent classifier for locomotion mode recognition, Proc. of the 4th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, 2012, pp. 1747-1752.

[27] X. Wang, Q. Wang*, E. Zheng, K. Wei, L. Wang, A wearable plantar pressure measurement system: design specifications and first experiments with an amputee, Proc. of the 12th International Conference on Intelligent Autonomous Systems, Jeju Island, Korea, 2012, pp. 273-281.

[26] J. Mai, Y. Gao, Y. Huang, Q. Wang*, L. Zhang, Analyzing effects of ankle-foot parameters on passive bipeds based on dynamic walking modeling, Proc. of the Asia Simulation Conference, Springer Communications in Computer and Information Science, vol. 323, 2012, pp. 135-143.

[25] J. Zhu, Q. Wang*, Y. Huang, L. Wang, Adding compliant joints and segmented foot to bio-inspired below-knee exoskeleton, Proc. of the IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, pp. 605-610.

[24] K. Yuan, J. Zhu, Q. Wang*, L. Wang, Finite-state control of powered below-knee prosthesis with ankle and toe, Proc. of the 18th IFAC World Congress, Milan, Italy, 2011, pp. 2865-2870.

[23] Y. Huang, Q. Wang*, B. Chen, L. Wang, Effects of ankle stiffness on gait selection of dynamic bipedal walking with flat feet, Proc. of the 12th IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 2011.

[22] Q. Wang*, K. Wei, L. Wang, D. Lv, Modeling and stability analysis of human normal walking with implications for the evolution of the foot, Proc. of the 3rd IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, 2010, pp. 479-484.

[21] J. Zhu, Q. Wang, L. Wang, PANTOE 1: Biomechanical design of powered ankle-foot prosthesis with compliant joints and segmented foot, Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, Canada, 2010, pp. 31-36.

[20] Y. Huang, B. Chen, Q. Wang*, L. Wang, Adding segmented feet to passive dynamic walkers, Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, Canada, 2010, pp. 652-657.

[19] F. Luo, G. Xie, Q. Wang, L. Wang, Development and gait analysis of five-bar mechanism implemented quadruped amphibious robot, Proc. of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, Canada, 2010, pp. 633-638.

[18] Y. Huang, B. Chen, Q. Wang*, D. Lv, L. Wang, Effects of segmented feet on energetic efficiency of passive dynamic walking, Proc. of the 13th International Conference on Climbing and Walking Robots, Nagoya, Japan, 2010.

[17] J. Zhu, K. Yuan, Q. Wang*, L. Wang, Development of biomimetic powered ankle-foot prosthesis with compliant joints and segmented foot, Proc. of the 13th International Conference on Climbing and Walking Robots, Nagoya, Japan, 2010.

[16] Y. Huang, B. Chen, Q. Wang*, K. Wei, L. Wang, Energetic efficiency and stability of dynamic bipedal walking gaits with different step lengths, Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, China, 2010, pp. 4077-4082.

[15] Q. Wang*, L. Wang, Y. Huang, W. Chen, J. Zhu, Three-dimensional quasi-passive dynamic bipedal walking with flat feet and compliant ankles, Proc. of the 48th IEEE Conference on Decision and Control, Shanghai, China, 2009, pp. 8200-8205.

[14] Q. Wang*, W. Chen, L. Wang, Ankle actuation for three-dimensional limit cycle walkers in lateral balance, Proc. of the 12th International Conference on Climbing and Walking Robots, Istanbul, Turkey, 2009.

[13] Y. Huang, Q. Wang*, L. Wang, Modeling passivity-based seven-link bipeds with dynamic switching of walking phases, Proc. of the 12th International Conference on Climbing and Walking Robots, Istanbul, Turkey, 2009.

[12] Q. Wang*, L. Wang, J. Zhu, Y. Huang, G. Xie, Passivity-based dynamic bipedal walking with terrain adaptability: dynamics, control and robotic applications, Proc. of the 6th International Conference on Informatics in Control, Automation and Robotics, Milan, Italy, 2009, pp. 29-36.

[11] D. He, Q. Wang, C. Rong, G. Xie, Generating high-speed three-dimensional dynamic quadruped walking using an evolutionary search, Proc. of the 6th International Conference on Informatics in Control, Automation and Robotics, Milan, Italy, 2009, pp. 167-172.

[10] F. Huang, L. Wang, Q. Wang, M. Wu, Y. Jia, Coordinated control of multiple mobile robots in pursuit-evasion games, Proc. of the 28th American Control Conference, St. Louis, Missouri, USA, 2009, pp. 2861-2866.

[9] Q. Wang*, Y. Huang, L. Wang, D. Lv, Stability and adaptability of passivity-based bipedal locomotion with flat feet and ankle compliance, Proc. of the North American Congress on Biomechanics, Ann Arbor, Michigan, USA, 2008.

[8] Q. Wang*, M. Wu, Y. Huang, L. Wang, Formation control of heterogeneous multi-robot systems, Proc. of the 17th IFAC World Congress, Seoul, Korea, 2008, pp. 6596-6601. (Invited paper)

[7] Q. Wang*, Y. Huang, L. Wang, Three-dimensional passive dynamic walking with flat feet and ankle compliance, Dynamic Walking Conference, Delft, Netherlands, 2008.

[6] Y. Huang, Q. Wang*, G. Xie, L. Wang, Optimal mass distribution for a passive dynamic biped with upper body considering speed, efficiency and stability, Proc. of the IEEE/RAS 8th International Conference on Humanoid Robots, Daejeon, Korea, 2008, pp. 515-520.

[5] Q. Wang*, L. Wang, Ground contact angle in bipedal locomotion towards passive dynamic walking and running, Proc. of the 26th American Control Conference, New York, USA, 2007, pp. 2855-2860.

[4] Q. Wang*, G. Xie, L. Wang, M. Wu, Integrated heterogeneous multi-robot system for collaborative navigation, Frontiers in the Convergence of Bioscience and Information Technologies, Korea, 2007, pp. 651-656.

[3] J. Mai, Q. Wang*, L. Wang, FPGA-based gait control system for passive bipedal robots, Proc. of the IEEE/RAS 7th International Conference on Humanoid Robots, Pittsburgh, USA, 2007, pp. 341-345.

[2] X. Yang, Q. Wang*, G. Xie, L. Wang, Fuzzy logic based body state estimation in a bipedal robot with passive dynamic gaits, Proc. of the IEEE/RAS 7th International Conference on Humanoid Robots, Pittsburgh, USA, 2007, pp. 336-340.

[1] Q. Wang*, L. Liu, G. Xie, L. Wang, Learning from human cognition: collaborative localization for vision-based autonomous robots, Proc. of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 3301-3306. 

Other Publications:

[10] 吕阳, 方虹斌, 徐鉴, 马建敏, 王启宁, 张晓旭*, 四连杆膝关节假肢的动力学建模与分析, 力学学报, vol. 52, no. 4, pp. 1157-1173, 2020.  

[9] Q. Wang*, N. Vitiello, S. Mohammed, S. Agrawal, Special issue on wearable robotics: Dynamics, control and applications [Editorial], Robotica, vol. 37, no. 12, pp. 2011-2013, 2019.  

[8] T. Masuda, A. Menciassi, Q. Wang, Special issue on cyborg and bionic systems [Editorial], Advanced Robotics, vol. 33, no. 5, pp. 207, 2019.

[7] 王启宁*, 郑恩昊, 许东方, 麦金耿, 基于非接触式电容传感的人体运动意图识别, 机械工程学报, vol. 55, no. 11, pp. 19-27, 2019.  

[6] 许东方, 冯仰刚, 麦金耿, 王启宁*, 面向速度适应的动力小腿假肢蹬地时刻在线识别, 中国科学:技术科学, vol. 48, no. 12, pp. 1321-1330, 2018.  

[5] 王荣丽, 周志浩, 席宇诚, 王启宁, 王宁华*, 黄真*, 机器人辅助脑瘫儿童踝关节康复临床初步研究, 北京大学学报(医学版), vol. 50, no. 2, pp. 207-212, 2018

[4] S. Mohammed*, J. C. Moreno, T. Sugar, Y. Hasegawa, N. Vitiello, Q. Wang, C. J. Walsh, Wearable robotics for motion assistance and rehabilitation [TC Spotlight], IEEE Robotics and Automation Magazine, vol. 25, no. 1, pp. 19-28, 2018. 

[3] F. Gao*, G. Li, H.Wu, Q. Wang, J. Liu, J. Keogh, Advances in rehabilitation and assistive robots for restoring limb function in persons with movement disorders [Editorial], Applied Bionics and Biomechanics, vol. 2016, 2 pages, 2016.

[2] 侯增广*, 赵新刚, 程龙, 王启宁, 王卫群, 康复机器人与智能辅助系统的研究进展, 自动化学报, 42(12):1765-1779, 2016.

[1] 王启宁*, 郑恩昊, 陈保君, 麦金耿. 面向人机融合的智能动力下肢假肢研究现状与挑战, 自动化学报, 42(12):
1780-1793, 2016.

Patents:

[33] 一种柔性丝驱动活塞轴、驱动内管组件及驱动执行机构,国家发明专利,专利授权号:ZL201910976402.8,授权日期:2020.10.27

[32] 一种弹性预紧柔性丝驱动装置,国家发明专利,专利授权号:ZL201910976403.2,授权日期:2020.7.24

[31] 穿戴式动力膝关节康复装置,国家发明专利,专利授权号:ZL201710020830.4,授权日期:2020.2.28 

[30] 一种可调整腿部姿态的儿童脑瘫踝关节康复装置,国家发明专利,专利授权号:ZL201710047419.6,授权日期:2019.8.2

[29] Damping control method for lower-limb prostheses, United States Patent No.: US 10335293 B2, Date of Patent: Jul. 2, 2019

[28] 一种可调整腿部姿态的踝关节康复装置,国家发明专利,专利授权号:ZL201710047420.9,授权日期:2019.4.9 

[27] 一种基于连续可变串联柔性驱动的穿戴式动力膝关节,国家发明专利,专利授权号:ZL201710020683.0,授权日期:2019.1.1  

[26] Non-contact capacitive sensing system for robotic lower-limb prosthesis, United States Patent, Patent No.: US 10111763 B2, Date of Patent: Oct . 30, 2018

[25] 一种基于多传感器信息融合的步态分类方法,国家发明专利,专利授权号:ZL201410257800.1,授权日期:2017.7.7

[24] 一种无人自主飞艇及其飞行控制系统的建立方法,国家发明专利,专利授权号:ZL201410333398.0,授权日期:2016.8.24 

[23] 一种电机驱动小腿假肢的阻尼控制方法,国家发明专利,专利授权号:ZL201410479753.5,授权日期:2016.1.13

[22] 多自由度的踝关节动力外骨骼,国家发明专利,专利授权号:ZL201410208291.3,授权日期:2015.12.30

[21] 一种用于智能假肢的非接触式电容传感系统,国家发明专利,专利授权号:ZL201410125782.1,授权日期:2015.8.19

[20] 二自由度限位异向变柔性仿生踝关节,国家发明专利,专利授权号:ZL201310397537.1,授权日期:2015.8.12

[19] 一种基于整体脚板的离散柔性趾关节,国家发明专利,专利授权号:ZL201210410861.8,授权日期:2015.1.7

[18] 一种基于整体脚板的连续柔性趾关节,国家发明专利,专利授权号:ZL201210410366.7,授权日期:2014.12.10 

[17] 一种直驱踝关节,国家发明专利,专利授权号:ZL201210409845.7,授权日期:2014.12.3

[16] 一种下肢痉挛智能康复装置,国家发明专利,专利授权号:ZL201210573043.X,授权日期:2014.11.19 

[15] 一种磁流变制动踝关节,国家发明专利,专利授权号:ZL201210408696.1,授权日期:2014.11.19

[14] 一种用于假肢控制的穿戴式脚底压力采集装置,国家发明专利,专利授权号:ZL201210151043.0,授权日期:2014.8.20

[13] 一种柔性可控的关节驱动器,国家发明专利,专利授权号:ZL201210562886.X,授权日期:2014.8.20

[12] 一种膝关节柔性辅助康复装置,国家发明专利,专利授权号:ZL201310032825.7,授权日期:2014.8.6 

[11] 一种实时识别踝关节的肌电信号采集设备及识别方法,国家发明专利,专利授权号:ZL201210151067.6,授权日期:2014.3.12

[10] 一种用于人体运动模态识别的电容传感系统,国家发明专利,专利授权号:ZL201210151050.0,授权日期:2014.1.29
[9] 一种基于足底压力的步态分析方法,国家发明专利,专利授权号:ZL201210150499.5,授权日期:2013.9.4

[8] 一种基于动力膝下假肢的步态识别方法,国家发明专利,专利授权号:ZL201010267534.2,授权日期:2013.4.24

[7] 含柔性动力踝关节和脚趾关节的动力膝下假肢,国家发明专利,专利授权号:ZL201010261842.4,授权日期:2012.10.3

[6] 主被动运动相结合的动力膝关节,国家发明专利,专利授权号:ZL201010267558.8,授权日期:2012.8.23

[5] 一种基于动力膝下假肢的阻抗控制方法,国家发明专利,专利授权号:ZL201010281463.1,授权日期:2012.3.21

[4] 一种基于被动运动方式的双足类人机器人,国家发明专利,专利授权号:ZL200810225507.1,授权日期:2010.6.9

[3] 一种行走机器人多电机控制系统,国家发明专利,专利授权号:ZL200810114507.4,授权日期:2010.4.7

[2] 一种主被动运动结合的弹性机械腿,国家发明专利,专利授权号:ZL200710120157.8,授权日期:2009.6.10

[1] 在复杂环境下智能机器人自主定位的方法,国家发明专利,专利授权号:ZL200610056937.6,授权日期:2009.2.11